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20.1 Overview 

In this set of notes, we are going to explore some of the ways in which observational tests 
of the unique predictions of strong gravity can be formulated. These notes are a little on 
the long side, and will probably be delivered over the course of multiple lectures. They 
also rather dense, and involve calculations whose details require a bit of care. Every one 
of these calculations is, at heart, nothing more than an examination of a “geodesic” (the 
trajectory followed by a freely-falling body or the propagation of light) in the strong-feld 
spacetime. The recipe for performing such a calculation is always the same — write down 
the Lagrangian for motion in the spacetime, apply the Euler-Lagrange equations. The core 
ideas underlying these calculations are hopefully clear to you; do not worry if the amount 
of information is a bit too much to follow. We summarize the key points that we hope you 
take away from this discussion at the end of these notes. 

20.2 Weirdness of infall according to two diferent observers 

Our discussion of motion in the Schwarzschild spacetime reached the point where we looked 
at an infalling observer: someone who is at rest at r = R, then falls. What we found 
is that this observer’s motion as a function of time looks radically diferent depending on 
what “time” means. If we parameterize the observer’s trajectory using proper time τ , i.e. 
the time that the observer measures on their own clocks, we fnd a trajectory that is a 
simple function relating their coordinate position r with their measured proper time τ . This 
parameterization shows that the infalling observer reaches r = 0 in fnite proper time. 
On the other hand, if we parameterize the observer’s motion using coordinate time t, 

which describes time as measured on the clocks of observers who are very far away, we get 
a very diferent picture. With that parameterization, the infalling observer never crosses 
r = 2GM/c2 , let alone reaches r = 0. Instead, we see them asymptotically approaching 
r = 2GM/c2 as t →∞. This behavior is shown in Fig. 1. 
From the exact solution for r(t) written down in the previous lecture, examine how things 

behave near r = 2GM/c2 . Putting r = 2GM/c2 + δr, it is not too hard to show that 

8GM(R − 2GM/c2) −(t−C2)c3/(2GM)δr = e . (20.1)
Rc2 

The constant C2 depends on the initial condition; its precise value is not important for us. 
What this expansion shows us is that at late times in the t parameterization, the infalling 
observer gets closer to 2GM/c2 by a factor of e for every time interval 2GM/c3 . This is a very 
short time. For example, if M is the mass of the Sun, 2GM/c3 is roughly 10 microseconds. 
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Figure 1: Infall trajectory for R = 8GM/c2, parameterized by the infalling observer’s proper
time τ , and parameterized by distant observer time t. Figure taken from lecture notes for
8.962; include a multiplicative factor of G/c2 to the M on the vertical axis, and a factor of
G/c3 to the M on the horizontal axis.

Throughout our study of relativity, we have encountered situations in which two ob-
servers measure different things. We’ve learned not to be too bothered by this, but have
learned instead to try to find a way to make sure that measurements, though perhaps not
in agreement (two observers measure different lengths and see events happen in a different
order; one measures a pure magnetic field, another measures a combination of electric and
magnetic fields) are nonetheless consistent. We have found that the observers agree on the
nature of important events at the end of the analysis (a long pole moving very fast never
collides with a door; an electron feels a force which causes it to accelerate).

But making consistent the two pictures of the infall-in-Schwarzschild scenario that we’ve
painted seems like a tall order. How can we reconcile falling all the way to r = 0 in one
parameterization (where, incidentally, gravitational tidal stresses get so strong that anyone
or anything will be shredded) with “hovering” near r = 2GM/c2 for all eternity in another?

We do this by thinking carefully about what the coordinate t means. An observer who is
fixed at coordinate r = R uses a clock that ticks uniformly in intervals of their proper time
τ . Compared to intervals in t, that observer’s clock behaves as

dτ = dt

√
1− 2GM

Rc2
. (20.2)

