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Lecture 10 
Describing matter in bulk 

10.1 A box full of dust 

In our discussion so far, we have discussed how to analyze the kinematics of particles — 
pointlike entities with velocity and mass, momentum and energy. The focus on particles 
is an important step to making our laws of physics comport with the principle of Lorentz 
covariance. However, a lot of the matter that we study in physics isn’t in a form that we 
study particle by particle, but instead is distributed in bulk over some volume. Various 
aspects of the properties of this bulk matter vary according to the reference frame in which 
it is observed. In today’s lecture, we will introduce tools that are used to characterize bulk 
matter, and will examine what properties of the characterization change as we change frames. 
Begin by considering a box full of dust. “Dust” is how we describe matter that doesn’t 

interact with itself — it doesn’t exert pressure or do anything interesting other than take up 
space. Think of it as a pile of particles with mass, but no other interesting property1 . 
We begin with the simplest way to characterize this matter: we take the box to be at 

rest with respect to us, and we count the number of dust particles it contains. We fnd that 
the box contains N particles, and that the box has a volume of V . Then, we say that the 
dust has a number density 

n0 = N/V . (10.1) 

The number n0 characterizes perhaps the most important characteristic of the dust, given 
what we know about it so far. (The reason for the “0” subscript will be made clear in a 
moment.) Note the dimensions of n0: number per unit volume, or number per length cubed. 
Now take the box full of dust to be, as we observe it, in motion. What is diferent from 

the rest frame view? What is the same? 
The total number of dust particles must be the same — simply making the box move 

cannot create or destroy any of the dust. So the number of particles N is independent of the 
frame in which we measure it. But, one of the linear dimensions of the box is contracted by 
a factor γ. This reduces the volume of the box by a factor γ according to our measurements, 
which in turn means that the number density must increase by a factor γ: 

n = γN/V = γn0 . (10.2) 

We will use n to stand for the number density that we measure in our frame of reference. 
This reduces to n0 if our frame of reference happens to be the dust’s own rest frame. 
When we observe the dust to move, it acquires one other property: some volumes which 

were empty of dust at time t will contain dust a time t + ∆t later; other volumes that 

1Such “dust” doesn’t really exist — any dust that we encounter in reality is more interesting than the 
dust we use in this lecture. Our dust is an idealization that we use to formulate the framework that we are 
working in, and serves as a useful starting point. Once we’ve developed a framework for this more-or-less 
fctional idealization, we can add more features and properties, pushing it toward something realistic. 
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Suppose length 
the box is moving in the x direction, and we can write v vex. At time t 0, 
of the box is at x 0, and the front of the box is at x L. The cross section of 
has area A (so that V AL). 

x = 0 x = L

Cross sectional area A

Box moves with velocity v = vex

contained dust will lose it. This is because the dust is now fowing: there is a fux of dust. 
that we measure the volume2 to have L. Let’s orient our coordinate axes so 

that = = the 
back = = the 
box = 

Figure 1: Box as described in the text, at time t = 0. 

At time t = ∆t, the volume from x = 0 to x = v∆t has been emptied of dust; the volume 
from x = L to x = L + v∆t has flled up with dust. The box is gaining nAv∆t dust particles 
at the front end, and losing nAv∆t dust particles at the back end. Dividing by A∆t, we the 
rate at which dust is entering one end per unit cross section area is 

dN 
= nv . (10.3)

dA dt 

The same rate is leaving the box at the back end. 
Equation (10.3) defnes a fux of particle number into and out of the box. Let’s make 

this a bit more general: we defne the x component of the number fux 3-vector by 

n x = nv = γn0v . (10.4) 

You should be able to convince yourself that there was no reason to restrict ourselves to dust 
moving in the x direction, and we can defne a general number fux 3-vector as 

n = nv = γn0v . (10.5) 

The number fux 3-vector n tells us the number of dust particles per unit area that crosses 
into (or out of) a region per unit time. 

2Bear in mind that this means L is not the rest frame length of the box 
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Let’s think about the fow of dust into or out of a region a little more carefully. Imagine 
that dust is fowing through our frame of reference, and that at each point in space it has a 
number density n and a number fux 3-vector n. Imagine that both of these quantities can 
vary as a function of position and time: the fow of dust may bend and twist as it fows, 
with the amount in the fow rising and falling with time. 

Volume V

Surface S

Figure 2: Dust with number fux 3-vector n fows into and out of a volume V which is 
bounded by a surface S. 

