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Lecture 9 
Some more math: The metric tensor, 1-forms 
aka dual vectors, tensors more generally 

9.1 The scalar product revisited 

Similar to Lecture 5, this lecture again largely focuses on mathematical issues. We have 
introduced you to 4-vectors, and have shown how they can be used to organize a Lorentz 
covariant presentation of some of the laws of physics. In this lecture, we expand the “vocab-
ulary” of mathematical objects that we use to describe quantities in relativistic physics. 
We begin by revisiting the the scalar product between two 4-vectors, 

⃗ 0b0 1b1 2b2 3b3a⃗ · b = −a + a + a + a . (9.1) 

⃗It is not difcult to show that ⃗a·b is invariant. Indeed, “scalar product” refers to the fact that 
a “scalar” in relativistic physics is a quantity that is invariant across Lorentz frames, a more 
specialized and specifc meaning than you have likely encountered in previous coursework. 
As written, there is nothing wrong with Eq. (9.1). We used this very form to help 

understand invariants associated with relativistic energy and momentum. However, from a 
certain perspective Eq. (9.1) can be regarded as “distasteful.” It’s necessary to write the 
whole expression out; there’s no nice shorthand that lets you write this expression in index 
notation if we follow this form. 
To correct for these shortcomings, we introduce a new mathematical object called the 

metric. The metric is a tensor, a mathematical object that we defne more completely below. 
For now, you can regard it is an object with two indices that is represented in a particular 
Lorentz frame by a matrix. The metric has components ηαβ given by  

−1 0 0 0 
0 1 0 0 

 
.

ηαβ (9.2)= . 
0 0 1 0 
0 0 0 1 

.
=” to stand for “the object on the left-handAs in the previous lecture, we use the symbol “ 

XX 

side has the components on the right-hand side.” Using the metric, you should be able to 
convince yourself quite easily that Eq. (9.1) is equivalent to 

3 3 

⃗ αbβ αbβa⃗ · b = ηαβ a = ηαβ a . (9.3) 
α=0 β=0 

The second form, using the Einstein summation convention, is how the invariant scalar 
product is most commonly written out. 
Let’s see what the invariance of the scalar product tells us about how the components of 

the metric transform between reference frames. Suppose that observer O measures ⃗a and ⃗b to 
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have components aα and bβ , and they use ηαβ for metric components. Observer O ′ measures 
µ ′these vectors to have components a 
′ 
and bν ′ , and they use ηµ for metric components. ′ ν 

The components of the vectors are related in the usual way by the Lorentz transformation 
matrix: 

a α = Λα
µ ′ a

µ ′ (9.4) 

bβ = Λβ
ν ′ b

ν ′ . (9.5) 

How do we compute the metric components used by O ′ ? We fgure this out by enforcing 
invariance: 

⃗ αbβa⃗ · b = ηαβa� �� � 
′ µΛα 

′ a Λβ
ν ′ b

ν ′ = ηαβ µ � � 
µ bν ′ = ηαβ Λ

α
µ ′ Λ

β
ν ′ a 

′ 
. (9.6) 

This quantity is an invariant provided we transform the components of the metric via the 
rule 

ηµ ′ ν ′ = ηαβ Λ
α
µ ′ Λ

β
ν ′ . (9.7) 

Notice that this is basically just the “line up the indices” rule that we discussed when 
we introduced index notation. CAUTION: if you want to do this analysis using matrix 
multiplication techniques that you learned in linear algebra, you must be very careful — it 
is quite easy to go awry. See my comment in the fnal section of these lecture notes. 
I’ve gone through the calculation of how the metric transforms with some care because 

I want to make clear the principle behind how we transform tensor components. In a few 
pages, we are going to apply the ideas discussed here to tensors in general. As with 4-vectors, 
the behavior of quantities under transformation is central to our defnition of what a tensor 
is. With that said, it must be noted that for the metric the fnal result is so simple that all 
the calculation presented above surely will feel like distressing overkill: ηαβ is represented by 
the matrix   

