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Lecture 14 
Prelude to gravity: More on the uniformly accelerated observer 

14.1 The trajectory of an accelerated observer 

In this lecture, as a prelude to discussing certain aspects of gravity, we will look at how 
things appear to observers who are accelerating. A word of caution: some of the calculations 
we do here are a touch tricky. Certain details require us to develop things beyond the level 
that is part of the normal core of 8.033; those details are developed toward the end of this 
set of lecture notes. Do not worry if you cannot follow every calculational detail in this 
set of notes. We emphasize the core important pieces of this analysis where appropriate, 
and lay out why they are important for where we are going next. A few of the sections 
we present below are signifcantly more complicated than what you are expected to follow; 
those sections can be skipped, though interested students who wish to discuss them further 
are welcome to do so. 
We begin by examining the trajectory of a single observer who feels a constant accel-

eration g = gex in their own momentarily comoving rest frame (MCRF). In the previous 
lecture, we found that such an observer has a 4-velocity whose components are 

dt 
c = u t = c cosh(gτ/c) , (14.1)
dτ 
dx 
= u x = c sinh(gτ/c) . (14.2)

dτ 

(To simplify the analysis which follows, which is fairly dense, we take the observer to be 
at rest in the y and z directions.) Integrating up these solutions, we fnd the ct and x 
coordinates describing a uniformly accelerated observer, parameterized by that observer’s 
own proper time: 

2c 
ct = ct0 + sinh(gτ/c) , (14.3) 

g 
2c 

x = x0 + (cosh(gτ/c) − 1) . (14.4) 
g 

We’ve chosen constants of integration so that t = t0 and x = x0 at τ = 0. The blue curve in 
Figure 1 shows what this motion looks like, choosing x0 = c2/g and t0 = 0. 
At any moment as the accelerating observer moves along their worldline, we can fnd 

their 3-velocity: it is entirely in the x direction, and has magnitude 

v x = c u x/ut = c tanh(gτ/c) . (14.5) 

(Notice that the accelerating observer’s rapidity, which you used on problem sets 2 and 3, 
increases linearly as a function of that observer’s proper time.) Knowing this vx lets us work 
out the Lorentz transformation that takes us from inertial coordinates (ct, x) that are at 
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rest with respect to the observer’s initial condition to the coordinates (ct,̄ x̄) corresponding 
to their MCRF. Figure 1 shows the motion of the accelerating observer according to an 
inertial observer who is initially at rest with respect to the accelerating observer, along with 
several examples of constant t̄  surfaces in the (ct, x) coordinates for this observer’s MCRF 
at diferent moments along their worldline. At τ = 0, the constant t̄  surface in the MCRF 
coincides with the t = 0 surface in the inertial coordinates. As proper time grows along 
the worldline, these surfaces grow steeper as the observer moves faster with respect to their 

Figure 1: Worldline of an accelerating observer that starts at x = c2/g (red curve), and 
three examples of the constant t̄  coordinates of that observer’s MCRF at diferent moments 
along the worldline. The MCRF time t̄  coincides with the observer’s proper time τ where it 
crosses the worldline. Notice both axes are in units of c2/g. 

14.2 Comparing the worldlines of two accelerated observers: 
Breakdown of clock synchronization 

Now imagine that there are two accelerated observers. Both are at rest with respect to 
the “unbarred” frame at t = 0, and both feel constant acceleration g. One (which will call 
the “trailing” observer) begins at x0 = c2/g; the other (the “leading” observer) begins at 
x0 = c2/g + L. Let the time as measured on the trailing observer’s clock be t̄; let the time 
as measured on the leading observer’s clock be t̄. These times will also be used to describe 
time in the MCRFs along the accelerating observers’ worldlines. 
The clocks on these observers start out in agreement, and coincide with the initial inertial 