Notice that as R → ∞, dτ → dt. In other words, the coordinate t is in fact proper time
for observers who are at rest very far away from the mass M . This hopefully makes sense
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since, as we described in the previous lecture, the Schwarzschild metric looks just like the 
spacetime of special relativity (in spherical coordinates) for an observer who is very far away. 
As we’ve emphasized a few times, the coordinate t describes the clocks of observers who 

are far away. How do these clocks communicate and “sync up” with the clocks of other 
observers? In special relativity, we did this using light — the invariant properties of light 
give us a tool which allows us to connect the clocks of diferent observers. General relativity 
inherits this: the diferent clocks of diferent observers are synchronized with one another by 
allowing their properties to be carried from observer to observer using light. 
However — and this is the crucial point — the propagation of light is strongly afected 

by gravity. Clocks which tick very nicely in time t very far from the mass M do not tick so 
nicely when they are close to r = 2GM/c2 . In fact we, saw that light’s coordinate velocity 
goes to zero as r → 2GM/c2 . Light emitted at that radius carries no energy to observers 
who are infnitely far away. 
This helps us to see why infall according to the t parameterization looks so weird com-

pared to infall in the τ parameterization. In the τ parameterization, we are writing things 
in terms of a clock that makes sense exactly where the infalling observer is located. That 
parameterization in essence tells us exactly what the infalling observer is actually experi-
encing. The t parameterization, on the other hand, tells us how things “look” according 
to an observer who is watching things happen from very far away. The distant observer 
makes their measurements using light (or, as we’ll discuss a little later, other forms of 
radiation that travel at the speed of light) and so their measurements are afected by 
how gravity afects light. In essence, the infalling observer never crosses r = 2GM/c2 

according to the t parameterization because the light that allows distant observers to see 
that happen never reaches them. It doesn’t mean that they see this observer just “hovering” 
outside r = 2GM/c2 , however — they actually see nothing at all. 
Imagine that as the infalling observer approaches this point, they carry a beacon which 

emits a signal — “My time is now τ , and all is well!” — directed to a distant observer. As 
the infalling observer approaches r = 2GM/c2 , the light takes longer and longer (according 
to very distant clocks) to get out. The message is also increasingly redshifted to longer and 
longer wavelengths. Keep in mind that at late times (as seen by distant observers), the 
infalling observer gets closer by a factor of e after every interval ∆t = c3/2GM . This time 
is a bit less than 10 microseconds if M = 1 solar mass. This means that for M = 1 solar 
mass, after an interval ∆t = 1 second, the distant observer sees the position of the infalling 
observer change from r = 2.01GM/c2 to r = 2(1 + 0.01e−100,000)GM/c2 . Very quickly we 
can no longer see the infalling observer, nor get any message from them. 
Although strictly speaking, the distant observer claims that their infalling friend never 

crosses r = 2GM/c2 , when that friend gets close to this radius, what the distant observer 
claims does not matter. No communication with the infalling friend is ever possible. For 
all practical purposes, their friend has merged with the spacetime, and can no longer be 
distinguished as an independent entity. (Indeed, later measurements would show that the 
mass which appears in the spacetime line element is no longer M , but has become M +mfriend. 
Your friend is part of spacetime now.) 
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20.3 The event horizon 

A good way to summarize this discussion is that the time coordinate t is perfect for observers 
who are very far away. Indeed, t is their proper time, and is how they naturally describing 
the ticking of clocks. The coordinate t can be used for all r > 2GM/c2 , though it gets 
increasingly problematic as r gets close to 2GM/c2 . It is bad exactly at r = 2GM/c2 . 
What about for r < 2GM/c2? To be blunt, this is tricky. Time t connects clocks from 

the very distant region to other places using light; since light doesn’t propagate at all when 
r = 2GM/c2 , t simply ceases to be a useful measure of time that radius. This means that 
we need to be a lot more careful about how we set up and defne “past” and “future” when 
we examine the region r ≤ 2GM/c2 . This requires a bit more setup and analysis than 
is appropriate for 8.033, but we can borrow the punchline for our purposes: with a little 
efort, it can be shown that no light ray emitted at r < 2GM/c2 can ever propagate to 
r > 2GM/c2 . In essence, the behavior that we saw at r = 2GM/c2 — light rays emitted 
exactly at that spot remain forever bound to that spot — turns around. What we fnd is 
that all light rays inevitably evolve to smaller and smaller values of r. Even a light ray that 
we “think” is pointing outward ends up on a trajectory that eventually hits r = 0. 
Since light can never “get out” from r ≤ 2GM/c2 , this radius defnes a boundary beyond 

which events cannot communicate with the rest of spacetime. We call this boundary the 
event horizon — events inside rH = 2GM/c2 are “over the horizon” and forever out of our 
reach. An object which has an event horizon is called a black hole. 
The event horizon is one of the strangest predictions of physics. Before thinking about 

whether we can safely test for its existence, it’s worth pausing to review a few issues that 
you might wonder about. Further discussion of these points can be found in a paper1 which 
summarizes a presentation of these issues at a summer school for graduate students. 

