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18.1 Final thoughts on the Einstein feld equation 

In the previous lecture, we discussed the generic framework and logic that led Einstein, after 
roughly a decade of learning the relevant mathematics and considering how to connect the 
pieces together, to the feld equation of general relativity: 

8πG 
Gµν T µν= . (18.1)

4c 

The left-hand side of this equation (the “Einstein curvature tensor”) can be regarded as a very 
complicated second-order diferential operator acting on the metric of spacetime. It describes, 
after a little bit of massaging, the spacetime’s curvature — that is, the tendency of the 
trajectories in spacetime of freely falling bodies which start parallel to become non-parallel 
as the bodies move. The right-hand side expresses, in a covariant form, the distribution of 
energy density, momentum density, and their fow in spacetime. 
We are not going to do a lot with this equation other than to examine several of its 

solutions. However, before getting into this, it is worth remarking on a couple of points. 

• First, note that when working in Cartesian coordinates, the curvature tensor on the 
left-hand side has dimension 1/(length)2 . With that in mind, it is interesting to look 
at the numerical value of the constant which connects the curvature tensor to the 
stress-energy tensor: 

8πG 
= 2.08 × 10−43 meter

−2 

. (18.2) 
c4 J/meter3 

I’ve written the units to emphasize that this constant converts energy density (Joules 
per meter cubed) into curvature (inverse meters squared). Notice it takes a lot of 
energy density to produce a tiny amount of curvature. Osmium is the densest metal 
naturally found on Earth, at 22.6×103 kilograms per meter cubed (roughly three times 
the density of iron, and twice that of lead). Multiplying by c2 , we see that osmium 
has a rest energy density of 2.03 × 1021 Joules per meter cubed. But this density only 
produces 4.22 × 10−22 inverse meters squared of curvature. When you hear someone 
describe gravity as the weakest of the fundamental interactions, this is the essence of 
what they mean — we need a lot of energy density to curve spacetime. To get strong 
curvature, we need to go to regimes far beyond what we encounter on Earth. 

This doesn’t mean that gravity is negligible though. Because “gravitational charge” — 
i.e., mass — only comes with one sign (there is no negative mass), its efects add up. 
Still, it’s worth noting that every time you lift any object, electrochemical reactions 
in a couple hundred grams of muscle tissue overcome the accumulated gravitational 
efects of 6 × 1024 kilograms of our planet. 
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• People often seemed a little surprised by how ad hoc the derivation of the Einstein 
feld equation seems to be. In essence, Einstein seems to have decided that the source 
should be T µν , decided that the left-hand side should be a curvature tensor, then just 
matched T µν to a curvature tensor that is divergence free and has the right number of 
indices. 

This is not wrong! Einstein’s original derivation of the Einstein feld equation is indeed 
just as ad hoc as this makes it seem. Two remarks on this are in order: 

– First, it’s worth bearing in mind that the ultimate arbiter of what description 
we should use for any physical interaction is measurement. You should therefore 
regard the Einstein feld equation and its predictions as hypotheses to be tested. 
Testing this hypothesis is still something being done today, and in fact 
motivates quite a lot of modern research (including a bit of my own). 

– Around the time that Einstein formulated these feld equations, other plausible 
formulations of relativistic gravity were also proposed. Those all were found to be 
fawed in important ways, failing experimental tests or turning out to have internal 
contradictions. General relativity can be regarded as the relativistic gravity theory 
that (so far, at least) best fts the data. 

– There’s another way of deriving the feld equation which is based on a variational 
principle, similar to the way that we apply variational principles to a Lagrangian in 
order to describe a body’s motion. Though quite a bit beyond the scope of 8.033, 
it is worth remarking that this approach makes it clear that the Einstein feld 
equation is, in a way that can be made precise, the simplest theory of relativistic 
gravity. A lot of research these days explores how general relativity may be, in a 
meaningful sense, itself an approximation to something deeper. This variational 
principle provides a foundation for exploring the nature of gravity. 

There’s a lot more we could say, but this will sufce for 8.033. The tack we are going to 
take from now on is to look at solutions of this equation and examine their consequences. I 
want to emphasize that so far we have not found any compelling evidence of shortcomings in 
general relativity’s description of gravity, which is why this is often taught as “the” theory 
of relativistic gravity. But we keep looking. 

