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Lecture 7 
4-momentum and 4-velocity 

7.1 Transforming energy and momentum between reference frames 

The requirement that all observers measure the speed of light to be c has led us to rather 
diferent formulations of energy and momentum: a body which has rest mass m (i.e., the 
mass that we measure it to have when it is at rest with respect to us) which we see to be 
moving with velocity u has an energy E and a momentum p given by 

E = γ(u)mc 2 , p = γ(u)mu . (7.1) 

These quantities respect conservation laws: a system’s total E and p are conserved as its 
constituents interact with one another. In the limit u/c ≪ 1, these formulas reduce to 

E = mc 2 +
1 
mu 2 + O(u 4/c2) , p = mu + O(u 3/c) . (7.2)
2 

 

This makes it clear that Newtonian momentum agrees with relativistic momentum for speeds 

 

much smaller than c. The energies likewise agree in this limit, provided we account for the 
body’s rest energy mc2 . In the vast majority of circumstances a body’s rest energy is bound 
up in the body, and cannot be “used” for anything in their interaction, so it can be ignored; 

 

we essentially measure all energies relative to mc2 rather than relative to zero. The relativistic 
quantities and the Newtonian quantities thus agree perfectly when u ≪ c. 
Suppose we measure a body to have energy EL and momentum pL in our laboratory. 

What energy ET and momentum pT will an observer moving past our lab in a train with 
velocity v = vex measure the body to have? To fgure this out, follow this recipe: 

1. Deduce the 3-velocity uL of the body in the lab from the values of EL and pL. 

2. Use the velocity addition formulas to compute the 3-velocity of uT of the body as 
measured by observers on the train. 

3. From uT , compute ET and pT . 

You will work through these steps on a problem set. The result you fnd is 
x x xET = γ(EL − vpL) , pT = γ(pL − vEL/c

2) , 
y y z z p = p p = p . (7.3)T L , T L 

Tweaking notation slightly, we rewrite this  
γ −γβ 0 0ET /c EL/c 

 
 

 
 

 
x x−γβ γ 0 0p pT L . (7.4)= y y0 0 1 0 ppT L 

pT
z 0 0 0 1 pL

z 

In other words, the relativistic formulations of energy and momentum form a set of quantities 
that transform under a Lorentz transformation. 
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7.2 An invariant for energy and momentum 

Recall that we found ∆s2 = −c2∆t2 +∆x2 +∆y2 +∆z2 is a Lorentz invariant: all Lorentz 
frames agree on the value of ∆s2 between two events. Can we do something similar with 
energy and momentum? 
Looking at how E and p behave under a Lorentz transformation, let’s think of energy 

as the “timelike” component of momentum (E/c actually — which hopefully makes sense 
since we need our quantities to have the right dimensions1). Let’s see what happens when 
we examine “negative time bit squared” plus “space bit squared”: 

E2 E2 

− + (p x)2 + (py)2 + (p z)2 = − + |p|2 . (7.5)
2 2c c 

Plug into this 
2 4m c 

E2 = γ2 2 4 m c = , (7.6)
1 − u2/c2 

2 2m u 
= γ2 2 2|p|2 m u = . (7.7)

1 − u2/c2 

Putting these together, we have � � 
E2 2 2 2m u2 − m c 2 2 1 − u2/c2 

− + |p|2 = = −m c 
c2 1 − u2/c2 1 − u2/c2 

= −m 2 c 2 . (7.8) 

Multiplying this by −c2 , 

2 2 4 E2 2 2 4E2 − |p|2 c = m c or = |p|2 c + m c . (7.9) 

In other words, although diferent Lorentz frames will measure E and p diferently, all frames 
agree that E2 and |p|2 are related by the expressions given in Eq. (7.9). 
Notice that if m = 0, then |p| = E/c: massless bodies carry non-zero momentum. This 

relationship corresponds perfectly to the energy and momentum carried by electromagnetic 
radiation (compare with the Poynting vector if you need a refresher in this concept). Recall 
that our analysis began by noting that Maxwell’s equations appear to “want” c to be the 
same for all observers. It is satisfying that when we make energy and momentum consistent 
with this concept, the result automatically respects the relationship between energy and 
momentum that electrodynamics teaches us for radiation. 

7.3 The 4-momentum 

By virtue of the way in which E/c and px,y,z transform, we can see that they behave exactly 
like the components of the displacement 4-vector. This tells us that we really should defne 
a 4-vector whose components all have the dimensions of momentum: 

3X 
µ⃗p⃗ = p eµ , (7.10) 

µ=0 

1Note that if we use units such that c = 1, energy and momentum (and mass, for that matter) all have 
the same dimensions. This is another beneft of this system of units. 
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with 
0 1 x 1 y 3 z p = E/c , p = p , p = p , p = p . (7.11) 

This p⃗ is then a geometric object: observers in all Lorentz frames use this 4-vector to 
describe the system’s energy and momentum, but break it up into components and unit 
vectors diferently. If the components and unit vectors according to O are pµ and e⃗µ, then 
an observer O ′ constructs p⃗ using 

pµ ′ = Λµ ′ 
αp α , e⃗µ ′ = Λ

α
µ ′ e⃗α (7.12) 