• The Schwarzschild spacetime describes an object that is spherically symmetric, and is
non-rotating. Are conclusions about the nature of event horizons robust if they are
made with such a “special” confguration?

It turns out we do indeed need to go beyond this spacetime; the Kerr spacetime that
we mentioned in Lecture 18 (which describes a rotating black hole) turns out to be just
what we need. It describes an object which has rotation, and has an event horizon atp

˜ ˜ 2 ˜radius rH = M + M2 − a , where M = GM/c2 , a = J/Mc, and J is the magnitude of
the object’s spin angular momentum. Although the quantitative details change as we
go from Schwarzschild to Kerr, the qualitative picture remains pretty much the same.
Light rays at r = rH remain bound to that radial location (although they “twist” in
axial coordinate, in essence being dragged along by the black hole’s spin; you’ll explore
a related issues arising from this behavior on pset #9). Light rays emitted at r < rH
can never reach r > rH , but instead inevitably propagate to r = 0.

• Is Kerr the end of the discussion, or is there a whole “zoo” of spacetimes with event
horizons that may describe black holes?

There is one further change we can make beyond Kerr — black holes can have electric
charge — but that is it. It is expected that in “real life,” any black hole’s charge
will be vanishingly small, since they will tend to form near environments with a lot
of free plasma. The combination of electromagnetic and gravitational forces means

1https://arxiv.org/abs/hep-ph/0511217 
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that black holes will tend to pull in charges opposite in sign to their own charge, 
neutralizing themselves and leaving a Kerr black hole behind. So a Kerr black hole is, 
for observational and experimental purposes, indeed the end of the discussion. 

You might wonder: What happens if something disturbs this black hole? Won’t it 
change its shape or its other properties in some way? Indeed, such a thing can happen 
(and we’ll talk about some examples soon). However, a set of remarkable results prove 
what is now summarized as the no-hair theorem: A spacetime which contains an event 
horizon is either the Kerr solution (which does not change with time), or it is time 
evolving. If it is time evolving, then it evolves into the Kerr black hole spacetime. This 
time evolution forces the spacetime to “shake of” all deviations, until only the Kerr 
solution remains. 

What this means is that if we have a black hole described by the Kerr spacetime and it 
is disturbed somehow (perhaps you threw your roommate into it to see if has an event 
horizon), it will “jiggle” a little bit, and then settle down to a new Kerr spacetime. Its 
mass and spin might change after the disturbance; the nature of the jiggling may tell 
us something about what happened to disturb it. We describe this as the black hole 
“no-hair” theorem because it tells us that black holes have no distinguishing structure 
(no “hair”) beyond their mass and spin (and, in principle, their electric charge). 

• The black hole spacetime exists for all time. Are the only black holes we might en-
counter in Nature ones that have existed forever? Or does Nature provide a way to 
make black holes from “normal” objects? 

It is not terribly difcult to show that, starting with normal-behaved matter, it can 
evolve into a spacetime with an event horizon. For a very special but unrealistic case, 
this can be done analytically: a spherical ball of dust, with no pressure to hold it up 
against gravity, collapses to form a black hole. This calculation was frst done by the 
famous physicist Robert Oppenheimer with his student Hartland Snyder; their result 
appeared in publication on September 1 1939. (This date is important for other reasons; 
Oppenheimer’s research moved into military applications very soon after this.) The 
Oppenheimer-Snyder collapse calculation is simple enough that I use it as a homework 
exercise in 8.962. For more realistic situations (including efects such as rotation and 
realistic pressure profles), it requires numerical computation (though a UROP student 
is now exploring whether including rotation can be done in a simple way). The outcome 
of these studies is that we can indeed start with “normal” matter, and have it evolve 
into a black hole. 

• What about the behavior as r → 0? We argued earlier that, kind of like the Coulomb 
point charge, there must be an infnite amount of “stuf” crammed into zero volume 
there, at least classically. Can that behavior possibly be correct? Doesn’t quantum 
physics have something to say about this? 

The nature of what happens at the very center of the black hole remains a mystery. 
Quantum efects must surely have a major impact on the nature of things as we ap-
proach r → 0; the exact nature of those efects remains unknown since we haven’t 
formulated an undisputed quantum theory of spacetime. This is a source of some 
concern. One thing that is indisputable is that everything which crosses the event 
horizon eventually reaches r = 0. Indeed, when we develop a better parameterization 
to describe “time” for a body that has crossed the horizon, we discover that r = 0 is 
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not really the “center” of the spacetime. Instead, r = 0 is actually the future of the
spacetime — at least, the future of all spacetime interior to r = 2GM/c2. (Further
discussion of this point can be found in the paper whose URL is listed in the footnote
on a previous page.)