¯ ¯frame: when t = 0, t = t = 0. However, it is not hard to see that as the two observers 
move along their worldlines, their clocks quickly fall out of agreement. Figure 2 illustrates 
the situation: once they begin moving, each observer’s constant time surface tips over, 
in accordance with the Lorentz transformation that takes us from the inertial frame into 
their MCRF. However, they each tip about a diferent “pivot point,” anchored to their own 
worldline. For a given value of proper time along the worldlines, the constant time t̄  surface 
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used by the leading observer (whose worldline is illustrated by the orange curve in Fig. 2) 
always appears in the past of the constant time t̄ surface used by the trailing observer (whose 
worldline is illustrated by the red curve). 
This means that, when the leading observer measures time t̄ = 0.5 c/g (for example), this 

is simultaneous with the trailing clock reading some value t̄  < 0.5 c/g. The trailing observer 
agrees with this assessment: when they measure t̄ = 0.5 c/g, this is simultaneous with the 
leading clock reading some value t̄  > 0.5 c/g. Both observers agree that the leading clock 
runs faster than the trailing clock. 
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Figure 2: Worldline of two accelerating observers. Both feel acceleration g, and both are 
initially at rest in the coordinates (ct, x). The trailing observer (red curve) uses the time 
coordinate t̄; the leading observer (orange curve) uses the time coordinate t̄. We show two 
surfaces of constant time according to the MCRF of the two observers. The green line 

¯shows the t = 0.5 c/g surface; this corresponds to the MCRF of the trailing (red) when 
τtrailing = 0.5 c/g. The blue line shows the t̄ = 0.5 c/g surface; it corresponds to the MCRF of 
the leading (orange) worldline when τleading = 0.5 c/g. The constant t̄  surface intersects the 
red worldline at t ≃ 0.521 c/g; the constant t̄  surface intersects the orange worldline at the 
same value of t. (The dashed gray line is a constant at t = 0.521 c/g.) These surfaces tell us 
that the leading clock (i.e., the clock of the observer at larger x) runs fast compared to 
the trailing clock. Surfaces of constant t̄  are consistently in the past of surface of constant t̄, 
meaning that a particular value of t̄  has already happened by the time t̄  reaches that value. 
Both observers agree that the trailing clock is slower than the leading clock. 

By borrowing some results from the discussion below of “Rindler coordinates,” we can 
compute the precise amount by which the leading clock runs ahead of the trailing clock, 
at least when the speeds of the two accelerated observers in the inertial coordinate frame 
is small compared to light. Let us write down the worldlines of the trailing and leading 
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observers as seen in the inertial coordinate system: 

2 2c c 
ctT = t/c) , = t/c) ;sinh(g ̄  xT cosh(g ̄  (14.6) 

g g 
2 2c c 

ctL = t/c) , = t/c) + L .sinh(g ̄  xL cosh(g ̄  (14.7) 
g g 

Let us also write down how one represents a single slice of t̄  = constant in the MCRF of the 
trailing observer: 

ctMCRF,T = x tanh(g ̄  (14.8)t/c) . 

This relationship is worked out in the detailed discussion and derivation of Rindler coordi-
nates, which is developed in the more advanced material presented below. 
The question we’d like to answer is: What is the value of t̄ when the time on the constant t̄  

slice crosses the worldline of the leading observer — in other words, what is t̄ when ctMCRF,T = 
ctL? Plugging in the various defnitions yields the equation we must solve: 

ctMCRF,T = ctL , (14.9) 
x=xL 

which means � �
2 2c c 
cosh(g ̄  tanh(g ̄  sinh(g ̄  (14.10)t/c) + L t/c) = t/c) 

g g 
or � � 

gL 
cosh(gt/c¯ ) + tanh(g ̄  t/c) .t/c) = sinh(g ̄  (14.11) 

c2 

We now need to solve Eq. (14.11) for t̄  as a function of t̄. Remarkably, this isn’t so hard to 
do, as long as a certain approximation holds. Begin by putting all of the terms that depend 
on t̄  on the left-hand side, and all of the terms that depend on t̄  on the right: 

sinh(g ̄t/c)
tanh(g ̄t/c) = 

cosh(g ̄t/c) + gL/c2 � � 
gL ≃ tanh(g ̄ 1 − (14.12)t/c) . 

c2 cosh(g ̄t/c) 

