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Lecture 17 
Goodbye global Lorentz frames, hello principle of equivalence 

Initial considerations on relativistic gravity 

17.1 Farewell to global Lorentz frames 

What is it that puts the “special” in special relativity? The key concept that we come back 
to again and again is the notion of a Lorentz frame: A frame of reference in which things 
move at constant velocity if no forces act on them. Such a frame is an inertial frame; we 
move between diferent Lorentz frames using Lorentz transformations. 
What is particularly special about special relativity is that it assumes that we can “cover” 

all of spacetime — all events, all time and all space — using a single Lorentz frame. In other 
words, special relativity tells us that it makes sense for there to be global Lorentz frames. 

Gravity breaks this. Once we begin including gravity in our model of physics, we 
cannot have a global Lorentz frame that covers all events. This is actually fairly easy for us 
to see based on things that we have already learned about the nature of Lorentz frames, and 
the infuence of gravity on light. 
Imagine a pulse of light that propagates from the surface of the Earth to a height H. 

Let us imagine the trajectory that one crest of a light wave in this pulse follows through 
spacetime. We do not yet know exactly how gravity will afect the pulse’s path through 
spacetime, but we can imagine that the trajectory is “bent” essentially, perhaps moving a 

Figure 1: A plausible path for the crest of a light wave in a pulse propagating vertically from 
the Earth’s surface. 

Given this behavior of the frst crest, what is the behavior of the second crest? Well, 
if we require spacetime to be Lorentz everywhere, then there is nothing special about any 
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particular place. path path 
one, simply shifted later in time. 

height

t
Path through spacetime of two 
crests of a wave in light beam

time or The of the second crest must be identical to the of the 
frst 

Figure 2: If the trajectory through spacetime of crest 1 looks like Figure 1 and we assume 
spacetime has Lorentzian behavior everywhere, then the trajectories of crests 1 and 2 together 
will look this. Figure made by duplicating the frst crest and sliding it slightly in the t 
direction. 

If this is true, then it must be the case that the wave period at the bottom (height 0) must 
be identical to the wave period at the top (height H). The two trajectories are congruent 
with each other, simply shifted a bit along the time direction. But if the periods TH and T0 

are identical, then the frequencies at the top and the bottom are identical: νH = ν0. This 
contradicts the gravitational redshift that we argued must exist (and that, indeed, 
experiments have demonstrated does in fact exist), which tells us that νH = ν0(1 − gH/c2). 
Our starting assumption must be incorrect: In the presence of gravity, we cannot have global 
Lorentz reference frames. 
Perhaps we could “rescue” special relativity with the Rindler coordinate system. Rindler 

coordinates express how things look in special relativity according to a uniformly accelerated 
observer; we saw that an analysis of light measured by such an observer looks very similar 
to the expressions we derived for the impact of gravity on light. However, the Rindler 
coordinate system describes uniform acceleration along a particular direction in space. With 
a little thought, we can convince ourselves that a Rindler coordinate system cannot describe 
all the measurements that we can make on the Earth’s surface. 
Consider an observer on the equator who measures the gravitational redshift. They 

can interpret their measurements as consistent with a Rindler coordinate system that is 
accelerating “up,” i.e., outwards from the equator. Consider a second observer at the North 
Pole who measures exactly the same gravitational redshift. They likewise may want to 
interpret the redshift as due a Rindler coordinate system that is accelerating “up.” However, 
their “up” is 90◦ diferent from the “up” of the equatorial observer! Consider a third observer 
at the South Pole. They also want a Rindler observer accelerating “up,” but their “up” is 
180◦ diferent from the North Pole’s “up.” None of these observers are in fact moving with 
respect to one another: they are widely separated, but their separations are not changing. 
This is starkly diferent from accelerations in three diferent directions which the Rindler 
hypothesis requires. 
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relative velocities in a Freely Falling Frame. 

height

t

Group of objects falling under 
the influence of gravity, viewed 
in static coordinates.

height

t

Group of objects falling under 
the influence of gravity, viewed 
in the freely falling frame.

We need a new idea in order to incorporate gravity in the framework of relativity. 

