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Lecture 12 
A covariant formulation of electromagnetics (part II) 

12.1 The feld equations 

In the previous lecture, we showed that the Lorentz force law written using 3-vectors, 

F = q (E + v × B) , (12.1) 

is exactly equivalent to the 4-force law 

dpα 

= qF αβ uβ , (12.2)
dτ 

provided that the Faraday tensor components are related to the electric and magnetic feld 
components according to  

0 Ex/c Ey/c Ez/c 
 . (12.3) 

−Ex/c 0 Bz −By 

−Ey/c −Bz 0 Bx 

−Ez/c By −Bx 0 

F αβ . = 

More specifcally, we found that the spatial components of dpα/dτ correspond exactly to the 
3-force F = q(E + v × B), and that the 0 or timelike component tells us about the work that 
is done on a charge by the electric feld. 

In this lecture, we are going to turn to a study of the feld equations: how do we make 
the set of Maxwell equations, 

∇ · E = ρ/ϵ0 , ∇ · B = 0 , (12.4) 
∂B ∂E ∇× E = − , ∇× B = µ0J + µ0ϵ0 , (12.5)
∂t ∂t 

ft into this framework? 
The frst thing we want to do is massage these equations a little bit. Notice that half of 

the Maxwell equations involve sources, either ρ or J; the other half only involve the felds 
themselves. Let’s reorganize the equations to emphasize this structure: 

∂E ∇ · E = ρ/ϵ0 , ∇× B − µ0ϵ0 = µ0J ; (12.6)
∂t 

∂B ∇ · B = 0 , ∇× E + = 0 . (12.7)
∂t 

We have put all terms that involve the felds onto the left-hand side of these equations, and 
set them so that the right-hand side is either “source” (ρ or J) or zero. Notice that there are 
four sourced equations (one divergence of E, three components of the curl of B), and four 
source-free equations (one divergence of B, three components of the curl of E). 
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12.1.1 Half of the Maxwell equations 

Let’s start by just taking derivatives of the Faraday tensor. By contracting a derivative on 
one of the indices, we’ll generate four diferent terms, one for each value of the remaining 
free index: 

∂F αβ 

= ∂β F αβ . (12.8)
∂xβ 

(Why contract on the second index? Strictly speaking, it doesn’t matter much — because 
F αβ is antisymmetric, we’d just get a minus sign if we contracted on the frst one.) 

Let’s go into a Lorentz frame and see what ∂β F αβ looks like as α goes over its free range: � � � � � � 
Ex Ey Ez 

α = 0 : ∂β F 0β = + + 
∂ ∂ ∂ 
∂x c ∂y c ∂z c 
1 

= ∇ · E . (12.9) 
c 

In other words, up to a factor of 1/c, the α = 0 component of ∂βF αβ looks just like the 
divergence of E, and so produces the left-hand side of one of the sourced Maxwell equations. 

Let’s look at the other values of α: � � 
1 ∂ ∂Bz ∂By 

α = 1 : ∂β F 1β = − 
Ex 

+ − 
c ∂t c ∂y ∂z 
1 ∂Ex 

= − + (∇× B)x 
2c ∂t 

∂Ex 

= −µ0ϵ0 + (∇× B)x . (12.10)
∂t 

√ 
(We’ve used the fact that c = 1/ µ0ϵ0 here.) This analysis shows that the α = 1 component 
of ∂β F αβ produces the left-hand side of another one of the source Maxwell equations. It’s 
not too hard to show that the α = 2 and α = 3 components produce the remaining two 
left-hand sides: 

α = 2 : ∂βF 2β = −µ0ϵ0 
∂Ey 

+ (∇× B)y , (12.11)
∂t 

α = 3 : ∂βF 3β = −µ0ϵ0 
∂Ez 

+ (∇× B)z . (12.12)
∂t 

To get the right-hand side of the sourced Maxwell equations, recall a few lectures ago 
that we defned the 4-vector J⃗  whose time-like component J t = cρ, but whose space-like 
components are the “normal” 3-vector current density. Comparison of Eq. (12.6) with Eqs. 
(12.10) – (12.12) suggest that the form we want is 

∂β F αβ = µ0J
α . (12.13) 

It’s pretty clear that this form works perfectly for α = 1, 2, 3. Does it also work for α = 0? 
Let’s check: using Eq. (12.9), 