−1 0 0 0  0 1 0 0  (9.8) 0 0 1 0 
0 0 0 1 

in all Lorentz frames. This can be proved by computing Eq. (9.7). 
One last detail: you might be wondering what happened, in Eq. (9.3), with the unit 

vectors which go into the vectors a⃗ and b⃗. After all, if a⃗ = aαe⃗α and b⃗ = bβ e⃗β , shouldn’t it 
also be the case that � �

⃗ αbβa⃗ · b = a (e⃗α · ⃗eβ ) (9.9) 

is exactly equivalent to the form presented in (9.3)? 
The answer is certainly yes. Comparing Eqs. (9.3) and (9.9) shows us that for these 

forms to be equivalent, then we must have 

e⃗α · ⃗eβ = ηαβ . (9.10) 

This, at last, allows us to see how the geometric objects e⃗α are, in fact, unit vectors: the 
scalar product of any two unit vectors is zero if α ̸= β; the scalar product is 1 when α = β 
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and correspond to one of the spatial directions; and the scalar product is −1 when α = β = t. 
The negative scalar product is what we expect for timelike vectors, so e⃗t · e⃗t = −1 should 
make sense, although it looks starkly diferent from the “modulus squared” you have seen 
with unit vectors in previous classes. 
As discussed above, ηαβ is represented by the matrix (9.8) in all reference frames. This 

means that when we change frames, and then build the unit vectors in the new frame, 

′e⃗µ ′ = Λ
α
µ e⃗α , (9.11) 

′ ′ ′ ′we must have e⃗t ′ · ⃗et ′ = −1, e⃗x · ⃗ex = 1, e⃗x · ⃗ez = 0, etc. You will test out this expectation 
on an upcoming problem set. 
We wrap up our discussion of the metric with a few comments: 

• Writing out that matrix over and over is tedious and tiring. As shorthand, we will 
often write diag(−1, 1, 1, 1) rather than the full 4 × 4 matrix. This notation means 
“the matrix which has −1, 1, 1, 1 on the diagonal, and has zero everywhere else.” 

• For reasons that will be clearer in the next section, it is useful to defne an inverse 
metric: we defne ηαβ by the rule that 

ηαβηβγ = δαγ . (9.12) 

Recall that δαγ is known as the Kronecker delta. It equals 1 if α = γ, and equals 0 
.

otherwise. Equivalently, we can say δαγ = diag(1, 1, 1, 1); equivalently, we can say that 
the Kronecker delta is represented by the elements of the identity matrix. The matrix 
representation of the components ηαβ is exactly the same as the matrix representation 
of the components ηαβ — both are given by diag(−1, 1, 1, 1). 

• The metric is not always going to be as simple as diag(−1, 1, 1, 1). The metric becomes 
more complicated when we start using diferent coordinate systems; and, it becomes 
signifcantly more complicated when we move from special relativity to general relativ-
ity. In these cases, the components of the metric become functions of the coordinates. 
We will denote the metric by gαβ when it becomes necessary for us to make it more 
complicated; we will always use ηαβ for the metric that is represented by the matrix 
diag(−1, 1, 1, 1). This is the form that we use in special relativity with Cartesian spa-
tial coordinates. (It is worth noting that such coordinates are often called inertial 
coordinates: an observer at constant Cartesian spatial coordinate moves with constant 
velocity in all Lorentz frames.) 

• Finally, the word “metric” comes from a root that means to measure. This is because 
by using the metric we can write the invariant interval ds2 = ηαβdxα dxβ — the metric 
is the mathematical object which introduces a notion of measurable distance between 
two events, one located at xα , the other at xα + dxα . This may seem fairly trivial given 
what we have discussed so far, but it becomes substantially less trivial when we move 
into more complicated geometries. In those cases, we will write ds2 = gαβ dx

α dxβ . 
The behavior of gαβ is very important for understanding the distance between two 
coordinate points in these more complicated cases. 
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9.2 Lowering and raising indices 

When we compute a⃗ · ⃗b = ηαβaαbβ , we say that we are contracting the metric with a⃗ and b⃗ 
on the indices α and β. What do we get if we contract the metric with a single vector, on 
only one index? In other words, what is ηαβaα? 
As is the way in mathematics, when we encounter a construction like this, we use it to 

defne something new. In this case, we defne a quantity with an index in the “downstairs” 
position: 

aβ ≡ ηαβ a α . (9.13) 

