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13.1 An apparent paradox 

Consider a pair of twins. Twin A stays on Earth. Twin B travels on a rocket ship to Alpha 
Centauri, 4 light years away, moving at 99% of the speed of light. Twin B then turns around 
and comes back. When they get together, which one is older? 
The essence of the apparent paradox is that, according to special relativity, no inertial 

observer is preferred: 

• Twin A says that B is in motion. Therefore, B’s clock runs slow, and B is younger. 

• Twin B says that A is in motion. Therefore, A’s clock runs slow, and A is younger. 

When the twins reunite, they can’t both be right — one of them has unambiguously aged 
more than the other. Who has used the wrong logic? 
Twin B has used the wrong logic, because they forgot that they are not an iner-

tial observer. Twin B accelerates (3 times: once from Earth to start the trip, once at 
Alpha Centauri to turn around and come back, and once upon returning to Earth). This 
acceleration breaks the symmetry between the twins. 
Does this mean that Twin B is older or younger? To answer this, we need to think about 

accelerated motion. 

13.2 4-acceleration; the Momentarily Comoving Reference Frame 
(MCRF) 

We begin by quickly re-examining the notion of 4-acceleration, which was briefy introduced 
in our discussion of the Lorentz force. We defne the 4-acceleration by 

du⃗ 
a⃗ = , (13.1)

dτ 

i.e., the rate of change of 4-velocity per unit proper time. As discussed in that earlier lecture, 
its invariant scalar product with u⃗ is zero, which follows from u⃗ · ⃗u = −c2: 

d 
(u⃗ · ⃗u) = a⃗ · ⃗u + ⃗u · ⃗a = 2a⃗ · ⃗u = 0 . (13.2)

dτ 

This is in sharp contrast to the 3-acceleration a, since physics imposes no constraints on the 
value of a · u (here using the “old-fashioned” dot product between two 3-vectors). 
To wrap our heads around the physics of acceleration, let’s introduce a particular special 

reference frame: the MCRF, or Momentarily Comoving Reference Frame. The MCRF is 
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a Lorentz frame that, at least for one moment, has the same velocity as the accelerating 
observer. An accelerating observer is at rest in the MCRF for one moment. 
In the MCRF, the following properties describe the motion of the accelerating observer: 

t x,y,z u = c , u = 0 , (13.3)MCRF MCRF 

dτ = dtMCRF . (13.4) 

These properties tell us that  
0 

aµ 
MCRF 

. 
= 

 
dux /dtMCRF 

duy 
MCRF/dt 

 . (13.5) 

duz /dtMCRF 

This form guarantees that ⃗a·u⃗ = 0: if you evaluate that scalar product using the components 
defned in the MCRF, you can see quite clearly that it holds. But, the scalar product is an 
invariant — if it is true in one frame, then it is true in all frames. 
The MCRF thus helps us to understand what 4-acceleration means. Suppose some ob-

server has a 4-acceleration a⃗, and that we fnd a⃗ · a⃗ = a2 . (Note that a⃗ must be spacelike1 in 
order for a⃗ · ⃗u = 0.) Then a represents the magnitude of the acceleration that is experienced 
by the accelerating observer in the MCRF. It is the acceleration that this observer feels in 
their own rest frame. 

13.3 A uniformly accelerated observer 

Let’s imagine an observer who starts at rest with respect to us, but who experiences uniform 
acceleration with magnitude g = 10m/sec2 . Let this acceleration be in the x direction. 
“Uniform” means that the observer feels this acceleration at all times, so that a⃗ · ⃗a = g2 

at all times. The acceleration in the MCRF is always the same — even though the MCRF 
itself is continually changing as the observer accelerates. Can we compute the 4-velocity at 
later times? 
We have two initial conditions: u⃗(τ = 0) = ce⃗t and a⃗(τ = 0) = ge⃗x. We also have three 

constraints: 

u⃗ · ⃗u = −c 2 at all times , (13.6) 

u⃗ · ⃗a = 0 at all times , (13.7) 

a⃗ · ⃗a = g 2 at all times . (13.8) 