∂β F 0β = µ0J
0 becomes 

1 ∇ · E = µ0cρ . (12.14) 
c 
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√ 
Multiplying both sides by c and using c = 1/ µ0ϵ0, this becomes 

∇ · E = ρ/ϵ0 . (12.15) 

So it works! We’ve found that half of the Maxwell equations — the half that have source 
terms, either charge density ρ or current density J — are equivalent to the equation 

∂β F αβ = µ0J
α . (12.16) 

12.1.2 The other half of the Maxwell equations 

What about the other half of the Maxwell equations — how do we get the ones that don’t 
have a source? There’s no way to get those equations just by taking derivatives of F αβ . 
Diferentiating this quantity can only duplicate the derivatives we have already worked out 
to get the sourced Maxwell equations. We need a diferent way of organizing the felds. 

The way we get there is by thinking about how to organize the electric and magnetic 
felds into an antisymmetric tensor. Let’s look at our re-organization of Maxwell’s equations 
into “sourced” and “source-free” versions, Eqs. (12.6) and (12.7). Notice that the left-hand 
sides of these equations are identical provided we “swap” E and B in the following way: 

E/c → B , B → −E/c . (12.17) 

Taking the left-hand side of the “sourced” Maxwell equations and swapping the felds ac-
cording to Eq. (12.17) yields the left-hand side of the “source-free” Maxwell equations. 

Inspired by this observation, suppose we take F αβ and apply this feld swap:  

F αβ (E/c → B , B → −E/c) = 
 

Bx By Bz 

−Bx 0 −Ez/c Ey/c 
0 

−By Ez/c 0 −Ex/c 
−Bz −Ey/c Ex/c 0 

 ≡ Gαβ . (12.18) 

This quantity is known as the dual1 Faraday tensor. It has the same symmetries as the 
Faraday tensor; and, if you apply the rule E/c → B, B → −E/c to the rules for Lorentz 
transforming the felds, you fnd that they are unchanged. [You can test this by applying 
the rule to Eqs. (11.37) and (11.38) from Lecture 11]. The dual Faraday tensor does not2 , 
however, give us a force law. 

If we diferentiate Gαβ , we get feld derivatives that difer from those that come from 

1You might fnd the way that we derived this dual tensor to be somewhat schematic. There is in fact 
a more rigorous way of doing this which takes advantage of a 4-index version of the Levi-Civita symbol 
you used on problem set 3: by appropriately combining F αβ with ϵαβγδ (an object which generalizes ϵijk 

to spacetime) and the metric ηαβ , we can build the tensor Gαβ . For the purpose of 8.033, the schematic 
approach is good enough. 

2Interestingly, this tensor would be involved in a force law if there were magnetic charges as well as electric 
charges. Perhaps something to explore on a problem set... 
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diferentiating F αβ . Let’s go through a few examples of ∂β G
αβ : 

∂Bx ∂By ∂Bz 

α = 0 : ∂β G
0β = + + 

∂x ∂y ∂z 
= ∇ · B ; (12.19) 

1 ∂Bx 1 ∂Ez 1 ∂Ey 

α = 1 : ∂β G
1β = − − + 

c ∂t c ∂y c ∂z � � 
1 ∂Bx 

= − + (∇× E)x . (12.20) 
c ∂t 

The α = 2 and α = 3 components duplicate the y and z components of the curl E part of 
Eq. (12.7). Putting this all together, we see that 

∂βG
αβ = 0 (12.21) 

is exactly what we need to write the source-free Maxwell equations in a covariant way. 
To summarize: our original presentation of the Maxwell equations, Eqs. (12.4) and (12.5) 

are not wrong, but are formulated in such a way that they use information specifc to some 
particular Lorentz frame. The felds E and B are particular to that observer, as is the charge 
density ρ and current density J, as is the notion of space and time they use to take their 
derivatives. These equations are exactly equivalent to the covariant formulation 

∂β F αβ ∂β G
αβ = µ0J

α , = 0 . (12.22) 

For our present purpose, Eq. (12.22) is preferred to Eqs. (12.4) and (12.5) because it shows 
us how to write these equations in a way that is formulated for a diferent Lorentz observer. 
If the coordinates xα ′ are used by O ′ , then we know that their formulation of Maxwell’s 
equations looks like 

∂β ′ F α ′ β ′ = µ0J
α ′ , ∂β ′ G

α ′ β ′ = 0 . (12.23) 

We can get all the “prime frame” quantities by just appropriate correcting things using the 
Lambda matrices, with all the quantities connected using the “line up the indices” rule. 