Imagine that this “river” of dust fows into a volume V which is bounded by a surface 
S. In a time ∆t, the change in the number of dust particles in the volume is given by I 

∆N = −∆t n · dA Z S 

= [n(t +∆t) − n(t)] dV . (10.6) 
V 

Let’s deconstruct Eq. (10.6). On the frst line, we have introduced and are using the outward 
directed area element dA. This is a diferential of area to which we assign a direction: It 
points in the out direction, normal (orthogonal) to the surface. The minus sign is because 
the area element is outward pointing: if n · dA < 0, then dust is fowing into the volume 
and ∆N is positive; vice versa if n · dA > 0. 
To write down the second line, note that ∆N is the change in total number contained by 

the volume. We get this total number by integrating the number density over the volume 
V ; its change is given by subtracting the amount that was there at time t from the amount 
that is there a time ∆t later. 
Next, divide both sides by ∆t. We can take ∆t inside the integral, yielding Z I 

[n(t +∆t) − n(t)] 
dV = − n · dA . (10.7)

∆tV S 
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Taking the limit ∆t → 0, Z I 
∂n 

dV = − n · dA . (10.8)
∂t V S 

For the next step, we invoke the divergence theorem: for any 3-vector F defned over a region 
V that has a closed surface S, I Z 

F · dA = (∇ · F) dV . (10.9) 
S V 

Applying the divergence theorem on the right-hand side of Eq. (10.8) and then moving it to 
the left, we have Z � � 

∂n 
+ ∇ · n dV = 0 . (10.10)

∂t V 

This equation must hold no matter what V we use. The only way for that to be the case is 
if the term in square brackets in Eq. (10.10) vanishes. This means that the number density 
n and the number fux n are related by the continuity equation 

∂n 
+ ∇ · n = 0 , (10.11)

∂t 

or, expanding out the components in the divergence term, 

∂n ∂nx ∂ny ∂nz 

+ + + = 0 . (10.12)
∂t ∂x ∂y ∂z 

Everything we have done can be organized into a particularly tidy package using 4-vectors. 
First, note that Eqs. (10.2) and (10.5) have almost exactly the form of the components of 
a 4-vector: we treat (10.2) as the timelike component, and then (10.5) defnes the spatial 
components. The only reason this doesn’t quite work is that (10.2) has the wrong dimensions: 
it is number per unit volume, whereas the components in (10.5) have the dimensions number 
per unit area per unit time. 
This is easily fxed: just multiply (10.2) by the speed of light c. Doing so, we defne the 

number fux 4-vector N⃗ , whose components are 

(N0, N1, N2, N3) = (nc, nv 1 , nv 2 , nv 3) 

= (γn0c, γn0v 1, γn0v 2, γn0v 3) . (10.13) 

Notice that this is nothing more than 

N⃗ = n0u⃗ , (10.14) 

where u⃗ is the 4-velocity with which we observe the dust to be moving. Let’s look at the 
invariant we can build out of N⃗ : 

2 2 2⃗ ⃗N · N = n0u⃗ · ⃗u = −n0c . (10.15) 

This tells us that the number fux 4-vector is timelike. Taking the scalar product of N⃗ with 
itself yields the number density of the dust in its own rest frame, times −c2 . 
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The 4-vector N⃗ also allows us to write the continuity equation in a particularly tidy way. 
Recalling that x0 = ct, we see that Eq. (10.12) can be written 

∂Nα 

= 0 , (10.16)
∂xα 

or 
∂αN

α = 0 . (10.17) 

Notice that there are no free indices left over: we sum over α, with one in the upstairs 
position and one downstairs, yielding a Lorentz invariant quantity (in the case, the number 
0 — certainly a quantity that all Lorentz observers agree on). By setting everything up using 
4-vectors, we have a covariant formulation of the continuity equation. If we have measured 
the 4-components of N⃗ in the frame of O, and would like to know how they will appear in the 
frame of O ′ , we simply apply a Lorentz transformation: Nµ ′ = Λµ ′ 

αN
α . This quantity will 

obey the continuity equation provided we take derivatives using the coordinates xµ ′ which 
are used by O ′ : they will fnd ∂µ ′ N

µ ′ = 0. 