17.2 The principle of equivalence 

Let’s go back to the foundation of what an inertial frame has meant: In the absence of 
external forces, all objects maintain their relative velocities. Is there any way in which the 
essence of this idea can be captured when we include the action of gravity? 
One of Einstein’s core insights was that we observe exactly the same thing when we do 

our analysis in a Freely Falling Frame, or FFF. All objects feel the same acceleration due to 
gravity, thanks to the fact that F = ma = mg. The equivalence of “gravitational mass” and 
“inertial mass” means that gravity efectively cancels out as long as we can work entirely in 
the FFF. The notion of a Lorentz frame is now upgraded to a Freely Falling Frame, and the 
rule that we will use is: In the absence of non-gravitational forces, objects maintain their 

Figure 3: Three objects falling under the infuence of gravity. In “static” coordinates (e.g., 
coordinates at rest with respect to the Earth’s surface, shown on the left), the three bodies 
follow parabolic trajectories before meeting later at height 0. In the freely falling frame, 
the observer follows the same trajectory as the blue object. All three objects move along 
straight lines in this frame. Motion in the freely falling frame duplicates the essential features 
of unaccelerated motion in an inertial frame in the absence of gravity. 

The key intuition for this is that, as summarized by Einstein, we cannot distinguish 
between gravity and uniform acceleration. It is important to bear in mind, however, that 
in realistic situations gravity is never perfectly uniform. As we move away from the Earth’s 
center, the gravitational force gets weaker. This variation in gravity from the Earth, or from 
any realistic fnite-sized source, is responsible for tides. 
Tides are responsible for a key aspect of how we describe gravity in relativistic language. 

In special relativity, if two objects started out moving parallel to one another and no force 
acted on them, their trajectories would always remain parallel. This is a statement that 
trajectories in spacetime obey what is known as “Euclid’s parallelism postulate,” an aspect 
of Euclidean geometry which confused mathematicians and geometers for centuries. Unlike 
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Euclid’s other postulates, the parallelism postulate was not considered to be self evident, 
and could not be proved under the assumption of Euclid’s other postulates. Work by the 
Russian mathematician Lobachevsky frst showed that one could set up a logically consistent 
framework for geometry without assuming this postulate; in such a geometry, lines which 
start out parallel later cross or diverge from one another. The German mathematician 
Riemann later worked out rules describing such geometries. 
In modern language, we now say that if Euclid’s parallelism postulate holds then it means 

that one is working in a geometry that is fat. In two and three spatial dimensions, a fat 
geometry in which the Pythagorean theorem holds; in space and time, it is a geometry with 
the metric ηαβ that we have been working with for most of this semester. 
On the other hand, if Euclid’s parallelism postulate does not hold, then one is working 

in a geometry that is curved. An example is the surface of a sphere. Consider two observers 
standing on the Earth’s equator. Both begin walking due north — perfectly parallel to one 
another. They walk in a perfectly straight line on the surface, never bending their path from 
one moment to the next. Despite beginning on parallel trajectories, and despite moving 
along perfectly straight lines, their trajectories cross when they reach the North Pole. 
Tides cause trajectories which are initially parallel in spacetime to either focus or diverge 

from one another. This tells us that when we have gravity with tides, spacetime must be 
curved. We cannot use the metric ηαβ anymore; we need something new. 

17.3 How to describe relativistic gravity I: Initial considerations 

Let’s think about Newtonian gravity for a moment. Begin by considering the potential 
outside of a spherical mass M , 

GM 
Φ = − . (17.1) 

r 
This gravitational potential has the same mathematical form as the electrostatic potential 
that arises from a spherical charge Q: 

1 Q
ΦE = ; (17.2)

4πϵ0 r 

we just need to replace Q → M and 1/(4πϵ0) with −G. 
In an in-depth study of electrostatics, we learn that for a general distribution of charge, 

the electrostatic potential ΦE is the function that solves Poisson’s equation: 

ρQ∇2ΦE = − , (17.3)
ϵ0 

where ρQ is charge density. This can be proven by combining E = −∇ΦE with ∇·E = ρQ/ϵ0. 
In the same way, one can show that in Newtonian gravity, the gravitational potential ΦG is 
the function that solves a slightly diferent version of Poisson’s equation: 

∇2ΦG = 4πGρM , (17.4) 

where ρM is mass density. 
Let’s begin here as we start thinking about how to bring gravity into a relativistic frame-

work. We start by cataloguing the ways in which Eq. (17.4) falls short as a relativistic 
equation, and imagine ways in which we could perhaps “upgrade” it to something better for 
our purposes. 
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• The left-hand side of Eq. (17.4) involves spatial derivatives in a particular reference 
frame. This is not a Lorentz-covariant derivative operator. One idea for upgrading 
this: replace ∇2 with the relativistic wave operator □. Past studies of gravity were 
dominated by sources that were static or very slowly varying; perhaps the most impor-
tant aspects of gravity have been determined from sources for which ∂(gravity)/∂t ≈ 0 
in the frames in which we did these studies. 