18.2 Some example solutions and their signifcance 

18.2.1 The “weak gravity” metric 

Upon fguring out the feld equation, Einstein developed its frst solution. This is done by 
considering “weak” gravity — spacetime that is not too diferent from the metric of special 
relativity. This simplifes the curvature tensor, essentially by allowing us to approximate 
terms that are nonlinear in the spacetime metric as small enough that their infuence can be 
neglected. The solution which emerges in this limit has 4 non-zero metric components: 

g00 = −(1 + 2Φ/c2) , g11 = g22 = g33 = (1 − 2Φ/c2) . (18.3) 

All other components of the spacetime metric are zero. The coordinates used here are 

0 1 2 3 x = ct , x = x x = y x = z . (18.4) 
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The function Φ which appears in (18.3) is just the Newtonian gravitational potential. Outside 
a spherical body of mass M centered on the origin, it takes the form pGM 

Φ = − , r = x2 + y2 + z2 . (18.5) 
r 

This metric works well when Φ ≪ c2 , which is a good description of spacetime almost 
everywhere in our solar system, for example. 

18.2.2 The Schwarzschild metric 

As mentioned at the end of the November 17 lecture, the frst exact solution to the Einstein 
feld equations was found by Karl Schwarzschild in 1916. It also has 4 non-zero metric 
components: � � � �−1

2GM 2GM 
g00 = − 1 − , g11 = 1 − , g22 = r 2 , g33 = r 2 sin2 θ . (18.6) 

rc2 rc2 

All other components of the metric are zero. The coordinates used here are 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.7) 

As we will discuss in an upcoming lecture, this describes exactly the spacetime outside of 
a spherically symmetric, non-rotating body of mass M . Schwarzschild found this solution 
essentially in his spare time while serving as an artillery ofcer on the eastern front during 
the First World War. Shortly after submitting this solution for publication, he died of an 
autoimmune disorder that most believe was sparked by an infection he contracted while 
serving in the trenches. The fact that this solution existed and was found so quickly shocked 
Einstein, who did not expect anyone would manage to fnd relatively simple exact solutions 
— certainly not so quickly after the feld equations were developed, and certainly not under 
such trying1 circumstances. 
This spacetime continues to play an important role in helping us to understand the 

limiting behavior of gravity; we will study it in some detail in coming lectures. 

18.2.3 The Kerr metric 

For decades, people wondered if there might be a more general exact solution than that 
provided by the Schwarzschild metric. What about near a body that is not spherical, or that 
is rotating? By the 1950s and 1960s, people were beginning to realize that one could take the 
Einstein feld equation and treat it as a complicated diferential equation that could be solved 
numerically, much as they were beginning to use computers to solve complicated diferential 
equations describing things like fuid dynamics. As computers and computer programmers 
got more sophisticated, it became possible to study the Einstein feld equations to build the 
spacetimes describing more interesting and complicating bodies. However, it seemed unlikely 
that a “closed form” solution for a body more complicated than spherical symmetry would 
ever be found. 

1In a letter that Schwarzschild sent to Einstein, dated 22 December 1915, he wrote “As you see, the war 
treated me kindly enough, in spite of the heavy gunfre, to allow me to get away from it all and take this 
walk in the land of your ideas.” He died a little less than 5 months later. (And I just realized that I defended 
my Ph.D. on the 82nd anniversary of his death, an odd bit of morbid trivia.) 
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That expectation held until 1963, when the mathematician Roy Kerr published the fol-
lowing glorious mess: 

∆ − a2 sin2 θ Σ 
g00 = − , g11 = , g22 = Σ ,

Σ ∆� � 
(r2 + a2)2 − a2∆ sin2 θ 

g33 = sin2 θ ,
Σ 
˜2aMr 

g03 = g30 = − sin2 θ , (18.8)
Σ 

with all other metric components equal to zero, and where 

2 − 2 ˜ 2 2 2 ˜∆ = r Mr + a Σ = r + a cos 2 θ , M = 
GM

, a = 
J

. (18.9)
2c Mc 

The coordinates used here are 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.10) 

When Kerr originally published this solution, it wasn’t actually clear what it meant. To be 
fair, he used a coordinate system which made it easier to solve the feld equation, but made 
it less clear what the solution means; this form of the coordinates was published by Robert 
Boyer2 and Richard Lindquist in 1967. If you set the parameter a to zero, it is not hard 
to show that the spacetime is identical to the Schwarzschild solution. After much study, it 
became clear that this solution describes a black hole with mass M and with spin angular 
momentum of magnitude J = aMc, oriented along the axis defned by θ = 0. We will discuss 
this solution briefy, and explore a few simple analyses that can done in the Kerr metric. 