The approximation introduced here is accurate as long as gL/c2 ≪ cosh(g ̄t/c); recalling that 
c2/g is roughly 1 light-year for an acceleration g = 9.8m/s 2 , this is clearly reasonable as long 
as L is anything much smaller than a light year.. Taking the arc-hyperbolic tangent of both 
sides, and using the result1 

arctanh [tanh(x)(1 − ϵ)] ≃ x − cosh(x) sinh(x)ϵ , (14.13) 

we fnd 
gL 

g ̄  t/c − t/c) .t/c = g ̄  sinh(g ̄  (14.14) 
c2 

For general values of t̄, this isn’t too easy to work with. However, if we confne ourselves to 
g ̄t/c ≪ 1, then this simplifes very nicely: using sinh(x) ≃ x for x ≪ 1, Eq. (14.14) becomes � � 

gL 
t̄ = t̄ 1 − . (14.15) 

c2 

1Figuring out things like this is a good use for tools like Mathematica. 
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The leading clock ticks at a faster rate than the trailing clock: 

t̄− t̄  gL 
= 

2 
. (14.16)

t̄ c 

Remember this nice, clean result! We will soon see a similar form when examining a diferent 
quantity, and rediscover this result in another context in a few lectures. 

14.3 Light measured by the two accelerated observers 

A related calculation compares the properties of light as measured by the two observers. 
This is particularly important because light plays such a critical role in relativity, since we 
often exploit the fact that its speed is c in all reference frames. Let’s imagine that a beam 
of light travels in the +x direction. It frst intersects the trailing observer’s worldline, then 
continues and later intersects the leading observer’s worldline. The question we want to 
know is: What is the energy that the two observers measure for this light? 
We will do all of these calculations in the inertial frame, which provides a convenient 

“stage” for us to formulate the quantities that we need for this analysis. We will also use the 
fact that, given something with 4-momentum p⃗, an observer whose 4-velocity is u⃗ measures 
it to have energy E = −p⃗ · ⃗u. 
Begin by writing the components of the light’s 4-momentum in the inertial frame as 

p t = hν/c , p x = hν/c . (14.17) 

(The y and z components of the light’s 4-momentum are zero.) Let us say that this light 
crosses the worldline of the trailing observer when that observer’s clock reads t̄  

beam. Their 
4-velocity at that time has components in the inertial frame 

u tT = c cosh(gt̄  
beam/c) , u x = c sinh(gt̄  

beam/c) . (14.18) 

The energy that the trailing observer measures for the light is then given by 

ET = −p⃗ · ⃗uT (14.19) 

= hν cosh(gt̄  
beam/c) − hν sinh(gt̄  

beam/c) (14.20) 

= hν cosh(gt̄  
beam/c) (1 − tanh(gt̄  

beam/c)) . (14.21) 

This can be simplifed a bit more using a few hyperbolic function identities: 

1 1 
cosh(x) = q = q . 

sech2(x) 1 − tanh2(x) 
(14.22) 

Using this, we see that the energy measured by the trailing observer is s 
1 − tanh(g ̄tbeam/c)

ET = hν . 
1 + tanh(g ̄tbeam/c) 

(14.23) 

Notice that this is exactly the Doppler shift that one expects for an observer who is moving 
away from a light source with 3-speed v = c tanh(gt̄  

beam/c). 
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The light continues to move in the +x direction, and crosses the worldline of the leading 
observer when their clock reads t̄  

beam. By a similar calculation, the energy that the leading 
observer measures is s 

1 − tanh(gt̄  
beam/c)

EL = hν , (14.24)
1 + tanh(gt̄  

beam/c) 

which is likewise just the Doppler-shifted energy for a speed v = c tanh(gt̄  
beam/c). 

We’d like to compare ET to EL. To do so, we must relate the time t̄  
beam at which the light 

beam crosses the leading observer’s worldline to the time t̄  
beam at which the beam crosses the 

trailing observer’s worldline. We do this by using our results describing time in the inertial 
frame to the times along the worldline. 
The inertial-frame time at which the light crosses the trailing observer’s worldline is 

c 
tT = sinh(gt̄  

beam/c) ; (14.25) 
g 

the inertial-frame time at which it crosses the leading observer’s worldline is 

c 
tL = sinh(gt̄  

beam/c) . (14.26) 
g 

However, we also know that, in the inertial frame, the light moves a distance of L in going 
from the trailing observer to the leading observer, plus the additional distance that the 
leading observer covers while the light is in transit: Z tLL dx 

tL = tT + + dt 
c dttZT 

tL 

= tT + + c t/c) dt . 
L 

tanh(g ̄  (14.27) 
c tT 

The integral on the last line accounts for the distance that the leading observer moves as the 
light is in transit. As written, it is not a very nice integral: we do the integral with respect 
to the inertial-frame time, but the function we are integrating is parameterized using time t̄  
along that observer’s worldline. So we, need to convert: using Eq. (14.3) (with t0 = 0, and 
with τ = t̄), we have 

c
t̄ = arcsinh(gt/c) , (14.28) 

g 

and the argument of the integral becomes 

tanh(g ̄t/c) = tanh(arcsinh(gt/c)) 

