
Scott A. Hughes Introduction to relativity and spacetime physics 

Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 
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From weak gravity to strong gravity 

19.1 A “strong gravity” spacetime 

In the previous lecture, we described a few exact solutions that have been found to Einstein’s 
feld equations of general relativity, and we discussed in some detail how things behave in 
the spacetime that describes “weak” gravity. For a spherical body, this can be taken to be 
gravity for which GM/rc2 ≪ 1 everywhere. We found that in this spacetime: 

• freely-falling bodies move in a way that reproduces the predictions of Newtonian grav-
ity; 

• clocks “lower” in the spacetime (i.e., at smaller r) tick more slowly than those at higher 
altitudes in a way that is exactly consistent with the redshift of light1; 

• although we skipped over many of the details, terms beyond the ones which repro-
duce the predictions of Newtonian gravity explain a centuries-old mystery about the 
precession of Mercury’s orbit about the Sun; 

• and fnally, as you will show on problem set #9, the trajectory of light bends as it 
passes near a gravitating body. A celebrated measurement by Dyson and Eddington in 
1919 confrmed2 the predictions of general relativity; indeed, the publicity3 surrounding 
the light-bending measurement was a huge part of what turned Albert Einstein from 
a highly respected scientist into an international public fgure. 

These items went a long way toward convincing most scientists that general relativity pro-
vides a valid relativistic theory of gravity. Most people are happy to work under the assump-
tion that gravity is described by spacetimes which solve the equation Gµν = (8πG/c4)T µν . 
However, as we noted in the previous lecture, this is not the only way to combine relativity 

with gravity. Indeed, as was briefy described in Lecture 18, there’s a certain sense in which 
general relativity can be regarded as the simplest theory of relativistic gravity. Perhaps 
diferences between theory and measurement will arise as we investigate strong gravity — 

1We didn’t actually look at light propagation yet; we will do that in this lecture. 
2There has been some controversy about whether this measurement’s error bars are as good as was 

claimed. Independent of that controversy (which has been thoroughly investigated; the consensus is that the 
measurement by Dyson and Eddington was valid, though it is worth digging into the details), the bending 
of light by gravity has been thoroughly examined many times since 1919, and general relativity’s predictions 
hold up. Indeed, they hold up so well that these days people assume that general relativity correctly describes 
light bending, and use it to learn about the properties of large distributions of mass by measuring how light 
bends. This is what the astronomical science of gravitational lensing is all about. 

3In no small part because an expedition by British scientists to examine what was then regarded as a 
German theory was treated as a welcome example of the scientifc community setting aside the antagonism 
of World War I to focus on truths that transcend national borders. 
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after all, if you want to push the boundaries in physics, you take the framework in which
you interpret your measurements and either figure out how to measure things with greater
and greater precision, or you push into regimes beyond what you have already investigated
(or both).

In this lecture, we’re going to explore what general relativity tells us about when gravity
is not weak — i.e., in situations where it is not the case that GM/rc2 ≪ 1. Our tool for this
exploration is the Schwarzschild metric, for which the line element takes the form

ds2 = gαβdx
αdxβ = −

(
1− 2GM

rc2

)
(c dt)2+

dr2

(1− 2GM/rc2)
+r2

(
dθ2 + sin2 θ dϕ2

)
. (19.1)

This spacetime is exact, and holds for all r. By using the full mathematical machinery of
general relativity, one finds that (19.1) exactly describes a spacetime for which T µν = 0.
However, this spacetime also describes the spherically symmetric gravity of a mass M .