18.2.4 The Friedmann-Lemâıtre-Robertson-Walker metric 

Finally, an exact solution that describes all of spacetime flled with a fuid of density ρ and 
pressure P is given by 

2(t)r 2 g00 = −1 , g11 = a 2(t)/(1 − kr2) , g22 = a , g33 = a 2(t)r 2 sin2 θ . (18.11) 

This again uses the coordinates 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.12) 

The function a(t) is the solution to the diferential equations � �2 
ȧ 8πGρ k ä 4πG 

= − , = − (ρ + 3P ) . (18.13)
2 2 2a 3c a a 3c 

(Overdot denotes d/dt.) The parameter k takes one of three values — +1, 0, or −1. Which 
value of k describes our universe is something that must be determined from data; unpacking 
this is kind of complicated. 
This solution was frst found by the Soviet mathematician Alexander Friedmann in the 

early 1920s, although its signifcance was not broadly recognized prior to his death in 1925. 

2Boyer was tragically murdered, along with 17 other people, in an infamous mass shooting event at the 
University of Texas a few months before the paper’s publication. 
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Georges Lemâıtre, a Belgian priest and mathematician who earned a PhD in mathematics 
from MIT in 1923, rediscovered much of this solution in 1927. Via his eforts, people began 
to realize that this solution could be used as a tool for understanding the large-scale scale 
structure of the universe. Finally, Howard Robertson and Arthur Geofrey Walker very 
thoroughly explored and described these spacetimes. Since the full cabal of discovers is a 
mouthful, this solution is often called the FRW (leaving out poor Lemâıtre) or FLRW metric. 
The FLRW spacetime appears to give a good description of our universe on very long 

scales — tens of millions of light years, and over comparably long timescales. The “trick” 
is to come up with an appropriate description of the density and pressure that describes 
the “stuf” that characterizes the universe on such scales. This solution largely forms the 
foundation of the science of cosmology. 

18.3 The Newtonian limit 

18.3.1 The clocks of static observers 

Let us begin our study of the consequences of general relativity with the solution that best 
describes spacetime near us: the “weak gravity” metric described in Sec. 18.2.1: � � � � 

2Φ 2Φ � � 
ds2 = − 1 + c 2dt2 + 1 − dx2 + dy2 + dz2 . (18.14)

2 2c c 

We begin by thinking about the 4-velocity of an observer who is at rest in this spacetime; 
perhaps they are standing on the surface of the body that produces the gravitational potential 
Φ. How do we describe this observer’s 4-velocity? 
Since they are at rest in this spacetime, we require that dx/dτ = dy/dτ = dz/dτ = 0. 

What remains is to fgure out dt/dτ . To deduce this, we insist that exactly as in special 
relativity, we must have u⃗ · ⃗u = −c2 . 
The reason we insist on this is because of Einstein’s principle of equivalence: If we 

go into a freely falling frame, then everything behaves in spacetime exactly as it did in 
special relativity. We already know that u⃗ · u⃗ = −c2 in special relativity; and we know that 
the spacetime dot product is an invariant. We thus require that it have this form in all 
representations. 
Enforcing this, we have 

� 

= − 1 + 

� 
2Φ 2 c 
2c

� �2
dt 
dτ 

+ 0 

2 = −c . (18.15) 

u⃗ · ⃗u = gαβ u α u β 

Let’s solve this for dt/dτ , using the fact that the “weak gravity” metric requires Φ ≪ c2: � �−1/2
dt 2Φ Φ 
= 1 + ≃ 1 − . (18.16)