• The right-hand side of Eq. (17.4) involves the mass density ρM . We argued (and much 
later, experiments verifed) that gravity must also act upon massless energy. However, 
past studies of gravity were dominated by sources for which the rest energy was the 
largest part of the source’s energy budget. Perhaps we can replace ρM with ρ/c2 , where 
ρ is the source’s energy density. 

This suggests that perhaps our relativistic gravity equation should look something like 

? 4πGρ 
□ΦG = 

2 
. (17.5) 

c 

This perhaps looks plausible, but on refection hopefully you’ll notice that it has some issues. 
Chief among them is that, as we discussed several lectures ago, the energy density ρ is one 
component in a specifed reference frame of the stress-energy tensor. Any theory of physics 
that picks out a particular component of a tensor as playing a special role is, for lack of 
a better term, a “sick” theory. If we want gravity to be describable from the viewpoint of 
diferent reference frames, then the right-hand side of Eq. (17.5) won’t do it. 
The left-hand side of (17.5) has problems as well. The derivative operator is a scalar, but 

what is ΦG? Is it a scalar (as it appeared to be in Newtonian physics)? Is it one component 
of a tensor, as the right-hand side seems to suggest? If so, what is the rest of the tensor? 
This is roughly where Einstein was in the early 20th century, trying to imagine how to 

fold gravity into the framework of relativity that so successfully merged Maxwell’s electrody-
namics with mechanics. Getting from there to the general theory of relativity took Einstein 
about 10 years, much of which was spent learning what was for him an entirely new feld 
of mathematics (Riemannian geometry), and fguring out how to connect this to the core 
physical concepts that describe gravity. There were multiple wrong turns along the way; in 
the meantime, others proposed diferent ways of making relativistic gravity which in the end 
did not agree with experimental tests. 
In 8.033, we don’t have the time to explore all of the wrong turns and hypotheses that were 

proposed but fell short (although we briefy discuss some highlights of interesting “wrong 
turns” in a short section of supplementary material). Instead, we will elide many details and 
compress all of the history and thought processes into a few bullet points: 

• In special relativity, an unaccelerated trajectory is one that moves on a straight line. 
If a pair of unaccelerated trajectories start out parallel, then they will remain forever 
parallel. This is consistent with the idea that the metric ηαβ describes a “fat” spacetime 
geometry. 

• When gravity is included, we can introduce principles that allow to recover much of 
that core idea. We defne an unaccelerated trajectory in the freely falling frame as the 
one that feels no non-gravitational forces. 
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• Because gravity is never perfectly uniform — it exhibits tidal variations — we expect 
a pair of unaccelerated trajectories that start out parallel to not remain parallel; in 
almost all cases, they will eventually diverge from one another, or perhaps cross. This 
suggests that gravity can be modeled by thinking about spacetimes that are not fat, 
but that have curvature. 

17.4 How to describe relativistic gravity II: Putting the pieces 
together 

Now let’s synthesize these ingredients and bullet points to see how, after 10 years of efort, 
Einstein managed to develop the relativistic theory of gravity that (so far, at least) has 
passed all experimental tests. Begin by going back to the Newtonian feld equation: 

∇2ΦG = 4πGρM . (17.6) 

We’ve already argued that the right-hand side should be something that involves ρ/c2 rather 
than ρM , where ρ is energy density. But that ρ is itself one component of the stress-energy 
tensor T µν . A covariant relativistic formulation cannot pick out one component of a tensor 
as “the” quantity of interest. Whatever goes on the left-hand side of the relativistic “gravity 
equation,” the right-hand side should be something that is proportional to T µν . 
To get some idea of how to handle the left-hand side, note that ∇2ΦG can be regarded as 