What this is telling us is that Eq. (19.1) describes the gravity of a mass M , but there’s
no matter or energy density anywhere. So, what does that mean? Perhaps the simplest way
of understanding this (admittedly counterintuitive) aspect of the Schwarzschild solution is
by analogy. If you take the Coulomb point charge electric field,

E =
1

4πϵ0

q

r3
x , (19.2)

and apply the divergence operator to it, you get zero. This means that the charge density
everywhere is zero:

ρ = ϵ0 (∇ · E) = 0 . (19.3)

So there’s no charge density ... but when we integrate it up, we get a non-zero charge q.
The resolution of this apparent paradox in electrostatics is that the divergence is actually

an ill-behaved operation exactly at the origin, x = 0. In courses like 8.07, we learn that we
can resolve this by introducing a singular “function”4 that essentially puts a finite amount
of charge into a zero-volume point at the origin. At least heuristically, something similar is
going on with the Schwarzschild spacetime — at least in classical general relativity, there’s
a singular point at the coordinate r = 0 where general relativity’s equations are ill-behaved.
But everywhere away from that point, there is no problem.

Thanks to non-linear terms in Einstein’s field equations, the r = 0 singularity is even
more disturbing and hard to deal with than the analogous Coulomb singularity. Nonetheless,
it is useful to set aside misgivings about this spacetime and examine what it tells us. (Indeed,
an aspect of the spacetime’s nature we will soon investigate suggests that any “weirdness”
near r = 0 is not of concern — at least, not of immediate concern. We will elaborate on this
cryptic remark soon.)

Let us begin by again looking at an observer who is at rest in the spacetime, and think
about how their clocks behave. Notice that as r → ∞, the Schwarzschild metric is noth-
ing more than the metric of special relativity (albeit in spherical coordinates — you can
transform from the inertial coordinate form we’ve long been using by the transformations
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ). This tells us that, as in the “weak gravity”
metric of the previous lecture, t describes clocks that are used by very distant observers.
This means t makes a useful “bookkeeper” time for comparing different observers’ clocks.

4Strictly-speaking, the quantity we use is not a function, but it can be treated much like a function if we
are careful. If this is new to you and you are curious about this, look up the Dirac delta function. This is a
topic for another day, and another course.
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Let’s compare the bookkeeper time with the time of an observer who is spatially at rest
at some radius r. We put ur = 0, uθ = 0, uϕ = 0; invoking the principle of equivalence, we
require u⃗ · u⃗ = −c2 to solve for ut = c dt/dτ :

u⃗ · u⃗ = −
(
1− 2GM

rc2

)(
c
dt

dτ

)2

= −c2 , (19.4)

which means

dt

dτ
=

1√
1− 2GM/rc2

or ∆τ(r) = ∆t

√
1− 2GM

rc2
. (19.5)

Notice that if r ≫ 2GM/rc2, we can use the binomial expansion and approximate:√
1− 2GM

rc2
≃ 1− GM

rc2
for r ≫ 2GM/rc2 . (19.6)

At clock located at coordinate r ticks slower than a clock that is very far away by a factor
GM/rc2, exactly the variation in clock ticking that we found in the weak-gravity metric. This
confirms that the Schwarzschild metric agrees with our previous results in the right limit.
However, the rate at which clocks slow as r gets slower is far more extreme than what we saw
in the weak-field case (remember that the weak field formula was only valid if r ≫ GM/c2

everywhere). Indeed, (19.5) predicts that our observer’s clock stops as r → 2GM/c2 — and
it appears to break down completely when r < 2GM/c2.

So what is going on with that??

19.2 Light propagation

The propagation of light was one of our most important tools for making sense of how space
and time behave in special relativity. Light propagation helps us in general relativity too,
though we need to lay out a few rules for how we are going to use it.

We cannot define 4-velocity along a light ray — because the speed is c, proper time is
not defined along it. However, 4-momentum is perfectly well defined along a light ray. Let
us look at the 4-momentum of a body with mass m:

p⃗ = m
dx⃗

dτ
. (19.7)

Let us define a parameter λ such that dλ = dτ/m. Then,

p⃗ =
dx⃗

dλ
. (19.8)

If we consider a sequence of bodies with ever decreasing m, we can define the 4-momentum
of light to be p⃗ = dx⃗/dλ in the limit m → 0. The parameter λ can then be regarded as a
kind of “tick mark” that allows us to label events along a light ray, with units chosen so that
dx⃗/dλ yields a quantity with the units of momentum.

