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Lecture 8 
Using 4-momentum 

8.1 Introduction; a note on notation 

In this lecture, we are going to examine how we use 4-momentum, seeing how it serves as a 
tool that combines the familiar notions of mass, momentum, and energy conservation into 
a single mathematical “device.” One of the goals of this examination will be to see how we 
can use invariants to write certain quantities in ways that make the analysis easy. 
Be aware that we are going overload a bit of notation, the dot product. When we write 

the dot product between two 4-vectors, that tells us to compute the invariant scalar product: 
⃗ 0b0 + a1b1 + a2b2 + a3b3a⃗ · b = −a . When we write the dot product between two 3-vectors, 

that’s the dot product you’ve learned in previous physics courses: a · b = axbx + ayby + azbz . 
This is arguably a bit sloppy, but our use will be unambiguous as long as we consistently 
use the dot product symbol only in these two circumstances exactly as defned here. 
Several of the examples used in this lecture are inspired by or taken from the textbook 

Introduction to Elementary Particles, by David J. Grifths (Chapter 3). 

8.2 The energy measured by a particular observer 

Suppose that body A moves through spacetime with 4-momentum p⃗A. Suppose that observer 
O has 4-velocity u⃗O; in our lab L we measure the components of u⃗O to be (ut x 

L,O, uL,O, uL,
y 
O, 

uL,
z 
O). What does O measure for the energy of body A? 
Perhaps the most straightforward way to do this would be as follows: 

1. Perform a Lorentz transformation to take us to the rest frame of O. In this frame, the 
t x zcomponents of u⃗O are given by (uO, uO,uO 

y ,uO) = (c, 0, 0, 0). 

2. Apply this Lorentz transformation to the components of p⃗A; call these components 
αpA;O. 

3. After applying the Lorentz transformation, the timelike component ptA;O is equal to 
the energy of body A in the rest frame of O, modulo a factor of c. In other words, the 
energy of body A as measured by O is 

= c p t . (8.1)EA;O A;O 

This way of doing things is straightforward, and in principle we could do this to determine 
the energy of body A for any observer. However, note that the fnal result can be written 

t t x x y y z zEA;O = pA;OuO − pA;OuO − p O − pA;Ou . (8.2)A;Ou O 

On initial glance, this may seem like a rather stupid way of rewriting Eq. (8.1): The term with 
the t components on the right-hand side of (8.2) is the same as what’s on the right-hand side 
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x,y,z of (8.1), but the other 3 terms we subtract of are all equal to zero since uO = 0. However, 
this rewriting makes it clear that Ea;O is just the scalar product of body A’s 4-momentum 
with observer O’s 4-velocity, modulo a minus sign: 

EA;O = −p⃗A · ⃗uO . (8.3) 

This is a particularly lovely way of writing this quantity because the scalar product is an 
invariant. As long as we know the components of both p⃗A and u⃗O in some frame of reference, 
we can use Eq. (8.3) to compute body A’s energy as measured by O without needing to 
perform the Lorentz transformation to the rest frame of O. 
In addition to being a very useful way of writing the energy that some specifed observer 

measures (we will fnd this form of the energy to be useful for several applications over 
the course of this semester), Eq. (8.3) serves as an exemplar of the power of writing things 
in terms of Lorentz invariants. Many times, it might be conceptually straightforward (but 
perhaps algebraically tedious) to fgure out a quantity in a particular frame. If you can take 
that result and reformulate it as a Lorentz invariant, you will have a result that is broadly 
applicable and often much easier to apply. 
Note: you might be confused about the fact that the “energy” defned by Eq. (8.3) is a 

Lorentz scalar. In the previous lecture, we quite specifcally used energy as an example of a 
quantity that is not a scalar in relativistic physics! Are we not contradicting ourselves? 
The issue here is that we are using the word “energy” for two diferent, albeit related, 

physical quantities: the timelike component of a body’s 4-momentum, and the property of 
a body as measured by some particular observer. The frst quantity we call “energy” is 
certainly not a Lorentz invariant — diferent frames assign diferent values to the timelike 
component of p⃗. The second such quantity is a Lorentz invariant because all IRFs agree that 
this is the energy measured by that observer. It is similar to the fact that the proper time 
experienced by some observer is a Lorentz invariant, even though “time” is certainly not 
Lorentz invariant. An observer’s proper time may not be the time that I measure, it may 
not be the time that you measure, but it is the time which that observer measures. We all 
agree on that. 
As a higher-level side issue, it’s worth noting that a lot of confusion about various concepts 

in physics can be traced back to the fact that the terms we use in human language to describe 
things often has some built-in ambiguity. The mathematical language that we use to describe 
physics does not. The philosophy of “shut up and calculate,” though a tad rude, is often a 
really way useful to get out of a confusing jam. 
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has mass m; we shoot them at each other, one with velocity v v
ex. They combine into a new lump of mass M . What is M? 