Whatever mysteries may occur as r → 0, they are hidden from us by the black hole’s
event horizon, and cannot have any effect on measurements that we make out in the rest
of the universe2. This gives us freedom to apply the laws of physics that we understand
to the region of spacetime that is able to communicate with us. We content ourselves,
for now, with the fact that physics we believe we understand describes everything that
we can measure in principle3.

20.4 What can we observe?

Putting these issues of principle to the side, the question becomes: what observations can we
make of an object which tell us that the spacetime has the strong-field properties we expect
if the object is a black hole? This is a very open-ended question (to first approximation,
answering this question has constituted a substantial fraction of your lecturer’s research
career). In this discussion, we look at two aspects of motion in black hole spacetimes (focusing
on the Schwarzschild case, which is relatively simple) that are hallmarks of the object being
a black hole. Motion in these spacetimes is important because black holes are themselves
totally dark. But, if things move near them, we may be able to measure the light that these
objects emit — or some other kind of radiation associated with the motion.

20.4.1 The motion of material bodies

A material body moving near a Schwarzschild black hole is governed by the Lagrangian

L =
1

2
gαβẋ

αẋβ =
1

2

[
−
(
1− 2GM

rc2

)
(cṫ)2 +

(ṙ)2

(1− 2GM/rc2)
+ r2(θ̇)2 + r2 sin2 θ(ϕ̇)2

]
,

(20.3)
where ẋα = dxα/dτ . As you showed on problem set #8, because the spacetime is independent
of t and independent of ϕ, we can find two constants of the motion right away. If we focus

2Should you be curious to read about this, the hypothesis that singularities are hidden behind event
horizons is called the “cosmic censorship conjecture.” Note that this is a conjecture, not a theorem. Indeed,
counterexamples have been found, although they tend to describe very special circumstances that will not
happen in Nature. From an experimental/observational standpoint, the idea that the r = 0 singularity is
always “clothed” by an event horizon works well enough that many of us go along with it. We’re certainly
not 100% satisfied about the situation given that this conjecture remains just a conjecture.

3There is another lingering bit of concern, which is that when we apply the leading effects of quantum
physics to black holes, we find that they lose mass, eventually evaporating away entirely. This is the
phenomenon of Hawking radiation. What happens to the mysteries at r = 0 then? We do not have a full
understanding of this, and it’s quite bothersome. We can content ourselves with knowing that the timescale
for evaporation is so long that for most black holes we encounter, evaporation is unlikely to be a problem.
For instance, a black hole of 1 solar mass will take about 1067 years to evaporate, and this lifetime scales
with mass cubed. We appear to have some time to figure this out.
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on motion that is confined to the plane θ = π/2, then these constants take the values

∂L

∂ṫ
= −

(
1− 2GM

rc2

)
c2ṫ ≡ −Ê ; (20.4)

∂L

∂ϕ̇
= r2ϕ̇ ≡ L̂z . (20.5)

We interpret Ê as a conserved orbital energy (per unit mass), and we interpret L̂z as a
conserved orbital angular momentum (per unit mass); the z subscript4 is because if we think
of the normal to the orbital plane as the z axis, this is the angular momentum about that
axis. (Since the orbit is confined to this plane, this is also the total angular momentum.)

We also know that u⃗ · u⃗ = gαβẋ
αẋβ = −c2, so (again using θ = π/2)

−c2 = −
(
1− 2GM

rc2

)
(cṫ)2 +

(ṙ)2

(1− 2GM/rc2)
+ r2(ϕ̇)2 . (20.6)

Using Eqs. (20.4) and (20.5), we can replace ṫ and ϕ̇ in this expression, and rewrite it as an
equation governing the radial motion of the body orbiting in this spacetime:

dτ
=

E
(
dr
)2 ˆ2

c2
− Veff(r) , (20.7)

where

Veff(r) =

(
1− 2GM

rc2

)(
L̂2
zc2 +

r2

)
. (20.8)

√ple

This function is often called the “effective potential” for orbits in the Schwarzschild space-
time, since it plays the same role in determining the motion of bodies as a similar potential
that is often used to describe Newtonian orbits, and from which we derive Kepler’s laws.