For reasons that are hopefully obvious, this operation is called lowering the index. The 
components in the “downstairs” position are sometimes called dual to the components with 
index “upstairs”; the geometric object we make using the downstairs-indexed components 
is (as noted at the end of Lecture 5) known as a “dual vector” or as a “1-form.” Neither 
of these names will be important for the purposes of 8.033, though I may occasionally use 
these terms. 
In special relativity using inertial coordinates, lowering the index fips the sign of the zero 

0 1 2 3component: a0 = −a , but a1 = a , a2 = a , a3 = a . Lowering the index gives us another 
way to construct the inner product: 

a⃗ · b⃗ = aαb
α = a αbα . (9.14) 

If the metric lowers an index, then it is hopefully not too surprising that the inverse metric 
raises it: � � 

ηαβ µ µ β aα = ηαβ (ηαµa
µ) = ηαβηαµ a = δβµa = a . (9.15) 

This is why the inverse metric was introduced — it gives us a tool to reverse the lowering 
operation which the metric performs. 
How do the components aα transform between reference frames? You can probably 

guess based on the “line up the indices” rule, but to be sure, let’s carefully compute how 
components in the frame of O ′ are related to components in the frame of O: 

β ′ aα ′ = ηα ′ β ′ a � � 
Λβ ′ σ = (Λµ

α ′ Λ
ν
β ′ ηµν ) σa � � 

σ = Λµ
α ′ Λ

ν
β ′ Λ

β ′ ηµν aσ 

σ = Λµ
α ′ δ

ν 
σηµν a 

= Λµ ν 
α ′ ηµν a 

= Λµ
α ′ aµ . (9.16) 

On the frst line, we write the lowering operation with all components expressed in the frame 
of O ′ . On the second line, we introduce the Lorentz transformation matrices that express 
those O ′ -frame quantities in terms of O-frame quantities. On the third line, we rearrange the 
terms slightly, and then sum over the index β ′ . This yields the Kronecker delta by combining 
the second and third Lorentz transformation matrices. To go to the ffth line, we sum over 
the index σ, which (thanks to the properties of the Kronecker delta) changes the aσ to aν . 
The result of this tells us to lower the index on aν . The result we get at the end of all this 
shows us that to transform “downstairs” components, we indeed just “line up the indices.” 
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As mentioned in a previous lecture, “upstairs” components are often called contravariant, 
and “downstairs” ones are called covariant. We now see that the metric and inverse metric 
are the tools we use to fip between the two forms. This holds up in general, including when 
the metric becomes more complicated than diag(−1, 1, 1, 1). Because the metric (and its 
inverse) let us raise or lower indices as needed for our calculation, the diference between the 
“upstairs” and “downstairs” position is not really that important for us. This is one of the 
reasons I like using the terms “upstairs” and “downstairs” — these terms emphasizes that 
the index position is not terribly important, and in fact can be modifed with ease. 
The 4-vectors we have discussed so far (spacetime displacement, 4-momentum, 4-velocity) 

are most “naturally” presented with their indices up. This is largely because they descend 
from the spacetime displacement vector, ∆x⃗ = ∆xαe⃗α, in which the physical quantity we 
care about is the set of coordinate displacements ∆xα . There are some quantities which 
are most “naturally” expressed using indices down. The prototypical example of this is the 
spacetime gradient. Suppose that ϕ(x⃗) is a scalar feld — that is, it is a feld whose value 
at the event located x⃗ away from the origin is the same to all inertial observers. Then we 
defne its gradient by 

∂ϕ 
Aα = ≡ ∂αϕ . (9.17)

∂xα 

µ α = ΛµOn a problem set, you will show that if x 
′ 
= Λµ ′ 

αx , then Aα ′ α ′ Aµ — under Lorentz 
transformations, the gradient behaves like a “downstairs” index quantity. 
The metric lets us defne a variation on the gradient. Let us defne 

xα = ηαµx
µ . (9.18) 

The components of this “downstairs” variant of xµ are identical, except for the time-like 
piece, which picks up a minus sign: 