(gt/c) 
= p . (14.29) 

1 + (gt/c)2 

It’s kind of miraculous that this result cleans up so nicely. We can now easily do the integral 
and relate tL to tT : �p p �L c 

tL = tT + + 1 + (gtL/c)2 − 1 + (gtT /c)2 . (14.30) 
c g 

We now have all the information we need, in principle, to see how the energy of the light 
changes as it goes from the trailing observer to the leading one: 
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1. Solve Eq. (14.30) to fnd tL as a function of tT . 

2. Using this solution plus Eqs. (14.24) and (14.26), compute the energy measured by the 
leading observer as a function of tT . 

3. Using Eq. (14.25) and (14.23), compute the energy measured by the trailing observer 
as a function of tT . 

Unfortunately, this “recipe” involves a multitude of hyperbolic functions and does not 
yield a nice closed form answer. To get something tractable, let’s assume that gt/c, g ̄t/c, 
and g ̄t/c are all much smaller than 1, and use the limiting forms 

cosh(x) ≃ 1 , sinh(x) ≃ x , tanh(x) ≃ x when x ≪ 1 . (14.31) 

Doing so, we fnd 
L 

tL ≃ tT + , (14.32) 
c 

tT ≃ t̄  
beam , tL ≃ t̄  

beam , (14.33) s 
1 − (gt̄  

beam)/c
ET ≃ hν ≃ hν (1 − gt̄  

beam/c) , (14.34)
1 + (gt̄  

beam)/c s 
1 − (gt̄  

beam)/c � � 
EL ≃ hν ≃ hν 1 − gt̄  

beam/c . (14.35)
1 + (gt̄  

beam)/c 

Putting all these together, we see that � � 
gL 

∆E ≡ ET − EL ≃ hν 
2 

. (14.36) 
c 

The light’s energy as measured by the leading observer is lower than the energy measured by 
the trailing observer, by a fractional amount that precisely matches the rate at which their 
clock ticks faster than the trailing observer’s clock. 

14.4 Wrapup: Key things to take away 

The calculations that went into the above discussion were somewhat dense, so this is a good 
point to pause and assess the key lessons that we should take away from it. In particular, 
we want to emphasize aspects of what is observed by a pair of observers who share the same 
acceleration g, but are spatially separated by a distance L. 

• Even if the observers start out with their clocks perfectly synchronized, they will fall 
out of synchrony as time passes, with the leading clock running fast by a factor gL/c2 . 

• If light is exchanged between the two observers, they will disagree on its energy. The 
leading observer measures it to have a lower energy (i.e., they see the light as being 
somewhat redder), by a factor gL/c2 . 

As our analysis showed, the numerical factor gL/c2 that emerges from these analyses is an 
approximate one, but works well as long as g(time)/c is small for all the versions of “time” 
under consideration. Bear in mind that c/g ≃ 1 year if g = 10m/s 2; this gives a sense of the 
time and lengthscales involved before these approximations start to break down. 
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14.5 Rindler coordinates 
(CAUTION: somewhat advanced material) 

Parts of the discussion in the preceding few sections rely on more advanced material which 
we present here. We recommend that you read these notes, but you should not be worried 
if you do not follow every detail of this discussion. The nature of the Rindler coordinates, 
Eqs. (14.37)–(14.40), and the subsection labeled “Features of the Rindler representation” 
are particularly worth your attention. 
In almost all of our discussion so far, we have used coordinates (t, x, y, z) or (ct, x, y, z) 