Let’s write out these constraint equations, using the fact that aµ = duµ/dτ : 

x)2−(u t)2 + (u = −c 2 , (13.9) 

dut dux 

−u t + u x = 0 , (13.10) �dτ 2 
dτ�2� � 

dut dux 
2− + = g . (13.11)

dτ dτ 

1To be lightlike, we must have a⃗ · ⃗a = 0. That’s only true if a = 0, an uninteresting limit. 
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Staring at these equations a bit and thinking about some functions we know suggests that 
hyperbolic functions might be useful here. Let’s try 

u t = c cosh (Aτ) , u x = c sinh (Aτ) . (13.12) 

It’s not hard to see that this form guarantees Eqs. (13.6) and (13.7) will work. Enforcing 
Eq. (13.8) gives us the constant A: 

dut dux 

= cA sinh (Aτ) , = cA cosh (Aτ) ; (13.13)
dτ dτ 

so � �2 � �2
dut dux � � 

22A2− + = c − sinh2 (Aτ) + cosh2 (Aτ) = g (13.14)
dτ dτ 

which tells us that 
g

A = . (13.15) 
c 

Our complete solution for the uniformly accelerated observer is thus 

u⃗ = c cosh (gτ/c) ⃗et + c sinh (gτ/c) ⃗ex , (13.16) 

a⃗ = g sinh (gτ/c) ⃗et + g cosh (gτ/c) ⃗ex , (13.17) 

where τ is the proper time experienced by this observer since their trip started. 
Let’s use this solution to explore what happens when someone is uniformly accelerated. 

Two questions are at the top of our list: 

1. After traveling for time T as measured by the accelerating observer (i.e., for a total 
experienced proper time τ = T ), how far has the observer traveled? 

2. After traveling for time T as measured by the accelerating observer, how much time 
has elapsed “back home”? 

Both questions are answered by integrating the 4-velocity. Let’s look at how far they’ve 
traveled frst: Z T 

∆x = u xdτ 
0Z T � �gτ 

= c sinh dτ 
c0� � � � 

c2 gT 
= cosh − 1 . (13.18) 

g c 

Using the fact that c2/g = 0.96940 light years, and (g/c) = 1.0316 year−1 , we can make a 
table of distance versus time experienced by the accelerating observer: 

• ∆x(T = 1 year) = 0.56318 light year 

• ∆x(T = 2 years) = 2.9071 light years 

• ∆x(T = 5 years) = 83.268 light years 

• ∆x(T = 10 years) = 14,638 light years 
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How much time back in the original frame elapses while doing this? Z T 

∆t = (u t/c)dτ Z0 
T � �gτ 

= cosh dτ 
c0 � � 

c gT 
= sinh . (13.19) 

g c 

The equivalent table for time elapsed reads 

• ∆t(T = 1 year) = 1.1870 years 

• ∆t(T = 2 years) = 3.7533 years 

• ∆t(T = 5 years) = 84.232 years 

• ∆t(T = 10 years) = 14,639 years 

As seen back in the original frame, the accelerated observer is getting closer and close to the 
speed of light, and so is experiencing enormous time dilation. Their 10 year interval is over 
14,600 years in the original frame — their moving clock is running very slowly compared to 
a clock in the original frame. 

13.4 Forces 

We encountered forces briefy in our discussion of electromagnetic efects. In this section, we 
return to this discussion, and put a few details on a more solid footing. 
Two general conceptual frameworks are used: 

⃗1. We can defne a 4-force, F⃗ = dp⃗/dτ . In terms of this, we have a⃗ = F/m. In principle, 
⃗this is the way you might imagine we want to do things, since F is a spacetime 4-

⃗vector. It is straightforward for us to transform the components of F to diferent 
reference frames, so this would seem to be the ideal quantity for bringing forces into a 
relativistic discussion. 