2 2dτ c c 

Let’s take the source of the gravitational potential to be spherically symmetric and of 
mass M , so that Φ = −GM/r. Let’s consider two diferent observers: Observer 1 at height 
r1 (say, the surface of the Earth) has a clock which measures time τ1; observer 2 at height 
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r2 > r1 (some distance above the surface of the Earth) has a clock which measures time τ2. 
Let’s compare the rates at which their two clocks tick: 

dτ2 dt/dτ1 
= 

dτ1 dt/dτ 2 
(1 + GM/r1c

2) 
= 
(1 + GM/r2c2)� � 

GM 1 1 ≃ 1 + − . (18.17)
2c r1 r2 

Notice that since r2 > r1, this is positive: the clock of observer 2 ticks faster than the clock of 
observer 1. This is exactly what we found based on our intuitive analysis of the light redshift 
efect. 
Before moving on, you might wonder — what does the coordinate t mean in this space-

time? We used it as an intermediate factor in order to compare the two observers’ clocks, but 
the coordinate itself disappeared from the fnal analysis. To get some sense of this, notice 
that dt/dτ → 1 as r → ∞. This means that the coordinate t is in fact proper time for an 
observer who is infnitely far away from the mass M . This tells us that t is time as measured 
on the clocks of very distant observers. We basically use t as a kind of “book-keeper” time; 
it’s a time standard that everyone agrees on, no matter where they stand in spacetime. It 
facilitates making comparisons between diferent observers. 

18.3.2 Falling down 

Let’s consider a body freely falling in the weak gravity spacetime (18.3). We begin by writing 
down the relativistic Lagrangian (per unit mass of the body) for this motion: 

2 � � � � 
1 β c 2Φ � �2 1 2Φ � 

2 2 2 
� 

L = gαβẋ α ẋ = − 1 + 
2 

ṫ + 1 − 
2 

ẋ + ẏ + ż . (18.18)
2 2 c 2 c 

Here, an overdot denotes d/dτ . Note that the potential Φ is independent of time, but depends 
on x, y, and z. Let’s imagine a body that is falling along the z axis in this spacetime, so that 
x = y = 0, and see what applying the Euler-Lagrange equations tells us about the body’s 
motion. 
The equation of motion we need to examine is � � 

∂L d ∂L − = 0 . (18.19)
∂z dτ ∂ż 

Let’s evaluate these derivatives: � �2
∂L � �2 ∂Φ ż ∂Φ 

= − ṫ − , (18.20)
∂z ∂z c ∂z � � 
∂L 2Φ 

= 1 − ż , (18.21)
∂ż c2 � � � � � � 

d ∂L 2Φ 2ż ∂Φ ∂Φ ∂Φ 
= 1 − z̈  − ẋ+ ẏ + ż 

dτ ∂ż c2 c2 ∂x ∂y ∂z � � 
22Φ 2ż ∂Φ 

= 1 − 
2 

z̈  − 
2 

. (18.22) 
c c ∂z 
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To get Eq. (18.22), we used the chain rule to expand the total derivative along the falling 
body’s trajectory. We then used the fact that we are taking the body to fall only in the z 
direction to set ẋ = ẏ = 0. 
The equation of motion we have derived appears to be a mess. Let’s put all the pieces 

together and see what we get. For clarity, let’s write all the overdot terms explicitly as d/dτ : � �2 � � 
dt ∂Φ 2Φ d2z (dz/dτ)2 ∂Φ − − 1 − + = 0 . (18.23)
dτ ∂z c2 dτ 2 c2 ∂z 

Divide everything by (dt/dτ)2 , and rearrange the terms: 

d2z (1 − (dz/dt)2/c2) ∂Φ 
= − . (18.24)

dt2 (1 − 2Φ/c2) ∂z 

Finally, using the fact that this metric requires Φ ≪ c2 , we can write this as � � 
d2z ∂Φ 2Φ (dz/dt)2 Φ(dz/dt)2 

= − 1 + − − 2 . (18.25)
dt2 ∂z 2 2 4c c c 

The leading approximation to this equation is simply 

d2z ∂Φ 
= − 

dt2 ∂z 
GM 

= − z . (18.26)
3r 

This is nothing more than the Newtonian limit: the acceleration of a body falling in the 
spacetime (18.3) is given by minus of the gradient of the gravitational potential. Doing this 
calculation without assuming that the body is falling along the z axis yields the equation of 
motion, 

d2x GM 
= − x . (18.27)

dt2 r3 

This exactly reproduces Newtonian gravity. 
It’s worth noting that if this result had not been found, we would not be having this 