that are particularly well suited for describing inertial observers. Indeed, such coordinates 
are often called inertial coordinates: they are ones for which there exists some set of observers 
who sit at constant (x, y, z). In such a frame, the observers are only “moving” in time. There 
are also many observers who move with constant velocity. The worldlines of the constant 
velocity observers are lines in these coordinates, taking the form x = x0 + vxt, and similarly 
for their motion in y and z. 
Even when we discussed accelerating observers, we presented their motion as seen by some 

inertial observer who sees the accelerating observer zoom past. You might wonder — how 
does the accelerating observer describe spacetime? Do we learn anything useful by developing 
coordinates that are “adapted” to the reference frame of the acelerating observer? To do 
this, one could imagine performing Lorentz transformations that fip between a particular 
inertial frame (e.g., the frame used to draw the time axes in Fig. 1) and the accelerating 
observer’s MCRF. However, the relative velocity of the MCRF and any given inertial observer 
is continually changing. The Lorentz transformations that enact this“fipping back and forth” 
thus must continually evolve, which limits their usefulness for us. 
A coordinate system which nicely describes an accelerating observer in fact can be written 

down. These coordinates (named Rindler coordinates, in honor of Wolfgang Rindler who 
did much to explore their properties and applications) are described and explored in this 
section. The following section derives Rindler coordinates; that section should be considered 
even more advanced than this one. Students should feel free to ignore it altogether. 
Let us choose the initial condition of the accelerated observer’s trajectory so that t0 = 0 

and x0 = c2/g in Eqs. (14.3) and (14.4). Then, as we derive in detail in the following 
section, the accelerated observer uses coordinates (ct,̄ x,¯ y,̄ z̄) to describe spacetime. These 
new coordinates are related to the original “inertial” coordinates (ct, x, y, z) according to 

ct = ¯ t/c) ,x sinh(g ̄  (14.37) 

x = ¯ t/c) ,x cosh(g ̄  (14.38) 

y = ȳ  , (14.39) 

z = z̄  . (14.40) 

In the barred coordinate system, the accelerated observer is at constant spatial coordinate 
(x̄, y,̄ z̄) = (c2/g, 0, 0); the barred time coordinate t̄  is exactly the same as the proper time 
τ that this observer measures. Notice that this solution agrees with Eqs. (14.3) and (14.4) 
when x̄ = c2/g. Equations (14.37)–(14.40) defne the Rindler coordinates. (Notice also that 
Eq. (14.37) is what we used to defne the constant time surfaces of the MCRF as shown in 
Fig. 1 and in the associated discussion.) 
Figure 3 illustrates how the (ct,̄ x̄) coordinates used by an accelerating observer appear 

in the reference frame of an unaccelerated observer. The red curve illustrates the worldline 
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of the observer who starts at x = x̄ = c2/g. The green lines represent surfaces of constant t̄; 
the blue hyperbolic curves represent trajectories of constant x̄. Those trajectories are chosen 

¯by requiring that x̄ = x when t = t = 0, and by demanding that the unit vector along x̄ 
be spacetime orthogonal to the unit vector along t̄. Notice that each constant x̄ coordinate 
can itself be regarded as an accelerated observer; as we discuss in the next section, it can be 
shown that the observer at constant x̄ feels an acceleration a = (c2/x̄)ex. 
We also include in this fgure the trajectory of a light ray that is emitted from the origin; 

we discuss some interesting features of this coordinate system’s behavior with respect to this 
light ray below. 

t̄ = 0.1 c/g
t̄ = 0.3 c/g
t̄ = 0.5 c/g
t̄ = 0.7 c/g
t̄ = 0.9 c/g
t̄ = 1.1 c/g
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Figure 3: An illustration of Rindler coordinates. The red curve is the worldline of an 
accelerating observer who starts at x = c2/g and experiences constant acceleration g. The 
green lines are surface of constant t̄, which coincides at that observer’s location with their 
own proper time; the blue curves are trajectories of constant x̄, chosen to coincide with the 

¯unaccelerated frame’s x when t = t = 0. A heavy black line ct = x illustrates a light ray 
that is emitted from the origin and moves to the right. Notice both axes are in units of c2/g. 

14.5.1 Features of the Rindler representation 

There are two features of the Rindler representation to which we would like to particularly 
call your attention. 