−∇ · g, where g = −∇ΦG is the gravitational feld that arises from the potential ΦG . The 
left-hand side is thus something like the divergence of the gravitational feld. Derivatives 
of the gravitational feld tell us about how this feld varies in space — which tells us about 
the behavior of gravitational tides. So the physical content of Eq. (17.6) can be regarded, 
schematically, as 

(“Quantity related to gravitational tides”) = (“numerical factor times G”)(“source”) . 
(17.7) 

For the source on the right-hand side of our equation, we’ve already decided to use 
the stress-energy tensor T µν . Figuring out how to do the left-hand side is a little more 
complicated. We begin with the idea that a body which moves under the infuence of no 
forces but gravity follows a trajectory of maximal aging through spacetime. Such a trajectory 
is called a geodesic. We will examine geodesics for specifc spacetimes soon enough; in the 
general case (which we will not consider in detail in 8.033), a body’s geodesic motion in 
some coordinate system turns out to be governed by a three-index tensor-like object. The 
diferential equation governing the body’s 4-velocity takes the form 

duα 

+ Γα
µν u

µu ν = 0 . (17.8)
dτ 

The quantity Γα
µν (called a connection coefcient or Christofel symbol) is built from deriva-

tives of the spacetime metric gµν . 
If the spacetime describes gravity with tides, then two nearby geodesics that start parallel 

to one another will eventually become non-parallel. Suppose that two geodesics each have 
µ4-velocity u , and are separated in our coordinates by δxα . Then, the action of tides will 

cause their separation to evolve. This evolution is governed by an equation that takes the 
form 

D2(δxα) µ= Rα
µνβ u u ν (δxβ ) . (17.9)

dτ 2 
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The operator D/dτ is a special kind of derivative that takes into account the fact that, in a 
spacetime with curvature, the unit vectors themselves vary from position to position. The 
4-index tensor Rα

µνβ (called the Riemann curvature tensor) describes how nearby geodesics 
deviate from one another due to variations in spacetime — i.e., how tidal variations in gravity 
make initially parallel trajectories become non parallel. This curvature tensor is built from 
derivatives of the Christofel symbol; we can think of it as expressing (in a rather complicated 
way) two derivatives of the spacetime metric gµν . 
Einstein’s hypothesis was that the “right” way to upgrade Eq. (17.6) into a relativistic 

form was to replace the left-hand side with a curvature tensor which is closely related to 
Rα

µνβ , and to replace the right-hand side with the stress-energy tensor: 

Gµν = κT αβ . (17.10) 

The tensor Gµν is known as the Einstein curvature tensor1 . It is found by combining the 
Riemann tensor with the metric in a such a way that the result is a 2nd-rank tensor with zero 
divergence (the stress-energy tensor on the right-hand side has zero divergence, so whatever 
we put on the left-hand side must have zero divergence as well). You can think of it as a 
very complicated set of second derivatives which act on the metric. 
The constant κ is determined by demanding that, in the correct limit, this equation’s 

predictions agree with the predictions of Newtonian gravity. Doing so, we at last obtain the 
Einstein feld equation: 

8πG 
Gµν T µν= . (17.11)

4c 
This equation can be regarded as a set of partial diferential equations for the spacetime 
metric, given a stress-energy tensor which describes the fow of energy and momentum in 
that spacetime. Notice that there is a sense in which (17.11) is similar in physical structure 
to Eq. (17.6): both have “two derivatives of potential” on the left-hand side (provided we 
now think about the metric of spacetime as playing the role of the potential), and a source 
that describes energy density on the right-hand side (picking out the dominant component in 
the Newtonian version, but using the full tensor-valued mathematical object in Einstein’s). 
Developing the Einstein feld equation takes roughly half of the term in 8.962. The other 

half is spent fguring out how to solve it, and to examining the nature of its solutions. In 
8.033, we will jump straight to looking at some of the solutions (though the story behind 
how some of those solutions were found is pretty interesting, and we’ll at least discuss some 
anecdotes around them). We will then study these solutions in order to tell us about the 
nature of gravity with relativity included. A very nice feature of what we have done so far 
is that, with the principle of equivalence and the calculus of variations in our toolkit, it’s a 
relatively simple step for us to examine motion in some spacetime that is provided to us. 

1Sadly, the notation overlaps with the dual Faraday tensor we discussed in the E&M section of this course. 
Context generally makes it clear which is which. 
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