12.2 Automatic conservation of source 

In our discussion of conservation laws, we noted that the equation of charge continuity, 

∂ρ 
= −∇ · J , (12.24)

∂t 
has a covariant formulation 

∂αJ
α = 0 . (12.25) 

Let’s revisit this in the context of our covariant formulation of Maxwell equations: taking a 
derivative of ∂βF αβ = µ0J

α , we have 

∂α∂β F αβ = µ0∂αJ
α . (12.26) 

The right-hand side of this is zero by virtue of charge continuity. What about the left-hand 
side? Let’s look at it carefully: 

∂α∂βF αβ = −∂α∂β F βα (Antisymmetry of F αβ ) 

= −∂β ∂αF βα (Symmetry of ∂α∂β) 

= −∂α∂β F αβ (Relabeling of dummy indices) (12.27) 
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Comparing the frst line with the last we see we again have a situation where the quantity 
in question is equal to the negative of itself; this is another example of the situation of a 
symmetric object (in this case, the pair of derivatives ∂α∂β) contracted onto an antisymmetric 
one (F αβ ). We must have 

∂α∂βF αβ = 0 . (12.28) 

This little calculation reveals a very important point: theories of physics in which some 
source yields a feld typically are governed by a set of feld equations whose heuristic structure 
is of the form 

(Derivatives)(Fields) = (Source) . (12.29) 

Sources are never unconstrained; they arise from physical matter, and so respect conservation 
laws. We can write those conservation laws in the form 

(Other derivatives)(Source) = 0 . (12.30) 

For this to hold up, we really need to have the mathematical structure which holds our felds 
respect the rule that 

(Other derivatives)(Derivatives)(Fields) = 0 . (12.31) 

Although we didn’t explicitly set out to make our Faraday tensor ft into this framework, it 
turns out that it does. This becomes an important point to bear in mind as we think about 
other kinds of interactions that we might want to ft into a relativistic framework. 

12.3 Field invariants 

Lorentz transformation act on free indices. Any quantity with no free indices is thus invariant 
under Lorentz transformations; this is why the scalar product between two 4-vectors, aµbµ, 
always yields a Lorentz invariant. 

Can we make invariants out of tensors? Certainly! — we just have to combine things, 
using the metric to lower (or raise) indices, such that there are no free indices for the Lorentz 
transformation matrix to afect. 

Perhaps the simplest one we can construct is called the trace. In linear algebra, the trace 
of a matrix is the sum of its diagonal entries. When we are dealing with tensors, we make 
this a little more formal: we sum over the indices with one upstairs, and one downstairs. 
Let’s look at this for the Faraday tensor: 

F µµ = F αµηµα . (12.32) 

This is a quantity whose values all Lorentz frames agree on. Unfortunately, in this case, it 
doesn’t turn out to be very interesting: using the Faraday tensor F αβ we’ve listed above and 
combining with ηµα = diag(−1, 1, 1, 1), we get 

F µµ = 0 + 0 + 0 + 0 = 0 . (12.33) 

The number zero is indeed a Lorentz invariant, but we don’t learn anything useful from 
doing this analysis. (We get the exact same result if we evaluate Gµ

µ.) 
We can make others Lorentz invariants by combining the Faraday tensor with itself. Let’s 

look at 
F αβFαβ = F αβF µν ηαµηβν . (12.34) 
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With a little bit of efort, you should be able to show that the Faraday tensor with all indices 
in the downstairs position is represented by the matrix  

0 −Ex/c −Ey/c −Ez/c 
.

Fαβ 

 
Ex/c 0 Bz −By 

Ey/c −Bz 0 Bx 

Ez/c By −Bx 0 

 ; (12.35)= 

i.e., both row 0 and column 0 are multiplied by negative 1 versus F αβ ; cf. Eq. (12.3). (You 
did a very similar kind of manipulation on problem 8 of problem set #5. As part of that 
analysis, you found that the “00” component of the tensor is multiplied by −1 twice, leaving 
it unchanged. In this case, you are multiplying zero by −1 twice, so this is a particularly 
uninteresting application of this rule.) 