Before

v v

After
m m M

8.3 Collisions and decays 

8.3.1 A simple collision 

Let’s begin by looking at some situations in which we can use conservation of 4-momentum 
to deduce what is going on. Begin by imagining that we smash together two lumps of clay. 
Each lump = ex, the other 
with v = −v 

The 4-momentum of the two lumps before we shoot them together has components  

α . 
p = B,j 

 

γmc 
±γmv 
0 
0 

 , γ = 1/
p
1 − v2/c2 . (8.4) 

.
The symbol “=” we have introduced here means “the components on the left-hand side are 
given by the column vector on the right-hand side.” Put j = R to label the lump moving to 
the right (for which we choose the + sign), and j = L for the lump moving to the left (for 
which we choose the − sign). 
After the collision, we have  

α . p = A 

 

Mc 
0 
0 
0 

 . (8.5) 

The fnal lump is at rest in the frame we are using, so γ = 1 afterwards, and there are no 
non-zero spatial components to p⃗A. Enforcing p⃗B,R + p⃗B,L = p⃗A tells us 

M = 2γ(v)m . (8.6) 

The Newtonian expectation of course is that mass is simply conserved: M = 2m in Newto-
nian physics. In relativity, we see that M > 2m. Indeed, if v is large, the amount beyond 
the Newtonian expectation can be signifcant. For instance, if v = 3c/5, then M = 2.5m — 
the rest mass has increased by 25% in this case. 
Where has that “extra” rest mass come from? This is E = mc2 in action: kinetic energy 

has been converted into rest mass. When we collide two lumps at high speed, the remnant of 
the collision will be hotter than if we combine them at low speed. That kinetic energy gets 
incorporated into the random, thermal motion of the molecules that constitute the lumps. 
In essence, this tells us that a body’s rest mass is higher when it is hot than when it is cold. 

8.3.2 A simple decay 

The previous example is somewhat contrived. However, it is the time reverse of processes 
that happens all the time: the decay of bodies with mass MB into products whose total mass 
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into two bodies of mass m, which then recoil in opposite directions 

Before

vv

After
mmM

MA is less than the starting mass. Let’s consider such a decay process: A body of mass 
M decays with speed v. 
What is v? 

Conserving 4-momentum leads us to exactly the same equation as before: 

M = 2γ(v)m . (8.7) 

Now, we take M and m as knowns, and solve for v: � 
2m 

s �2 

v = c 1 − . (8.8)
M 

Notice that if m = M/2, v = 0: all of the original rest energy turned into rest energy in 
the new bodies. If m < M/2, then some of that rest energy has become kinetic energy. (If 
m > M/2, then we’ve got nonsense! Check your measurements.) 

8.3.3 A not-quite-so-simple decay 

Although the above decay example is illustrative, it is also somewhat contrived. A more 
realistic example is decay into two unequal mass bodies. In fact, quite a few important 
examples involve decay into products with m = 0. Here’s a fairly simple example: the decay 
of a charged pion into a muon and a massless neutrino1: 

π− → µ − + ν̄ . (8.9) 

This equation means that the (negatively charged) pion decays into a (negatively charged) 
muon and an antineutrino. This equation guarantees that charge, spin, and a quantity called 
“lepton number” are also conserved. If the details of this interest you, you should investigate 
future coursework in nuclear and particle physics. Our focus here is solely on the issue of 
4-momentum conservation. We take the pion that starts this process to be at rest in our 
laboratory, so its 4-momentum components in the lab are given by  

α . p = π 

 

mπc 
0 
0 
0 

 . (8.10) 

1We now know that the neutrino has a non-zero mass, so the analysis I am presenting here is not 
quite right. However, the mass is so small that we have not yet actually measured it (although we have 
“upper bounds” on how big it can be). You should treat the idea of a massless neutrino as a very useful 
approximation. Hopefully we (“we” meaning the scientifc community at large) will be able to refne these 
analyses with a mass estimate before too long. 
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The neutrino cannot be at rest: as a zero-mass particle2 it must have non-zero 3-momentum. 
Let’s defne the neutrino’s momentum as along the positive x axis:  