10.2 A box full of charge 

This discussion of number continuity may have reminded you of a calculation that you did in 
electricity and magnetism. Suppose each grain of dust carries an electric charge q. Then, our 
calculation proceeds essentially exactly as before, but we can now look at the charge density 
associated with a volume, and we can think about a charge fux 3-vector, better known as 
the current density. Let’s quickly see what this looks like. 
If the number density of the dust in some frame is n, and if each dust grain carries a 

charge q, then the charge density ρq is given by 

ρq = nq . (10.18) 

(We will use ρ for something diferent in a moment, hence the q subscript to denote charge 
density.) If these dust grains have a number fux 3-vector n, then the fow of the dust carries 
a current density 

J = qn = ρqv . (10.19) 

Going through the derivation of number continuity again, but now including a charge q on 
each dust grain, yields the continuity equation for electric charge: 

∂ρq 
+ ∇ · J = 0 . (10.20)

∂t 

We can build a 4-vector out of this by defning its “zeroth” component using the charge 
density and the speed of light. We thus defne J⃗  with components 

(J0, J1, J2, J3) = (ρqc, J
1, J2, J3) . (10.21) 

With this formulation, we can write the equation of charge continuity as 

∂αJ
α = 0 . (10.22) 

We will return to this 4-vector shortly when we examine how to write the equations of 
electrodynamics in a way that makes their Lorentz covariance clear. 
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10.3 A box full of dust, revisited 

Finally, let’s give each dust grain a rest mass m. We could defne a rest mass density 
ρm = Nm/V . However, we know that as we change frames, the most interesting quantities 
which describe a massive object are its energy γmc2 and its momentum p = γmv. So 
let’s instead defne the rest frame’s energy density ρ0 = Nmc2/V . How does this quantity 
transform when we change frames? 
Again, we know that we cannot create or destroy any dust grains, so N is the same in all 

frames. We also know that the length of the box along the relative motion of the frames is 
contracted by γ, so V → V/γ. However, in this case, we also know that the energy of each 
dust grain is boosted by γ: the grain only had rest energy in the original rest frame, but it 
has both rest energy and kinetic energy in a frame moving with v relative to the rest frame. 
The energy density in this frame is given by 

ρ = N(γmc2)/(V/γ) = γ2ρ0 . (10.23) 

The fact that two powers of γ enter into this transformation law is interesting and im-
portant. When we carefully studied number density and charge density, we realized that 
these quantities were actually components of a 4-vector. If they had been Lorentz scalars, 
then they would have been invariants; the transformation would have involved no factors 
of γ. The number of dust grains in a box, or the total charge in a box, both fall into this 
category. When there is one factor of γ, that tells us that that we have stumbled onto a 
transformation law that involves one factor of the Lorentz transformation matrix Λµ ′ 

α, and 
so the quantity we are looking at is a component of a rank-1 tensor — i.e., a 4-vector. 
This factor of γ2 tells us that the quantity we are examining is associated with a trans-

formation law that involves two factors of the Lorentz transformation matrix. The quantity 
we are studying must a component of a rank-2 tensor — a quantity with two associated 
indices. Let us defne 

Nm 
T αβ α β = u u or (10.24)

V 
= p αNβ . (10.25) 

This quantity is known as the stress-energy tensor. The 00 or tt component describes energy 
density in some reference frame. To understand the other components, note the interpreta-

T αβ αtion that Eq. (10.25) suggests: describes the fux of 4-momentum p in the direction 
of xβ . (Via Eq. (10.24), we see that T αβ = T βα , so we can equally well call this the fux 
of 4-momentum pβ in the direction of xα.) What do the other components mean? Let’s go 
through these tensor looking at a couple of important groupings of components for this dust 
stress energy: 

• T 00 2= γ2n0mc : As already discussed, this is energy density. Think of it as the density 
of p0 fowing in the direction of x0 — the fux of energy density through time. 

• T 0i = γ2n0mcvi: This is energy fux: the fow of the density of p0 in the xi direction. If 
you look carefully at the units, you’ll see that this quantity is of a by factor with the 
units of velocity. More correctly, the energy fux is T 0ic. The root issue here is that 
4-momentum component p0 is E/c, so we need to correct with a factor of c. Correction 
factors like this don’t change the essential physics. 
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• T i0 = γ2n0mcvi: This is momentum density. Think of this as the density of momentum 
pi fowing through time. Again, examining units, you’ll see it’s a bit of. More correctly, 
the momentum density is T i0/c; the root issue here is that x0 is c times t. (Needing to 
account for factors like this is one reason why many people use units in which c = 1. 
Keeping track of factors of c can become tiresome.) Notice that T i0 = T 0i — using the 
relativistic defnitions of energy and momentum, energy fux and momentum density 
are the same thing, modulo factors of c. 

• T ij i j= γ2n0mv v : This is momentum fux: the fow of momentum pi in the xj direction. 