2. We can use the usual 3-force, F = dp/dt. This is fne, as long as we recognize that p 
and t are the momentum and time as measured in a particular frame, and that we must 
be careful when we transform them between frames. Changing frames will transform 
F in a way that is rather more complicated than a simple Lorentz transformation since 
quantities in both the numerator and the denominator of the force’s defnition are 
afected by this change of representation. 

This being a relativity class, you might think we have a preference for the 4-force formulation. 
However, the 3-force is in fact quite useful and important. This is because we always perform 
our measurements in some particular frame, using the time and space coordinates of that 
frame, and pinning down the momentum and energy in that frame. So it is quite useful for 
us to understand how 3-forces transform between frames as well as 4-forces. Ideally, we’d 
like to know how to fip back and forth between the two descriptions, as both are important 
and useful. 
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Let’s go back to our train and station frames. Imagine that a body has a 3-velocity u 
as measured in a station, and so has 3-momentum pS = γ(u)mu and energy ES = γ(u)mc2 

according to the station-frame observers. A train moves through a station with velocity 
v = vex. If force FS acts on the body in the station, what is the force FT that acts on the 
body according to measurements on the train? 
When in doubt, go back to the Lorentz transformation. We know that F = dp/dt, so 

let’s examine the key quantities appearing here and how they transform between frames. 
Start with the x component: 

(FT )
x dpT

x γ (dpS
x − vdES /c

2) 
= = 

dtT γ (dtS − v dxS /c2) 
(FS )

x − (v/c2)(dES /dtS ) 
= . (13.20)

1 − v(u)x/c2 

Notice we have to a little careful with notation, since the letter “F” is used for both the 
4-force and the 3-force and the letter “u” is used for 3-velocity in some frame and 4-velocity. 
The convention we are using is that F i represents the ith component of the 4-force, but 
(F)i represents the ith component of the 3-force; ui and (u)i have analogous meanings for 
4-velocity and 3-velocity components, respectively. 
We can simplify Eq. (13.20) a bit more. We know that E2 = p2c2 + m2c4 for the body. 

Evaluating everything in the station frame and taking derivatives with respect to station 
time, we have 

dES dp
ES = pS · c 2 

dtS dtS 

dES dp
γmc2 = γmu · c 2 

dtS dtS 

dES−→ = FS · u . (13.21)
dtS 

So, we fnd that the x component of the force transforms as 

(FS)
x − (v/c2)F · u 

(FT )
x = . (13.22)

1 − v(u)x/c2 

You may notice a resemblance to the velocity addition formula! Indeed, working out the 
other two components, we fnd 

(FS )
y,z 

(FT )
y,z = . (13.23)

γ(1 − v(u)x/c2) 

Although we have spent some time (and ink/chalk) developing how the 3-force transforms 
between frames of reference, it should be emphasized that the 4-force is also used quite a lot. 
The 4-force fts more naturally into a “spacetime” language; the 3-force is more naturally 
suited to the “space” plus “time” language adapted to a particular observer. Some forces may 
be very naturally expressed using the 4-force, but we then may need the 3-vector components 
in order to assess what some observer will measure in their lab. It is important to develop 
fuency translating back and forth between these diferent notions of the force. 
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So, how do we relate these two notions of force? The analysis is somewhat similar to 
how we relate 4-velocity components to 3-velocity components. Let’s consider the spatial 
components frst: 

dpi 
F i = . (13.24)

dτ 
The interval dτ is as measured on the clock of the body which experiences this force. It 
is related to time as seen in that frame by dτ = dt/γ(u), where u is the magnitude of the 
body’s 3-velocity in that frame. This means 

dpi 
F i = γ(u) = γ(u)(F)i . (13.25)

dt 

Next consider the timelike component: � � 
dp0 d E γ(u) dE 

F 0 = = γ(u) = . (13.26)
dτ dt c c dt 

We already showed that dE/dt = F · u. Putting this all together, we have a “glossary” that 
lets us switch back and forth between the 4-vector and 3-vector notions of force: 

γ(u)
F 0 = F · u , (13.27) 

c 
F i = γ(u)(F)i . (13.28) 
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