Since the Schwarzschild spacetime is spherically symmetric, let’s examine light rays that
propagate radially, setting pθ = pϕ = 0. The defining characteristic of a null or light-like
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4-momentum in special relativity was that p⃗ · p⃗ = 0. Invoking the principle of equivalence,
the same thing holds in general relativity:

p⃗ · p⃗ = gαβ
dxα

dλ

dxβ

dλ
= −

(
1− 2GM

rc2

)(
c
dt

dλ

)2

+

(
1− 2GM

rc2

)−1(
dr

dλ

)2

= 0 . (19.9)

Using this, we can solve for the speed at which light propagates in this coordinate system:

dr

dt
= ±c

(
1− 2GM

rc2

)
. (19.10)

Notice this appears to tell us that the light is not propagating at speed c! Please bear in
mind, however, that this is the light’s speed in this coordinate system. Equation (19.10)
expresses the ratio of an interval of radial coordinate r to an interval of coordinate time
t. ϕ√);Consider two events: one is at (t, r, θ, the other is at (t, r + dr, θ, ϕ). The distance
between these events is given by ds = dr/ 1− 2GM/rc2. This distance is larger than dr.
So when the light moves through a coordinate distance dr, the spatial distance it moves is
greater than dr. Note also that this speed is defined in terms of the time used by observers
who are very far away. The clocks of observers near r tick more slowly than the clocks of
distant observers. With a little effort, one can show that observers will always see light move
with speed c when things are expressed as physical distance divided by their own time. The
idea that the speed of light is c for all observers has not been broken; indeed, thanks to the
principle of equivalence, it remains foundational to this subject.

That said, Eq. (19.10) has very interesting behavior in the limit r → 2GM/c2 — the
coordinate velocity there is zero. That suggests that a light ray “launched” radially outward
(or inward, for that matter) at r = 2GM/c2 will stay there forever. This appears to contradict
the principles outlined in the previous paragraph. However, recall from Eq. (19.5) that an
observer’s clock stops relative to a distant clock when we reach this radius. The radius
r = 2GM/c2 is indeed special, and a bit weird. More on this radius below.

Let’s look at one more aspect of the behavior of light — its energy as it propagates
outwards from some radius. Before doing this, it is very useful to pause and look at the
Lagrangian for light propagating in the Schwarzschild spacetime. We defined L = gαβẋ

αẋβ/2
as the Lagrangian for material bodies moving through the spacetime gαβ with ẋα ≡ dxα/dτ .
By adjusting the definition so that ẋα ≡ dxα/dλ, the Euler-Lagrange equations

∂L

∂xα
− d

dλ

(
∂L

∂ẋα

)
= 0 (19.11)

can then be used to describe light moving through the spacetime.
The Lagrangian for a light ray is given by

L =
1

2

[
−
(
1− 2GM

rc2

)(
cṫ
)2

+
(ṙ)2

(1− 2GM/rc2)
+ r2(θ̇)2 + r2 sin2 θ(ϕ̇)2

]
, (19.12)

where ẋ0 ≡ cṫ = c dt/dλ = pt, ṙ = dr/dλ = pr, etc.
Notice that ∂L/∂x0 = (1/c)∂L/∂t = 0. By one of the exercises you did on problem set

#8, this tells us that
1

c

∂L

∂ṫ
= −

(
1− 2GM

rc2

)
cṫ = constant . (19.13)
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Using the fact that cṫ = pt and −(1− 2GM/rc2) = gtt, this tells us that along the light ray

gttp
t ≡ pt = constant . (19.14)

The downstairs t component of the 4-momentum, pt, is a constant along the light ray’s
trajectory.