Eν /c 

α . p = ν 

 
Eν /c 
0 
0 

 . (8.11) 

This form of pαν guarantees that p⃗ν · ⃗pν = 0, the correct value of this invariant for a massless 
particle. The fnal quantity we need is the 4-momentum of the muon3 . A little thought tells 
us that it must have the form  

γ(v)mmuonc 

α . 
p = muon 

 
 . (8.12) 

−γ(v)mmuonv 
0 
0 

This means the muon, with rest mass mmuon, moves in the −x direction with speed v. 
Let’s now enforce conservation of 4-momentum and determine (a) the energy of the 

neutrino, and (b) the speed v with which the pion recoils. We require both components of 
4-momentum to balance: 

p⃗π = p⃗muon + p⃗ν 

t component: mπc = Eν /c + γ(v)mmuonc 

x component: 0 = Eν /c − γ(v)mmuonv . (8.13) 

The x component equation allows us to eliminate Eν from the t component equation. Doing 
so, we have 

mπc = γ(v)mmuon(v + c) . (8.14) 

Square both sides of this and divide by c2: � ��� 
(v + c)2 c + v2 2 2 (8.15)m = m = m .π muon muon c2 − v2 c − v 

Solving this for v, we fnd � � 
m2 − m2 

π muon (8.16)v = c . 
mπ 

2 + mmuon 
2 

From this, it’s a straightforward exercise to return to the x component equation and solve 
for Eν . The result is � �

2 − m21 mπ muon 2Eν (8.17)= c . 
2 mπ 

2Again, ignoring current wisdom that neutrinos actually have a very small mass. 
3Note that there’s potential for confusion here: we’ve written out the word “muon” rather than used the 

conventional symbol µ in order to avoid confusing µ with a downstairs index. The Greek alphabet gets a 
tad overused from time to time in physics. 
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8.3.4 A not-quite-so-simple decay, revisited 

The calculation we just did is the most straightforward way to take conservation of 4-
momentum and grind out the quantities of interest. You should be aware, though, that 
we can exploit the properties of 4-vectors to expedite our grinding of this algebra. Let’s 
start with our initial statement of conservation of 4-momentum: 

p⃗π = p⃗muon + p⃗ν . (8.18) 

Let’s move the neutrino’s momentum to the left-hand side, then construct the invariant 
scalar product of each side with itself: 

(p⃗π − p⃗ν ) · (p⃗π − p⃗ν ) = p⃗muon · p⃗muon (8.19) 

which expands to 
p⃗π · p⃗π − 2p⃗π · p⃗ν + p⃗ν · p⃗ν = p⃗muon · p⃗muon . (8.20) 

These various scalar products appearing in this equation take extremely simple forms: 

p⃗π · p⃗π = −mπ 
2 c 2 

2 2p⃗muon · p⃗muon = −m cmuon 

⃗ · ⃗ = 0pν pν 
0 0 1 1⃗ · ⃗ = −p = −(mπc)(Eν /c) + 0 = −mπEν (8.21)pπ pν ν + p .πp πpν 

Putting all these together, we have 

m 2 − 2mπEν /c
2 = m 2 (8.22)π muon 

or � 
2 2 � 

1 m − mπ muon 2Eν = c . (8.23)
2 mπ 

This is exactly the result for the neutrino energy we derived before. 
Let’s carry the analysis a few more steps in order to see a few more useful tricks. The 

neutrino’s 3-momentum has magnitude Eν /c, and is in the +x direction. From this we know 
that the muon’s 3-momentum has magnitude 

|pmuon| = Eν /c , (8.24) 

and is in the −x direction. Given a body’s 3-momentum and mass, we can use the 4-
momentum invariant to compute its energy: 

2 2 4E2 |2 
muon = |pmuon c + mmuonc . (8.25) 

However, we also know that for any body 

E = γ(v)mc 2 , p = γ(v)mv , (8.26) 

where v is that body’s 3-velocity. This tells us that if we know a body’s relativistic energy 
and relativistic momentum, we can construct its 3-velocity: 

2pc 
v = . (8.27)

E 
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a particle means the antiparticle.) In the lab frame, here’s the situation: 

Before

v
p p

p
p

p

p̄

After

Plugging in the quantities we just found for describing pion decay, let’s check the recoil 
velocity of the muon: 

|pmuon|c2 

|v| ≡ v = 
Emuon 

Eν c 
= p

E2 2 c4 
ν + mmuon � 
2 2 � 

m − mπ muon = c . (8.28) 
m2 

π + m2 
muon 

On the last line, I plugged in our result for Eν , and ground through a bit of algebra. 
Taking advantage of the invariant scalar product often ofers a quick route to isolating 

and fnding quantities of interest in your problem. It’s not a “Get Out of Algebra Free” 
card, but it often signifcantly simplifes a step or three of your analysis. 