0 1,2,3 x0 = −x = −ct ; x1,2,3 = x . (9.19) 

We defne our variant of the gradient using derivatives with respect to xα: 

∂ϕ 
Aα ≡ ∂αϕ .= (9.20)

∂xα 

It’s not hard to show that this transforms like an “upstairs” index quantity, hence our 
association of it with Aα . 
One of the places where this is really useful is that we can combine and contract the 

two notions of gradient to produce a combination of second derivatives that is a Lorentz 
invariant operator. Let’s look at what happens when we act both notions of gradient with 
the indices contracted onto scalar feld ϕ: 

1 ∂2ϕ ∂2ϕ ∂2ϕ ∂2ϕ 
∂α∂αϕ = − + + + ≡ □ϕ . (9.21) 

c2 ∂t2 ∂x2 ∂y2 ∂z2 

You may recognize this combination of derivatives as exactly what we have for quantities 
that obey a wave equation. Indeed, the combination ∂α∂α, often denoted with the “box” 
symbol □, is called the wave operator. Notice that it has no free indices. 
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9.3 Tensors 

The metric is an example of a family of mathematical objects called tensors which are used 
in many places in physics. They are particularly important in relativity, but show up in 
many other felds, particularly when one studies the properties of matter or matter fow over 
an extended region (e.g., in fuid dynamics, or the elastodynamical properties of materials). 
Tensors are geometric objects whose components are represented by quantities with in-

dices on them. The metric tensor is the frst example we have seen of a tensor with two 
indices, but this generalizes — tensors can have an arbitrary number1 of indices. Their 
defning characteristic is the transformation law: a quantity is a tensor if it transforms with 
a transformation matrix “correcting” each of its indices. For example, suppose physics tells 
us that we care about a quantity with 4 indices, one in the up position and three down: 
Rµ

αβγ . This quantity is a tensor if it transforms between reference frames with the rule 

Rµ ′ ′ 
Λα = Rµ

α ′ Λ
β 

α ′ β ′ γ ′ αβγ Λ
µ

µ β ′ Λ
γ
γ ′ . (9.22) 

The number of indices used for a tensor’s components (and hence the number of transfor-
mation matrices used to transform it) tells us the tensor’s rank. The example (9.22) is a 
rank-4 tensor. The metric is a rank-2 tensor. Vectors are rank-1 tensors; they transform 
using one transformation matrix. Scalars — Lorentz invariants — are often considered to be 
rank-0 tensors; they transform with no transformation matrices, since they are the same in 
all frames. The wave operator we defned in the previous section acts like a scalar — more 
properly, a “scalar operator,” because it defnes a combination of derivatives that operate in 
the same way in all frames. 
In 8.033, we will work almost entirely with tensors of rank 0, 1, and 2. (We will briefy 

discuss higher rank tensors when we move from special relativity to general relativity, but 
the discussion will be almost entirely qualitative.) Rank-2 tensors are sufciently important 
that they are worth some detailed discussion. Many rank-2 tensors can be regarded as a 
quantity that, in essence, points in two directions at once. For example, in a few lectures 
we will discuss a quantity called the “stress-energy tensor” which describes the fux of 4-
momentum. Components T αβ of this tensor describe the fux of 4-momentum component pα 

βin the x direction. 
In general, rank-2 tensors in spacetime have 16 components — 4 for each index. How-

ever, many rank-2 tensors have symmetry properties that allows us to relate some of the 
components to each other: 

Sβα • A tensor Sαβ is symmetric if it has the property that Sαβ = . This reduces the 
number of independent components from 16 to 10: the four components on the diag-
onal, plus half of the 12 of-diagonal components. The stress-energy tensor mentioned 
above has this property; so does the metric, even in the general form gαβ. 

= −Aβα • A tensor Aαβ is antisymmetric if it has the property that Aαβ . This reduces 
the number of independent components from 16 to 6. The four components on the 

−Aβα diagonal must be zero (this is the only solution to Aαβ = if α = β), and only 
half of the 12 of-diagonal components are unique. We will soon fnd an antisymmetric 
tensor that allows us to describe electric and magnetic felds in a covariant formulation. 