Using Eq. (12.35), it is straightforward to show that 

(Bx)2 + (By)2 + (Bz)2 − (Ex/c)2 − (Ey/c)2 − (Ez/c)2 � �� 
F αβ Fαβ = 2 � 

= 2 B · B − E · E/c2 . (12.36) 

In other words, the quantity |B|2 − |E|2/c2 is the same to all Lorentz observers. This could 
in principle be deduced by careful study of the Lorentz transformed felds that we derived in 
the previous lecture, but it follows very simply and easily from the fact that F αβFαβ must 
be a Lorentz invariant. 

There are two other Lorentz invariants we can form from the feld tensors. One of them, 
Gαβ Gαβ, is identical to F αβ Fαβ except for the overall sign, so it yields no new information. 
But the other one is more interesting: 

F αβ Gαβ = 4 (BxEx/c + ByEy/c + BzEz/c) 

= 4B · E . (12.37) 

All observers agree on the 3-dimensional dot product of E and B. Again, this could have 
been deduced directly from the felds, but doing with the feld tensors is far simpler and 
more straightforward. 

12.4 Potentials and gauge freedom 
(CAUTION: somewhat advanced material) 

[Note: I will occasionally discuss material that is a bit more advanced than, strictly speak-
ing, we intend for 8.033. When I do this, I will use a “CAUTION” fag as I’ve written in 
this section heading. Students who wish to do so can skip over these sections. Some of this 
material is likely to ft in better after you have taken additional coursework. For example, 
this present section is probably best for students who either discussed gauge freedom in their 
1st-year E&M class (which doesn’t happen for all students), or who have taken 8.07.] 

12.4.1 A covariant formulation of electromagnetic potentials 

We began our discussion of a covariant formulation of electrodynamics by noting that we 
cannot “ft” the 6 functions which describe electric and magnetic felds into a 4-vector. A 
few of you may have wondered: what about the potentials? In freshman electricity and 
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magnetism, we learn that electric felds can be written as the gradient of a scalar potential, 
and the magnetic feld as the curl of a vector potential; in more advanced presentations, we 
learn that the electric feld in situations with time-varying magnetic felds has a contribution 
from the time-derivative of the vector potential: 

∂A 
E = −∇ϕ − , B = ∇× A . (12.38)

∂t 

One scalar potential, 3 components of vector potential ... this looks tailor-made to ft into 
a 4-vector! The potentials ϕ and A have diferent dimensions, so to make this work we 
again need to introduce a factor of c. Doing so, we defne the 4-potential A⃗ = Aµe⃗µ, whose 
components are given by   

ϕ/c 
Ax 

Ay 

Az 

 
.

Aµ = . (12.39) 

We know that F αβ is antisymmetric, and the felds are built by taking derivatives of the 
potentials. So let’s make an antisymmetric combination of derivatives of felds: 

Xαβ = ∂αAβ − ∂βAα . (12.40) 

Notice that we are using the “upstairs” partial derivative, ∂α = ∂/∂xα. We do this so that 
we can create tensor components whose indices are all raised, guaranteeing that they have 
the correct antisymmetry. Recall from Lecture 9 that xα ≡ ηαβxβ , and so the components 
of ∂α are nearly identical to those of ∂α. The critical diference is that the zero component 
has the opposite sign: ∂0 = −∂0 = −(1/c)∂/∂t. 

, X11 , X22 , X33Let’s go through some of the components of Xαβ . We can skip X00 — 
the form of Eq. (12.40) guarantees that they are zero. Let’s move across row 0: 

X01 = ∂0A1 − ∂1A0 

1 ∂Ax 1 ∂ϕ 
= − − 

c ∂t c ∂x 
= Ex/c . (12.41) 

= F 01 = F 02Comparing with Eq. (12.3), we see that X01 . We likewise quickly fnd that X02 , 
= F 03and X03 . 

Let’s move across row 1. We can skip X10 — it will be −X01 , quickly showing that 
X10 = F 10 . Moving to the frst component that is new, 

X12 = ∂1A2 − ∂2A1 

∂Ay ∂Ax 

= − 
∂x ∂y 

= (∇× A)z 

= Bz . (12.42) 

F 12Comparing with Eq. (12.3), we see that X12 = . By a similar set of calculations, we 
F 13 F 23quickly show that X13 = , and that X23 = . Thanks to the antisymmetry, we are 

done, and conclude that 
F αβ = ∂αAβ − ∂βAα . (12.43) 
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12.4.2 Gauge freedom 

One of the things we learn in electrodynamics classes is that we have some freedom to adjust 
the form of the potentials, as long as these adjustments have no impact on the felds; after 
all, it is the felds that exert forces and that are directly measurable. In a particular Lorentz 
frame, the form that this takes is that we imagine there exists some scalar function λ, which 
we will call the “gauge generator.” It is not difcult to show that if we adjust the potentials 
as follows, 