discussion today. Newtonian gravity works quite well over a wide range of important sit-
uations, and it was necessary for the relativistic version of gravity to reproduce Newton’s 
successes. In fact, when we do a more complete derivation of the Einstein feld equation, we 
use the fact that the theory should reproduce the Newtonian limit to pin down the constant 
of proportionality 8πG/c4 in the feld equation. 
What about those terms we’ve neglected in going from (18.25) to (18.26)? Notice that 

they introduce corrections to Newtonian gravity; notice also that each such term involves 
factors of 1/c2 . That’s a signal that they can be thought of as “relativistic corrections” to 
the leading result. For example, the frst term we’ve neglected has a value at the Earth’s 
surface of 

2Φ 2GMEarth 
2 
= ≃ 1.38 × 10−9 . (18.28) 

c c2REarth 

This term introduces a roughly part per billion correction to gravitational acceleration. The 
second term is of order the small body’s speed squared divided by c2; the third is the product 
of those two corrections. 
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For the vast majority of applications, those corrections are negligible — indeed, measuring 
them at all is not easy. However, Einstein thought it might be interesting to include their 
infuence and see what efect they have on the motion of bodies moving under the infuence of 
gravity. He was motivated by the fact that for centuries people had been wondering how to 
resolve a mystery regarding Mercury’s orbit. It was well known that an orbit in Newtonian 
gravity — i.e., an orbit governed by Eq. (18.27) — would be a closed ellipse, if we had a 
single small body orbiting a single large body. It was also well known that if the system was 
more complicated than this simple two-body setup, then the ellipse wouldn’t quite close — 
it would precess, with the axis along its long direction slowly rotating with time. 
Mercury’s orbit is determined mostly by the gravity of the Sun, but it is perturbed 

by other planets in the solar system — especially Venus and Earth (which are fairly close 
by), and Jupiter (which is very massive). During the 19th century, a lot of mathematical 
techniques were perfected fguring out to account for the actions of these planets on Mercury’s 
orbit. After a lot of back and forth, the consensus emerged: Mercury’s orbit should precess 
by 5556 arcseconds per century. 
To the great consternation of natural philosophers in the 19th century, the data do not 

quite bear this out. Over many decades of observation it became clear that Mercury’s orbit 
precessed a little too fast, giving us a measured rate of 5599 arcseconds per century. A 
discrepancy of 43 arcseconds per century was clearly present in Mercury’s orbit data. 
Many hypotheses were advanced to explain this, including the idea that a planet pro-

visionally named Vulcan3 occupied an orbit very close to the Sun, inside Mercury’s orbit. 
None of them worked. Einstein was curious what happens if he turned the crank on Eq. 
(18.25), including terms which are of order 1/c2 . With some efort, and focusing on a bound 
orbit in the spacetime (18.3), one can show that the equation of motion becomes � � � � 

d2x GM |v|2 4GM(x · v)v 1 
= − 

3 
1 + 

2 
x + 

2 3 
+ O 

4 
. (18.29)

dt2 r c c r c 

(The O(1/c4) in this equation means that the next term, which we are ignoring, involves 
things that scale with 1/c4.) With a little efort, one can show that an orbit governed by this 
equation of motion is described by a precessing ellipse. When applied to Mercury’s orbit, 
the rate at which the angle of the orbit’s ellipse rotates is given by 

dϕ 6πGM⊙ 
= . (18.30)

dt a(1 − e2)Pc2 

In this equation, M⊙ = 1.99 × 1030 kg is the mass of the sun; a = 57.9 × 106 km is the 
semi-major axis of Mercury’s orbit; e = 0.2 is the eccentricity of the orbit; and P = 88 days 
is the period of the orbit. Plugging all these numbers in, using 36,524 days per century, we 
fnd the rate of advance of Mercury’s orbital ellipse due to relativistic corrections: 

dϕ 
= 0.000208 radians/century . (18.31)

dt 

There are 2π radians in 360 degrees; there 3600 arcseconds in one degree. Hence, there are 
360·3600/2π = 206,265 arcseconds per radian. Converting units, Einstein found that general 
relativity’s prediction for the “extra” precession of Mercury’s orbit is 

3Proposed way earlier than Gene Roddenberry’s time. 
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dϕ � � 
= (0.000208 radians/century) 2.063 × 105 arcseconds/radian 

dt 
= 42.9 arcseconds/century . (18.32) 

Further refnements to these numbers only improves the ft. In one fell swoop, Einstein 
managed to explain a phenomenon that puzzled many of the most signifcant mathematicians 
and physicists of history. No wonder that in a letter to his friend and colleague Paul Ehrenfest 
shortly after completing this calculation, he wrote “I was beside myself with ecstasy for days.” 