1In my research, I use a tensor with 4 indices more or less daily, and have done work that involves tensors 
with 5 and 6 indices. 
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9.4 Aside: Using matrix multiplication to combine tensors and 
matrices 

Once we start working with rank-2 tensors, there is a class of mistakes that 8.033 instructors 
tend to encounter from students who use their knowledge of linear algebra to work through 
equations that involve products of tensors. Let me emphasize very strongly that using 
standard linear algebra tools can be done to correctly reduce equations of the sort that we 
will develop. However, doing so requires that you be careful to think how to combine the 
diferent tensors. 
Suppose you need to construct a tensor Aαβ which is given by combining three tensors. 

For instance, suppose that 
Aαβ = Bµν D

αµF βν . (9.23) 

By far the most common mistake we see is that people write this as the following (wrong!) 
equation: 

AWRONG = B · D · F , (9.24) 

where  
A00 A01 A02 A03 B00 B01 B02 B03 

AWRONG = 
 
A10 A11 A12 A13 

A20 A21 A22 A23 

 , B = 
 
B10 B11 B12 B13 

B20 B21 B22 B23 

 , (9.25) 

A30 A31 A32 A33 B30 B31 B32 B33WRONG 

with D and F defned similarly. 
Why is this wrong? When we represent a rank-2 tensor by a matrix, the frst index 

corresponds to the row, the second index to the column. We need to make sure that when 
we contract on indices, we are correctly linking up rows and columns of the diferent objects. 
With this in mind, let’s carefully examine Eq. (9.23). To produce Aαβ , we frst contract 

Bµν on its frst index with the second index of Dαµ. In matrix form, this means we select 
column ν of B, we select row α of D, and we combine: 

Bµν D
αµ 7→ D · B . (9.26) 

We thus see a big error in Eq. (9.24): the order of multiplying the matrices D and B has 
been reversed. Matrix multiplication does not commute, so this is a highly nontrivial error. 
We also need to contract the second index of Bµν with the second index of F βν . In other 

words, when we put things in matrix form, we select row µ of B and combine it with row 
β of F. In the language of matrix multiplication, this means we are multiplying B with the 
transpose of F. The correct translation of Eq. (9.23) into matrix form is thus 

A = D · B · FT , (9.27) 

where the T superscript denotes matrix transpose. We see that the wrong response is wrong 
in two ways: it puts the matrices in the wrong order, and it uses F rather than its transpose 
FT . In some cases, failing to use the transpose may be harmless because the underlying 
matrix is symmetric. If so, the matrix and its transpose are identical, and you’ve gotten 
lucky! You cannot count on such luck working out for you in general. Indeed, if the matrix 
is in fact antisymmetric, by not taking the transpose you’ll wind up with a minus sign that 
could drive you somewhat mad. 
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Carefully following the logic described here to combine rank-2 tensors via matrix mul-
tiplication will work. However, it must be emphasized that simply working with the index 
format always just works. You don’t need to do any of this careful vetting of which index is 
combining with which, and writing out the matrices accordingly. 
It must also be emphasized that this way of mapping index equations into linear algebra 

becomes more or less impossible to use once we move beyond rank-2 tensors. For instance, 
when I originally drafted these notes, a large portion of my working thoughts were consumed 
by a research paper with a (then) graduate student2 that is largely concerned with fnding 
solutions to the equation 

Dpµ 1 αSβγ = − Rµ
αβγ u . (9.28)

dτ 2 
This equation tells us how a body’s momentum changes as it moves through spacetime 
if the body’s 4-velocity has components uα , and the body is itself spinning (the tensor 
components Sβγ describe its spin in relativistic language). The operator D/dτ is a special 
kind of derivative taken with respect to proper time along that body’s worldline through 
spacetime, and the tensor components Rµ

αβγ describe the action of gravitational tides in 
general relativity. There is really no way we can put an equation like this into a form 
that is matrix-like. Instead, we just run through the indices and combine everything by 
straightforward multiplication and summation of the quantities written out index by index. 
Using computer algebra tools, this isn’t so bad, as long as everything is set up and defned 
carefully. 

2https://arxiv.org/abs/2201.13334 
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