8.3.5 The center of momentum (COM) frame 

Some problems can be greatly simplifed by changing the reference frame in which we do the 
calculation. A frame that often turns out to be useful is the center of momentum, or COM, 
frame: the frame in which the total 3-momentum of the system is zero. As it happens, this 
has been the case in all the examples we’ve examined so far. This is because it just happened 
that these examples considered problems in which the system had no net 3-momentum in 
the “lab” frame in which we formulated the analysis. That is not always the case. 
A classic example is a collision onto a stationary target. An important example (which 

I have taken from the textbook by Grifths) is the collision of a high-speed proton with a 
proton which is at rest in the lab frame. One of the early experiments used this set-up to 
produce antiprotons, the antimatter version of protons: 

p + p → p + p + p + p̄  . (8.29) 

(Overbar on 

Figure 1: Proton incident on a stationary proton target; lab frame. 

Our interest is to compute the threshold energy the incoming proton must have in order for 
the reaction (8.29) to occur. In the lab frame, this is hard to fgure out, largely because all 
of the reaction products must zoom to the right in order for momentum to be conserved. 
But, there exists some frame in which the incident proton moves to the right (slower than 
in the lab frame) and the target proton moves to the left at exactly the same speed as 
the incident proton. The system has zero 3-momentum in that frame; by conservation, the 
reaction products will have total 3-momentum summing to zero as well: 
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Before
p p

p
p
p

p̄

After

Figure 2: Proton incident on a proton target; center of momentum frame. 

The “threshold” incident energy is the minimum energy necessary in order for the reaction 
(8.29) to proceed. With a little thought, the meaning of this energy in the COM frame should 
be clear: it’s the energy at which the reaction products are produced with no kinetic energy. 
We produce only rest mass, not “wasting” any of the energy into the particles’ motion (at 
least in this frame; they will certainly be in motion in the lab frame, since the system has 
net momentum in that frame). 
Conservation of 4-momentum tells us that this system is governed by 

p⃗inc + p⃗target = p⃗1 + p⃗2 + p⃗3 + p⃗anti . (8.30) 

It is really easy to write down the components of the left-hand side in the lab frame:  
Einc/c mc 

α . 
p = inc,lab 

 
 

α . 
, p = target,lab 

 
 . (8.31)

px 0 
00 

0 0 

It is also really easy to write down the components of quantities on the right-hand side at 
threshold in the COM frame:  

α α α α . 
p = p = p = p = 1,COM 2,COM 3,COM anti,COM 

 

mc 
0 
0 
0 

 . (8.32) 

In these expressions, m is the proton mass, which is identical to the mass of the antiproton. 
(Note that in the lab frame, the 3-momentum component px can be rewritten using Einc and 
m. Hold that thought for a moment.) 
The difculty we now face is that if we try to enforce Eq. (8.30) with what we’ve got so 

far, we’re in trouble: the left-hand side and the right-hand side are expressed in diferent 
frames. The 4-momenta will not equate until we put them in the same frame. However, the 
invariants we can construct from them must equate no matter what frame we use to write 
down the various p⃗s. So, instead of examining Eq. (8.30), examine 

(p⃗inc + p⃗target) · (p⃗inc + p⃗target) = (p⃗1 + p⃗2 + p⃗3 + p⃗anti) · (p⃗1 + p⃗2 + p⃗3 + p⃗anti) , (8.33) 

We evaluate the invariant on the left-hand side by using the components we’ve written down 
in the lab frame: 

x)2(p⃗inc + p⃗target) · (p⃗inc + p⃗target) = −(Einc/c + mc)2 + (p . (8.34) 
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played a large role in making it clear that light has a particle-like 
“photon.” 

Before
γ q

q
After

mq γ

mq

We evaluate the invariant on the right-hand side by using the components we’ve written 
down in the COM frame: 

(p⃗1 + p⃗2 + p⃗3 + p⃗anti) · (p⃗1 + p⃗2 + p⃗3 + p⃗anti) = −(4mc)2 . (8.35) 

Equate these two expressions, use E2 = |p|2c2 + m2c4 to eliminate the lab frame px , solve 
for Einc. The result is 

Einc = 7mc 2 . (8.36) 

This means that this reaction will proceed if the incident proton’s kinetic energy (Einc is its 
total energy, which includes rest energy mc2) is 6 times the proton’s rest energy. 