• A new form for the metric: By now, we know very well that 

ds2 = −c 2dt2 + dx2 + dy2 + dz2 ≡ ηαβdx
α dxβ . (14.41) 

The invariance of this interval is what led us to the metric used in inertial coordinates, 
ηαβ = diag(−1, 1, 1, 1). 
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Let’s look at this in our new coordinates. Considering Eqs. (14.37)–(14.38), we see 

gx̄ 
c dt = (dx̄) sinh(g ̄ (c d¯ t/c) , (14.42)t/c) + t) cosh(g ̄  

2c 
gx̄ 

dx = (dx̄) cosh(g ̄  
2 
(c d¯ t/c) , (14.43)t/c) + t) sinh(g ̄  

c 

plus dy = dȳ, dz = dz̄. This tells us that h � � i2gx̄ 
ds2 = − x) sinh(g ̄  

2 
(c d¯ t/c)(d¯ t/c) + t) cosh(g ̄  

ch � � i2gx̄ 2 2+ (d¯ t/c) + t) sinh(g ̄ + d¯ + dz̄x) cosh(g ̄ (c d¯ t/c) y
2c� �2gx̄ 2 2 2 2 = − c 2dt̄ + dx̄ + dȳ + dz̄  . (14.44) 

c2 

(We used cosh2(g ̄ (g ̄  = 1.) Notice that the metric is not a constant int/c) − sinh2 t/c) 
this representation. Because we reserve the symbol ηαβ for diag(−1, 1, 1, 1), we now 
use gαβ to denote the metric. In particular, we now have � �. 

gαβ = diag x/c2)2 , 1, 1, 1 (14.45)−(g¯ 

for the metric of spacetime in Rindler coordinates. 

It’s worth emphasizing that we are still doing special relativity; we have only changed 
coordinates. If you’ve been reading ahead or poking at references, you may have seen 
that in general relativity we get metrics in which the components are functions, and so 
you might worry that we’ve somehow “broken” special relativity. We haven’t: in some 
coordinate systems, the components of the metric are functions and yet the metric still 
describes special relativity. This is an example of such a system. 

• A “horizon”: Notice in Fig. 3 that we have included a light ray that starts at the 
origin and travels in the +x direction. On an upcoming problem set, you will compare 
the motion of the accelerated observer to the motion of this light ray, and show that 
the light ray never crosses this observer’s trajectory. The light ray asymptotically 
approaches the accelerated observer’s trajectory as t̄  → ∞, but they never cross. In 
fact, the light ray never crosses any of the constant x̄ trajectories. 

Because information can travel no faster than light, this means that there is a region of 
spacetime that cannot communicate with the accelerated observer. No signal sent by an 
observer to the “left” of that light ray can reach the accelerated observer. We say that 
there is a horizon separating the events which can communicate with the accelerated 
observer from those events which cannot so communicate. 

We will come back to the notion of horizons later in this course. Take this as a preview 
of some of the interesting features that we will begin to fnd as we start investigating 
certain spacetimes. 
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14.6 Derivation of Rindler coordinates 
(CAUTION: advanced material) 

The discussion in this section is signifcantly more advanced than is expected for 8.033 
students. It is included in order to provide a complete explanation of where the Rindler 
coordinates come from, as well as for the beneft of any students who are interested in diving 
somewhat deeper into this material; it will not be discussed in detail during lecture. 
We now defne coordinates ct̄, x̄ which the accelerating observer uses to describe space-

time. (Since the acceleration is along x, we simply put ȳ = y and z̄ = z and are then done 
with those two coordinates.) We take the accelerating observer’s coordinates to be t = 0, 
x = c2/g when τ = 0, and we use the symbols T , X to defne the accelerating observer’s tra-
jectory as measured by the observer who is at rest with respect to the accelerating observer 
at τ = 0. The motion of this observer is thus 

2 2c c 
cT (τ) = sinh(gτ/c) , X(τ) = cosh(gτ/c) . (14.46) 

g g 

For the accelerated observer, their own proper time τ makes a natural clock. Given this, it 
is natural that the accelerated observer chooses the time coordinate to be t̄ = τ along their 
own worldline. 
Can we use this coordinate t̄  away from the observer’s worldline? In other words, can 

the accelerating observer use t̄  to label events elsewhere in spacetime, away from their own 
worldline? Yes, by the following procedure: 

• First defne unit vectors that point along the directions t̄  and x̄. Making such a unit 
vector for t̄  is not hard: in the accelerating observer’s MCRF, their 4-velocity has 
components uα . 