(switching to the Einstein summation convention). The matrix elements Λµ ′ 
α perform the 

Lorentz transformation of event labels from the frame of O to the frame of O ′ ; the matrix 
elements Λα

µ perform the inverse transformation. ′ 

The reason why this is useful for us is that conservation of energy and conservation of 
momentum are now combined into a single law: the conservation of 4-momentum. Suppose 
Ni bodies interact, resulting in Nf bodies afterwards. Then, 

Ni NfX X 
init fnal p⃗ = p⃗ , (7.13)j j 

j=1 j=1 

init fnalwhere p⃗ is the initial 4-momentum of particle j, and p⃗ is the fnal 4-momentum ofj j 

particle j. 

7.4 4-vectors in general; scalar products of 4-vectors 

Let’s pause a moment to refect on the logic by which we assembled the 4-momentum. We 
essentially followed the following recipe: 

1. We found that a grouping of 4 quantities plays a meaningful role in physics: p0 = E/c, 
1,2,3 x,y,z x,y,z p = p , with E and p now defned using the “relativistic” rules we derived in 
Lecture 6. 

2. We found that when we change reference frames, these 4 quantities are transformed 
to the new frame by the Lorentz transformation exactly as the components of the 
4-displacement are: pµ ′ = Λµ ′ 

αp
α . 

3. Since it behaves under the transformation law exactly like the 4-vector we discussed 
previously, we defne pµ as the components of a new 4-vector, p⃗, and use this 4-vector 
as a tool in our physics moving forward. 

We can do this for any set of 4 quantities that turns out to be meaningful for our analysis. 
In other words, 

If any set bµ with µ ∈ [0, 1, 2, 3] has the property that when we change reference 
frames their values are related by a Lorentz transformation, bµ ′ = Λµ ′ 

αb
α , then 

bµ represent the components of a 4-vector: b⃗ = bµe⃗µ. 

Once we have identifed these quantities as the components of a 4-vector, we can start 
identifying invariants. Whatever the vector ⃗b represents, we are guaranteed that all Lorentz 
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frames agree on the value of −(b0)2 +(b1)2 +(b2)2 +(b3)2 . In fact, it is not hard to show that 
we can defne a more general notion of an invariant. Suppose a⃗ = aµe⃗µ and ⃗b = bµe⃗µ. Then, 

⃗ 0b0 1b1 2b2 3b3a⃗ · b ≡ −a + a + a + a (7.14) 

⃗is a Lorentz invariant: all Lorentz frames agree on the value of a⃗ · b. This is simply proven 
by transforming the components of a⃗ and b⃗ to another frame and then showing that the 
right-hand side of (7.14) in the new frame is unchanged from its value in the original frame. 
Equation (7.14) defnes what we call the “scalar product” between two 4-vectors. We 

will now use the term “scalar” only to refer to a quantity whose value is invariant to Lorentz 
transformations. This a bit diferent from how you likely have thought of scalars previously. 
For example, in Newtonian mechanics a body’s energy E is often taken to be a scalar, since 
it is a quantity that does not have a direction associated with it. In relativity, E is not a 
scalar since its value changes according to the Lorentz frame in which we measure it. (To 
save some of your older intuition, note that we now think of a body’s energy as the timelike 
component of its 4-momentum, modulo factors of c. In relativity, E does have a direction 
associated with it — it’s a timelike component of a 4-vector.) 
A (rather obvious) corollary of the fact that the scalar product of two 4-vectors is a 

Lorentz invariant is that the scalar product of any 4-vector with itself is a Lorentz invariant. 
Two quantities we’ve recently examined can be rephrased using this defnition: 

∆x⃗ · ∆x⃗ = ∆s 2 , (7.15) 

p⃗ · p⃗ = −m 2 c 2 . (7.16) 

The resemblance to the invariant interval ∆s2 gives us a convention for describing 4-vectors. 
For any 4-vector a⃗, if 

a⃗ · ⃗a < 0 (7.17) 

then we say that a⃗ is timelike. This means that we can fnd a Lorentz frame in which only 
the time component of a⃗ is non-zero: a⃗ has no spatial components in that frame. If 

a⃗ · ⃗a > 0 (7.18) 

then we say that a⃗ is spacelike. There exists a2 Lorentz frame in which a⃗ has no component 
in the time direction; it points purely in a spatial direction. Finally, if 

a⃗ · ⃗a = 0 (7.19) 

then a⃗ is lightlike or null. In all Lorentz frames, a⃗ points along light cones. 
Notice that p⃗ is either timelike or lightlike, and is only lightlike for m = 0. 