8.4 Scattering 

A special case of a collision are scattering interactions: particle A comes in, interacts with 
particle B, and both then emerge from the interaction with new 4-momenta. Or, there 
could be numerous particles A1, A2, ... which interact with numerous particles B1, B2, ... 
This is exactly the situation we examined when we considered how to refne the defnition of 
momentum to insure that momentum was still conserved after learning how to add velocities 
properly. In all cases, we are simply governed by the rule that the total 4-momentum before 
must equal the total 4-momentum after. 
One example of a scattering interaction is particularly interesting: light interacting with 

a charge q of mass mq. (The value of the charge will play no role in the calculation we 
are about to do, but light does not interact with non-charged bodies.) Experiments frst 
performed by Arthur Compton in 1923 showed that in such interactions, the interaction of 
light with the charged body behaved just like inelastic collisions between particles. Such 
experiments nature, which 
we call the 

 

Figure 3: Compton scattering of of a charge q of mass mq. 

Suppose that the incident photon (denoted γ) comes down the x axis, but that the scattered 
photon makes an angle θ to the x axis. Then the situation afterwards introduces momentum 
along a new axis: the total momentum before they scatter is 

Eγ /c + mqc 
Eγ /c 
0 
0 

 ; (8.37) 
 

 

α . 

the total momentum after scattering is 

p = B 

 
Eγ 
′ /c + Eq/c 

xpq + Eγ 
′ cos θ/c α . p = A 

 
 , (8.38)− Eγ 

′y 
q sin θ/c p 

0 
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where Eγ 
′ is the photon energy after scattering. 

To make progress, we use the fact that the energy of a photon is simply related to its 
frequency or wavelength via 

Eγ = hν = hc/λ (8.39) 

where h is Planck’s constant: 
h = 6.626 × 10−34J sec . (8.40) 

Enforcing p⃗A = p⃗B and making judicious use of our invariants, a few lines of algebra yields 
the Compton scattering law: 

λ ′ = λ + 
h 
(1 − cos θ) . (8.41) 

mqc 

Some of the light’s energy and momentum is transferred to the charged mass; the light is 
less energetic (longer wavelength) as a consequence. We will step you through this analysis 
on a problem set (some of you may have already seen this in quantum mechanics class). 
Note that the quantity h/mqc has the dimensions of length; it is sometimes called the 

“Compton wavelength” of the mass mq. 

8.5 Doppler efect and aberration 

The invariance of the speed of light to all observers has been the central organizing principle 
of almost everything we’ve done since Lecture 3. But this raises an interesting question: if 
two diferent frames both see a beam of light moving with speed c, what about that beam 
appears diferent to the two observers? 
Let’s make this concrete by examining a beam of light as seen by two observers: our 

station-frame observer S, and an observer T riding through the station on a train with 
velocity v = vex. Let’s say that the station-frame observer reports the beam to have energy 
E = hν, and that it is moving in the (x, y) plane, making an angle θ with the x axis. This 
means that the station-frame observer measures the beam to have 4-momentum components  

hν/c 

α . p = S 

 
 . (8.42) 

hν cos θ/c 
hν sin θ/c 

0 

What components does the observer on the train report? As usual, we apply the Lorentz 
′ µ ′ ′ 

transformation: pT = Λ
µ

αpS
α , where Λµ

α is the matrix which takes events from frame S to 
frame T . The result is  

hν ′ /cγhν/c(1 − v cos θ/c) 
 = 

 
 . (8.43) 

′ cos θ ′ /cγhν/c(cos θ − v/c) 
hν sin θ/c 

hν′ µ . 
p = 

hν ′ sin θ ′ /cT 

0 0 

The result is that, according to the train observer, the beam of light has a diferent energy 
hν ′ and travels at a diferent angle θ ′ . (It’s a straightforward exercise to equate the two 
ways I have written the components pT

µ ′ to work out ν ′ and θ ′ .) The shift of the light’s 
energy is the Doppler efect, the same basic physics by which we hear the frequency of a 
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siren change pitch as an emergency vehicle drives past us at high speed. The change in angle 
is aberration. You explored the phenomenon of light’s trajectory changing angle according 
to diferent observers on a recent problem set; such an analysis can be done quite elegantly 
using 4-momentum. 
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