= (c, 0, 0, 0). A natural choice for e⃗t̄ is thus parallel to this observer’s 
4-velocity, so we put 

1 
e⃗t̄ = u⃗ = cosh(g ̄  et + sinh(g ̄t/c)⃗ t/c)e⃗x . (14.47) 

c 

We then defne e⃗x̄ by requiring that it be orthogonal to e⃗ (and also that it have not̄ 

components along ȳ  and z̄): 

= sinh(gt/c¯ )e⃗t + cosh(g ̄t/c)⃗e⃗x̄ (14.48)ex . 

• With e⃗ defned, now consider a “surface” of constant t̄ (i.e., a set of events in which all x̄ 

the time coordinates t̄  are the same). Such a surface must lie on a line that is parallel 
e⃗x̄ 

t 
x̄ 

, meaning that it is a line whose slope m is given by 

e 
e 
= tanh(g ̄  (14.49)t/c) .m = 

x 
x̄ 

We further require that this line intersect the worldline of the accelerating observer: 
The line must have the slope m defned by Eq. (14.49), and pass through the point 
[cT (t̄), X(t̄)]. With a little algebra we see that this line is given by 

ct = x tanh(g ̄  (14.50)t/c) . 
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We’ve now learned how to draw surfaces of constant t̄  in the inertial (ct, x) coordinate 
frame. How do we draw a surface of constant x̄? Such a surface must lie parallel to the 

¯timelike vector e⃗t̄  given in Eq. (14.47). This vector is continually changing in slope as t 
changes; in the inertial frame, it has slope 

dx 
= c tanh(g ̄  (14.51)t/c) . 

dt 

We have already deduced that t and t̄  are related by Eq. (14.50). Combining these results, 
we see that 

dx t 
= c 2 . (14.52)

dt x 
We integrate this up, applying an initial condition that the coordinates of the accelerated 
observer match those of the inertial frame at t = t̄ = 0: Z x Z t 

x dx = c 2 t dt (14.53) 
x̄ 0 

or 
x 2 − x̄2 = c 2t2 . (14.54) 

This tells us that surfaces of constant x̄ are given by hyperbolae in the (ct, x) plane which 
satisfy 

x̄2 = x 2 − (ct)2 . (14.55) 

We’d like to massage Eqs. (14.50) and (14.55) a bit more to really isolate how (ct,̄ x̄) appear 
in the inertial frame. Notice that Eq. (14.55) is solved by any pair of functions of the form 

x = x̄ cosh(α) , ct = x̄ sinh(α) . (14.56) 

Applying this to Eq. (14.50), we see that we must have α = g ̄  We thus at last have thet/c. 
complete mapping of the accelerated observer’s reference frame into the inertial coordinate 
system: 

ct = ¯ t/c) , x = ¯ t/c) , y = ¯ z = ¯ (14.57)x sinh(g ̄  x cosh(g ̄  y , z . 

One fnal detail: it was noted earlier in these notes that an observer at constant x̄ is itself 
an accelerated observer. This is hopefully intuitively obvious from the shape of the constant 
x̄ surfaces in Fig. 3 (if they were not accelerated, they would not curve). What acceleration 
does this observer feel? This is most easily calculated by computing the 3-acceleration of 
this observer at t = t̄  = 0. Because at this moment all of the constant x̄ observers happen 
to be momentarily at rest, all of these observers have 4-velocity with components (c, 0, 0, 0) 

x xand 4-acceleration (0, a , 0, 0) in this frame, where a = d2x/dt2 at t = 0. 
Let’s compute this: 

x d2x 
a = 

dt2 
t=t̄=0" #� �−2

d2x dt 
= 

dt̄2 dt̄  
t=t̄=0�� 

2 ��� �−2g g x̄ 
= 

2 
¯ t/c) t/c)x cosh(g ̄  cosh(g ̄  

c c c t=t̄=0 
2c 

= . (14.58) 
x̄ 
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So the observer at x̄ = c2/g feels an acceleration of precisely g; those at larger x̄ feels less 
acceleration, and those at smaller x̄ feel more (with the acceleration diverging as x̄ → 0). 
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