∂λ 
ϕnew = ϕold − , Anew = Aold + ∇λ , (12.44)

∂t 
then the felds E and B are unchanged. We prove this by simply computing the felds using 
ϕnew and Anew rather than ϕold and Aold: 

∂Anew
E ′ = −∇ϕnew − 

∂t 
∂λ ∂Aold ∂ 

= −∇ϕold + ∇ − − ∇λ 
∂t ∂t ∂t 

∂Aold 
= −∇ϕold − 

∂t 
= E ; (12.45) 

B ′ = ∇× Anew 

= ∇× Aold + ∇×∇λ 

= ∇× Aold 

= B . (12.46) 

In the proof for E, we used the fact that partial derivatives commute to see that 

∂λ ∂ ∇ − ∇λ = 0 ; (12.47)
∂t ∂t 

for B, we used the fact that the curl of the gradient of any scalar function is zero. 
The way we bring gauge freedom into the covariant framework is quite simple: we set 

Aα = Aα 
new old + ∂αλ . (12.48) 

With this, it is simple to see that the Faraday tensor is unchanged: 

F αβ = ∂αAβ − ∂βAα 
new new new 

= ∂αAβ + ∂α∂β λ − ∂βAα − ∂β ∂αλold old 

= ∂αAβ − ∂β Aα 
old old 

= F αβ 
old . (12.49) 

12.4.3 An example application of gauge freedom 

If you’ve never encountered gauge transformations before, you might wonder why we might 
want to change from one gauge to another. If both gauges give the same felds, and the felds 
are things that ultimately act on charges and currents, then who cares? What good comes 
from messing around with this detail? 
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To see an example of why this can quite useful, let’s look at the sourced Maxwell equation, 
but written in terms of the potential: 

∂βF αβ = ∂β∂
αAβ − ∂β∂

βAα = µ0J
α . (12.50) 

Because partial derivatives commute, we can swap the order of the derivatives in the frst 
term involving the potential. And, we recognize the combination of derivatives in the second 
term as the invariant wave operator. The sourced Maxwell equation can thus be rewritten � � 

□Aα − ∂α ∂β A
β = −µ0J

α . (12.51) 

Equations of the form 
□ (Function) = (Source) (12.52) 

are particularly “lovely” in physics — powerful computational techniques make it possible 
to solve such equations. Unfortunately, the form we’ve got, (12.51) is not quite in that form: 
it’s skewed a bit by the “extra” term ∂α(∂β A

β). If we could get rid of that extra term, the 
equation relating Aα to Jα would be solvable using these powerful techniques. 

Gauge freedom to the rescue. Suppose we change gauge, putting 

Aβ = Aβ + ∂β λ . (12.53)new old 

The term which makes Eq. (12.51) not quite “lovely” for us then involves 

∂β A
β = ∂βA

β − ∂β ∂
βλ = ∂β A

β − □λ . (12.54)new old old 

If we choose our gauge generator such that 

□λ = ∂β A
β (12.55)old , 

then the ofending term vanishes: we then have 

∂β A
β = ∂β A

β − □λ = 0 . (12.56)new old 

We can in fact always fnd a gauge generator λ which satisfes Eq. (12.55) — those powerful 
techniques guarantee that equations of the form (12.52) always have a solution. Because of 
this, we can just assume that we have done this analysis, and jump straight to using the 
potential in this new gauge. The sourced Maxwell equation then becomes (dropping the 
“new” subscript) 

□Aα = −µ0J
α . (12.57) 

When the potential satisfes Eq. (12.56), we say that it is in Lorenz3 gauge. This gauge is 
particularly useful for studies of electromagnetic radiation, since the equation governing the 
potential is nothing more than a wave equation with a source. Other gauges exist, and can 
be really useful in particular reference frames. Such gauges tend not to be “nice” in covariant 
formulation, though, since they are designed to work only in some frame. 

3Note: not Lorentz! Ludvig Lorenz developed this gauge; Hendrik Lorentz frst developed the Lorentz 
transformation. Generations of physicists (including your lecturer) learned this wrong, but most recent 
electrodynamics textbooks have been working to correct this error. See J. D. Jackson and L. B. Okun, 
Reviews of Modern Physics 73, 663 (2001). 
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