Let’s use this to compare the energy that is measured by a static observer at r = R with
an observer who is very far away, r → ∞. We use the fact that the energy measured by
an observer whose 4-velocity is u⃗ is given by Eu⃗ = −p⃗ · u⃗ — by the equivalence principle,
this result (which we developed in special relativity) will work just fine for us in general
spacetimes. We use the fact that√an observer who holds static at r = R has a 4-velocity with
components ut = c(dt/dτ) = c/ 1− 2GM/rc2, ur = uθ = uϕ = 0. So then

E(r → ∞)

E(r = R)
≡ E∞

ER

=

∣
−p⃗ · u⃗∣∣r→∞
−p⃗ · u⃗∣

r=R

=
ptu

t(r → ∞)

ptut(r = R)

=
1

1/
√

1− 2GM/Rc2

=

√
1− 2GM

Rc2
. (19.15)

The first line of this relation just inserts the definition E = −p⃗ · u⃗. The second line expands
the inner product, using the downstairs form of the 4-momentum and the upstairs form of
the 4-velocity, taking advantage of the fact that only ut ̸= 0. On the third line, we use the
fact that pt is a constant along the light ray’s trajectory to cancel it out — pt has the same
value at r = R as it does in the limit r → ∞. We also use the solution for ut that we derived
earlier in this lecture.

The final line shows us how light is redshifted as propagates from r = R out to infinity.
Notice once again the interesting behavior as R → 2GM/c2: the light is so redshifted in this
case that the energy measured very far away is zero. None of the light’s energy gets
out if it starts at R = 2GM/c2.

To summarize, our investigation of the Schwarzschild spacetime has yielded the following
outcomes:

• Clocks run slower at smaller values of r. If dτR is an interval of time measured at
r = R, and dt is an interval measured by clocks very far away (r → ∞), then we find

dτR = dt

√
1− 2GM

Rc2
. (19.16)

• Light that is emitted from r = 2GM/c2 appears to move in the radial direction with
coordinate speed dr/dt = 0. In other words, light does not seem to ever move away
from this radius.

• If light is emitted from radius r = R with energy ER, then it is measured far away to
have energy

E∞ = ER

√
1− 2GM

Rc2
. (19.17)
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This is consistent with the redshifting of light we saw in other contexts, but notice
that E∞ → 0 as R → 2GM/c2.

This all tells us that there is something quite interesting about the radius r = 2GM/c2.
Let’s do one more calculation, which if all goes well will really confuse us.

19.3 The trajectory of an infalling observer

Imagine an observer who starts at rest from r = R and then falls. Suppose they have no
motion in the θ or ϕ directions. The Lagrangian describing their motion is then given by

L =
1

2
gαβu

αuβ = −1

2

(
1− 2GM

rc2

)(
c
dt

dτ

)2

+
1

2

(dr/dτ)2

1− 2GM/rc2
. (19.18)

On problem set #8, you found that because ∂L/∂t = 0, it must be the case that ∂L/∂ṫ is a
constant along the body’s trajectory. We call this constant the body’s energy per unit mass
(up to a minus sign) because of its limiting behavior as r → ∞:

E = −∂L

∂ṫ
= c2

(
1− 2GM

rc2

)
dt

dτ
= constant . (19.19)

This observer starts at rest, and we know that for an observer who is at rest in the
Schwarzschild spacetime

dt

dτ

(
2GM

rc2

)−1/2

= 1− . (19.20)

Applying this to our infalling observer when they are at rest at r = R, we find

Eobs = c2
√

1− 2GM

Rc2
. (19.21)

We also know that u⃗ · u⃗ = −c2:

−c2 = −
(
1− 2GM

rc2

)(
c
dt

dτ

)2

+
(dr/dτ)2

1− 2GM/rc2
. (19.22)

We can clean this up, using Eq. (19.19) to replace dt/dτ with Eobs and a function of r. After
making this substitution, we can rearrange to make an equation describing the infalling
observer’s trajectory with respect to r:(

dr

dτ

)2

=
E2

obs

c2
− c2

(
1− 2GM

rc2

)
−→ dr

dτ
= −

√
2GM

r
− 2GM

R
. (19.23)

The second line of Eq. (19.23) uses the value of Eobs we found above; we choose an overall
minus sign for the square root to give us infall.