18.4 Addendum: Other attempts to make relativistic gravity 

As emphasized at the beginning of this discussion, we should take general relativity as 
described by the feld equation Gµν = (8πG/c4)T µν as a hypothesis, one that must be tested 
by comparing with data. It was not inevitable that we would end up with what we now call 
general relativity. Here is a brief discussion of a few alternates that were considered, and 
why we they didn’t hold up. 

• Motivated by the idea that one can needs to make ∇2Φ = 4πGρM something that makes 
sense in Lorentz frames, the Swedish/Finnish physicist Gunnar Nordström proposed 
that gravity acts via a scalar feld Φ which, in the language we are now using, satisfes 
the diferential equation 

□Φ = − 
4πG 

Φ5ηαβT αβ . (18.33)
4c 

(Note, it’s possible I have botched a few factors! In particular, I haven’t carefully 
checked the powers of Φ on the right-hand side. The form in which this theory appears 
in textbooks involves using some quantities which would be a big detour for us to 
introduce and discuss here; I don’t guarantee that I’ve translated this with 100% 
accuracy.) With a little efort, it can be shown that this yields an equation of motion 
that looks like 

d(Φuα) ∂Φ 
= − . (18.34)

dτ ∂xα 

In the limit of Φ ≪ 1, this reproduces Newtonian gravity, and correctly produces the 
redshifting of light. However, it turns out to get Mercury’s precession wrong; and, it 
predicts that light rays do not change direction under the infuence of gravity. The 
bending of light by gravity was a particularly important early triumph of Einstein’s 
version of relativistic gravity. 

• Motivated by the idea that Fg = −Gm1m2x/r
3 looks an awful lot like the Coulomb 

interaction, perhaps we can defne a quantity like the Faraday tensor which describes 
gravity. In short, one might wish to construct a Maxwell-equation-like theory of gravity. 

This can be done, but the result turns out to be theoretically inconsistent. Whenever 
one makes an interaction relativistic, one fnds that it predicts the interaction produces 
radiation. This is a simple consequence of causality: If we “shake” the source of 
the interaction (e.g., charges for electric and magnetic felds, masses for gravity), the 
outcome of this shaking can be communicated to distant observers no faster than the 
speed of light. Indeed, all relativistic theories of gravity predict that some form of 
gravitational radiation must exist. 
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When we do this for a “Maxwell-like gravity,” the radiation that it produces has a very 
weird feature: the radiation that it produces has negative energy density. This means 
that in this theory, if I have a dynamical system that produces radiation, it carries 
away “negative energy” from the system. Taking away “negative energy” is the same 
thing as adding energy. The dynamics that made the system radiate in the frst place 
thus become more energetic — making the radiation have higher amplitude, which 
means they carry away more negative energy, thus making the system even MORE 
energetic. 

Such a description of gravity turns out to be catastrophically unstable — any dynamics 
would almost immediately become grow without bound, destroying the system. Since 
we do not observe this (indeed, since we exist in order to observe that this does not 
happen), we reject the Maxwell-like theory of gravity. (Details of this analysis can be 
found in exercise 7.2 in the textbook Gravitation by Misner, Thorne, and Wheeler. It 
is not a simple exercise!) 

Though ideas of this kind didn’t hold up, we haven’t stopped thinking about ways in which 
Einstein’s general relativity may not quite meet the mark. Precisely because gravity is the 
weakest fundamental interaction, it is extremely difcult to test. It’s worth noting that 
the gravitational constant G is the least precisely determined of the main “fundamental 
constants” of nature — although the product of G with certain masses is quite well known, 
simply because that product is what enters many observable formulas. For example, although 
G is known to about 5 digits, GM⊙ is known to about 10 digits. 
Thinking about plausible modifcations to general relativity, and coming up with exper-

imental methods for testing them, is among the topics that are at the vanguard of modern 
physics research. 
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