10.4 The stress-energy tensor more generally 

Dust is a useful tool for introducing the stress-energy tensor and wrapping our heads around 
what the components of this tensor mean to a particular observer. However, dust is a 
somewhat limited class of matter. The stress-energy tensor is much broader than this. We 
conclude today’s lecture by discussing the meaning of the stress-energy tensor as it is used 
to describe matter in general and, as we’ll briefy discuss later, felds. 
One often characterizes the stress-energy tensor by going into a frame of reference in which 

there is no bulk fow of material. For examine, if it is a fuid, this is the frame in which 
the fuid is a rest; such a frame is called “comoving” in this case. Note that a distribution 
of material might fow at diferent speeds in diferent places or at diferent times; think of 
this as how we characterize one small “element” of the material. In this frame, the diferent 
components take on exactly the meaning that we discussed for the components of the dust 
stress-energy tensor: 

• T 00 represents the energy density of the material. 

• T 0i represents (modulo a factor of c) the energy fux of the material. Note that if no 
matter is actually moving, there still might be a fow of energy — the material might 
be conducting heat, or there may be radiation fowing in some direction. 

• T i0 represents (modulo a factor of c) the momentum density of the material. Again, 
even if no matter is actually moving there can still be a density of momentum. Indeed, 
there must be momentum density if there is any fux of energy. 

• T ij represents the momentum fux. This 3 × 3 spatial tensor is important in its own 
right, and is known as the stress tensor. The on-diagonal and of-diagonal elements of 
the stress tensor deserve comment: 

, T yy – The on-diagonal elements (T xx , T zz) tell us about the fow of momentum 
component pi in the xi direction. These components of the stress tensor tell us 
about the force (per unit area) the material exerts in the direction of its fow. 
When the material is a fuid, these components of the tensor describe pressure. 

, T xz , T yz – The of-diagonal elements (T xy , plus symmetries) tell us about “non-
normal” fows of momentum. In fuids, these terms are related to a property 
called its viscosity; it leads to forces along (i.e., parallel to) an interface, rather 
than normal to the interface (the way pressure operates). 
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An example of a material which is used in many analyses is a perfect fuid. It is a fuid 
for which there exists a frame of reference in which its stress-energy tensor has components 
T αβ = diag(ρ, P, P, P ), where ρ is the fuid’s energy density, and P is its pressure. 
The “perfect” in “perfect fuid” means that it represents a kind of Platonic ideal: there 

is no energy or momentum fow in a perfect fuid’s rest frame (meaning that there is no heat 
conduction, or other mechanism to transport energy), and it has no viscosity. No viscosity 
means that if you were to dip your hand into it, none of the fuid would stick to you when 
you pulled your hand out. As such, the physics of perfect fuids has been mocked as the 
physics of “dry water.” 
The meaning of stress energy as a fux of 4-momentum allows us to derive a continuity 

equation for it. Let’s reconsider Fig. 2, but rather than thinking about the fow of dust, think 
about the fow of 4-momentum. We then largely repeat our derivation of number continuity, 
but replace quantities related to number density with quantities related to 4-momentum 
density. In particular, let’s replace the number density n with the 4-momentum density T α0 , 
and replace the number fux ni = nvi with the 4-momentum fux T αi . 
The total amount of 4-momentum in V is given by integrating T α0 over this volume: Z 

[p α(t)]V =
1 

T α0(t) dV . (10.26) 
c V 

The factor of 1/c accounts for the fact that T 00 is energy density, but p0 is E/c, plus for the 
fact that T i0 has such a factor built into its defnition. The change in the 4-momentum in 
V over an interval of time ∆t is thus given by Z 

1 � � 
∆p α = T α0(t +∆t) − T α0(t) dV 

c ZV 

∂T α0 

= ∆t dV . (10.27) 
V ∂x0 

We can also account for the change by computing the fux of 4-momentum through the 
surface S bounding this volume during the time interval ∆t: I 

α T αidAi∆p = −∆t . (10.28) 
S 

The minus sign is again because the area element dA (which has components dAi) points 
outward from the volume. The divergence theorem can be used here just like it can be 
used in other circumstances with which you are familiar. Just think of T αi as four diferent 
3-vectors, one for each value of α: I Z 

∂T αi 
T αidAi = dV . (10.29) 

S V ∂xi 

Putting together our two formulations of ∆pα yields Z � 
∂T α0 � 

∂T αi 
∆t 

V ∂x0 
+ 

∂xi 
dV = 0 . (10.30) 

This gives a continuity equation for the stress-energy tensor: 

∂β T αβ = 0 . (10.31) 

This equation expresses both conservation of energy and conservation of momentum for the 
material whose stress-energy tensor is T αβ . 

86 



 
 

  
  

  

MIT OpenCourseWare
https://ocw.mit.edu 

8.033 Introduction to Relativity and Spacetime Physics 
Fall 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	Blank Page