Equation (19.23) is most easily solving by finding τ(r) — i.e., the elapsed proper time
that passes after the observer has fallen from R to r. The result is

τ =

√
1

2GM

[
R3/2 arctan

(√
R− r

r

)
+
√

rR(R− r)

]
. (19.24)
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This tells us that the observer falls on a rather smooth trajectory according to their own
clocks, reaching r = 0 in finite proper time:

∆τ(r = R → r = 0) =
π

2

√
R3

2GM
. (19.25)

Despite the fact that r = 2GM/c2 seems to be quite important, nothing special happens
here as r passes through this coordinate.

Parameterizing the motion in terms of the observer’s proper time is fine for discussing
how they see their own motion. But how does it look to a distant observer, someone who is
watching that person fall in from a safe distance? Very distant observers use the coordinate
t for their clocks, and an interesting question is how the motion looks when parameterized
in a way that suits their perspective. We know that the infalling observer’s clocks “run
slow” according to distant observers. We thus expect that a process which happens quickly
according to the infalling observer’s clock may not look quite so fast as seen by someone
very far away.

We begin by working out the infall as parameterized by t:

dr

dt
=

dr

dτ

(
dt

dτ

)−1

= −

√
2GM

(
1

r
− 1

R

)
c2

Eobs

(
1− 2GM

rc2

)
. (19.26)

Using Eobs = c2
√

1− 2GM/Rc2, we can solve this for t(r). The solution is the rather more
complicated expression

t(r) =
2GM

c3
ln


√

r(R−2GM/c2)
2GM(R−r)/c2

+ 1√
r(R−2GM/c2)
2GM(R−r)/c2

− 1

+

√
r(R− r)

(
Rc2

2GM
− 1

)

+

(
R +

4GM

c2

)√
Rc2

2GM
− 1

[
π

2
− arctan

(√
r

R− r

)]
. (19.27)

This leads to a very different description of the infalling body’s motion! Let’s look at this
function as r → 2GM/c2+x: being very careful with our expansions, we find that as x → 0,

t(x) → 2GM

c3
ln

[
8GM(R− 2GM/c2)

Rc2x
+ C1

]
+ C2 . (19.28)

The quantities C1,2 are constants whose precise values depend on the starting radius R, but
are not important for us right now. In particular, note that the influence of the constant C1
becomes negligible as x gets small. Neglecting C1, we can easily rearrange this to find x as
a function of t:

x → 8GM(R− 2GM/c2)

Rc2
exp

[
−(t− C2)c3/(2GM)

]
. (19.29)

The infalling body only asymptotically approaches r = 2GM/c2 as t → ∞.
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To nail this home, let’s plot the motion according to these two time parameterizations: 

Figure 1: Infall trajectory from R = 8GM/c2 , parameterized by the infalling observer’s time 
τ [using Eq. (19.24)] versus the trajectory parameterized by distant observer time t [using 
Eq. (19.27)]. Adapted from the course notes for 8.962; include a multiplicative factor of G/c2

on the M on the vertical axis, and a factor of G/c3 on the M on the horizontal axis. 

We have two very diferent pictures: According to the observer’s own proper time, they more 
or less plummet merrily along, reaching r = 0 in short order according to their own clocks. 
(Incidentally, gravity diverges at r = 0, so that’s not a very happy place to wind up.) But 
according to the clocks of very distant observers, they never get anywhere close to r = 0. 
Indeed, they only asympotically approach r = 2GM/c2 , reaching it only as t →∞ according 
to those observers. 
A favorite saying of Einstein’s was Rafniert ist der Herr Gott, aber boschaft ist er nicht 

— “Subtle is the Lord, but malicious he is not.” This fgure seems to reveal a side of Nature 
that is not only malicious but positively perverse. A driving principle throughout this course 
has been that the view of two diferent observers must be consistent — perhaps they difer 
in some details, but they agree on physical outcomes. Can we possibly reconcile these two 
vastly diferent viewpoints consistent? 
The answer will be yes, and the reconciliation is subtle. Doing so will turn on thinking 

very carefully how the observer who is very far away is observing the infalling observer. 
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