7.5 4-velocity 

In Newtonian mechanics, velocity and momentum were related by a factor of the body’s 
mass. Let’s do the same thing using the 4-momentum, and defne the quantity that results 
as the 4-velocity: 

1 
u⃗ = p⃗ . (7.20) 

m 
2Actually, many such Lorentz frames: once we fnd one, any Lorentz frame that is related to the frst by 

a rotation will do the trick. 
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What does u⃗ mean? Let’s look at its components: 

p0 E 
u 0 = = = γ c , (7.21) 

m mc 
1 

u 1 = 
p 
= γ (u)x , (7.22) 

m 
2 p2 

= γ (u)yu = , (7.23) 
m 

u 3 = 
p3 

= γ (u)z . (7.24) 
m 

Note the notation used on the spatial components: (u)x means the x component of the 
3-vector u, and likewise for the y and z components. The spatial components of u⃗ thus look 
just like “normal” 3-velocity, but are multiplied by γ. How do we interpret the γ factor? 
Consider someone passing by with 3-velocity u. That person’s clocks run slow according 

to you: as an interval dτ passes on their clock, an interval dt passes on your clock, with 

dt = γ dτ . (7.25) 

If, for example, γ = 2, then we measure 2 seconds passing for every 1 second interval that 
they record. We defne the interval dτ as the proper time: it is an interval of time according 
to the clock of the observer (or object) who we say is moving. The word “proper” in this 
case comes from a meaning that denotes “belonging to oneself.” Hence an observer’s proper 
time is the time which that observer measures. 
Proper time is a useful quantity because it is a Lorentz invariant: all Lorentz frames agree 

that the observer in motion measures a time interval dτ . That won’t be the time interval 
we measure as observer O whizzes by us at 90% of the speed of light; it won’t be what our 
friend F measures as they whizz by at 90% of the speed of light in another direction; but we 
all agree that it is what O measures. It is a useful benchmark whose meaning all agree on. 
With this in mind, let’s re-examine the spatial components of the 4-velocity: 

dx dx 
u x = γ (u)x = γ = , (7.26)

dt dτ 
y dy dy 

u = γ (u)y = γ = , (7.27)
dt dτ 
dz dz z u = γ (u)z = γ = , (7.28)
dt dτ 

Let’s also look at the timelike component: 

t dt dt 
u = γ c = γ c = c . (7.29)

dt dτ 

Comparing with how we defned the displacement 4-vector, we see that 

dx⃗ 
u⃗ = . (7.30)

dτ 

The 4-velocity is the rate at which something moves through spacetime per unit proper time. 
It’s worth computing the invariant associated with the 4-velocity: 

2 21 m c 
u⃗ · ⃗u = 

2 
p⃗ · p⃗ = − 

2 
= −c 2 . (7.31) 

m m 
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The 4-velocity of a body which is at rest in some Lorentz frame has the same u⃗ · ⃗u as a body 
which is moving 0.99999999999c in that frame. 
Notice that u⃗ is a timelike 4-vector. Because of this, u⃗ does not really “work” for a 

“body” moving at the speed of light: γ diverges there. This is consistent with the fact that 
our original defnition starts with u⃗ ⃗= p/m, and the only “objects” we know of that travel 
at the speed of light have m = 0. 4-vectors are geometric objects, and we cannot make a 
timelike 4-vector into a lightlike one. 

7.6 4-velocity contrasted with 3-velocity 

We now have two important ways to characterize a moving body’s motion: 

• 3-velocity u = dx/dt describes motion through space per unit time. Both “space” 
and “time” are frame-dependent concepts, and so u depends on the frame in which it 
is measured. 

• 4-velocity u⃗ = dx⃗/dτ describes motion through spacetime per unit proper time. It 
is a frame-independent, geometric object; the same u⃗ is used by all observers. 

A major conceptual diference between these two quantities is how we regard them when 
observed in diferent Lorentz frames: 

• As a frame-independent geometric object, all observers agree on an object’s 4-velocity 
u⃗. They assign it diferent components, however, and use diferent unit vectors when 
expanding u⃗ into components: 

u⃗ = uµe⃗µ = u α ′ e⃗α ′ , (7.32) 

where 
α ′ = Λα ′ µu µu , e⃗α ′ = Λ

µ
α ′ e⃗µ . (7.33) 

• The 3-vector is actually diferent in the two frames. Given u, we fnd the components of 
u ′ which describe the body’s motion in a new frame by applying the velocity addition 
formulas: if the relative motion of the two frames is given by v = vex, then 

(u)x + v 
(u)x ′ = , (7.34)

1 + (u)x v/c2 

(u)y 

(u)y ′ = , (7.35)
γ(v)(1 + (u)x v/c2) 

(u)z 

(u)z ′ = . (7.36)
γ(v)(1 + (u)x v/c2) 

Both the 3-velocity and the 4-velocity are important and useful. The 3-velocity is what 
we measure in our own reference frame: we see a body move through a spatial displacement 
∆x in an interval of time that our clocks measure to be ∆t; we thus determine that the body 
has a 3-velocity u = ∆x/∆t. From this, we can construct the body’s 4-velocity. This gives 
us a geometric object that gives us an excellent tool for describing the body’s trajectory in 
spacetime. We will to be fuent with both 3- and 4-velocities, and at ease with translating 
between them. 
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