Equations (20.7) and (20.8) are going to be our main tools for a little while, so it is
worthwhile focusing on what they tell us. Figure 2 shows an exam of what this function
looks like, plotted for a particular choice of L̂z (in the case, L̂z = 3 3/2GM/c).

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

Figure 2: The function Veff(r) plotted for L̂z = 3
√
3/2GM/c.

4It is also useful to “decorate” the symbol for angular momentum a bit so that it isn’t too easy to confuse
it with the Lagrangian.
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to use it to fgure out how the body’s motion depends on its energy and its angular 
momentum. 
Consider for example the situation illustrated in Fig. 3. 

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

( ̂E)2/c2 = 0.90c2

yield any allowed orbital motion. 
Consider next the situation shown in Fig. 4. This is the same potential, but 

/c2 0.924c2 . Notice that this time Ê2/c2 ≥ Vef over a range of radii. 

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2) ( ̂E)2/c2 = 0.924c2

Turn now to Eq. (20.7). This equation tells us that the radial component of the orbiting 
body’s 4-velocity is determined by subtracting Vef from a quantity made from the orbit’s 
conserved energy, Ê2/c2 . There is a tremendous amount of information in this equation. We 
are going 

Figure 3: The same Vef (r), showing this potential versus Ê2/c2 = 0.90c2 . 

For almost the entire span of radius we have included here, Ê2/c2 is less than Vef (r). This 
means that over this range (dr/dτ)2 is negative, and there is no real solution describing a√

ˆ 2body moving over these radii. At least for this value of angular momentum, E = 0.9c 
does not 

the energy 
ˆis now E2 = 

Figure 4: The same Vef (r), showing this potential versus Ê2/c2 = 0.924c2 . 

For the situation shown in Fig. 4, (dr/dτ ) ≥ 0 over a range of radii. This situation describes 
an eccentric orbit: an orbit that oscillates from rmin = 5GM/c2 to rmax ≃ 17.2GM/c2 and 
back over the course of its orbit. The turning points are defned by the condition (dr/dτ ) = 0, 
which means that they are found by fnding the values of r at which Ê2/c2 = Vef (r). Bear in 
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mind that while it is sloshing back and forth in radius, its angle ϕ is continually increasing: 
from the relationship between the conserved angular momentum L̂ 

z and dϕ/dτ , we fnd 

ˆdϕ Lz 
= 

2 
. (20.9)

dτ r 

In the Newtonian limit, this orbit would look like a closed ellipse if we looked at its angular 
and radial motion together. In general relativity, the orbit does not quite close, and we get 
a more interesting pattern. Defning x = r(τ) cos[ϕ(τ)], y = r(τ) sin[ϕ(τ)], Fig. 5 shows one 
complete radial period for the parameters used in Fig. 4: 

-10 -5 5 10 15
r Cos[ϕ] (units of GM/c^2)

-10

-5

5

10

15

r Sin[ϕ] (units of GM/c^2)

p
Figure 5: Motion in r and ϕ for an orbit with L̂ 

z = 3 3/2GM/c, Ê = 0.924c2 . 

This is a “strong-feld” orbit; it looks very diferent from a Newtonian orbit. In particular, 
the orbit moves through a lot more than 2π radians of ϕ in the time in takes to move from 
rmin to rmax and back. (This example actually completes 2.31 complete “whirls” in ϕ during 
a single cycle of radial motion.) When the orbital radius is at all times large compared to 
GM/c2 , the “extra” ϕ per orbit is much smaller. In fact, it is not too hard to show that 
this motion precisely reproduces the anomalous precession of Mercury’s orbit that so excited 
Albert Einstein in 1915. 
A particularly special value of the energy is illustrated in Fig. 6. This value is chosen so 

that Ê2/c2 = Vef (r) at exactly one point. This case defnes a circular orbit. To fnd thisp
ˆorbit, we require that E = c Vef (r) (so that dr/dτ = 0). We also require that the orbit 

“live” at the minimum of the efective potential: ∂Vef /∂r = 0. As you show on problem set 
#9, this yields a set of analytic solutions that describe the energy and angular momentum 
per unit mass for a body in a circular orbit: 
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5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

( ̂E)2/c2 = 0.907c2

Figure 6: The same Vef (r), showing this potential versus Ê2/c2 = 0.907c2 . 

5.0 5.5 6.0 6.5 7.0 7.5 8.0
r (units of GM/c^2)

0.886

0.888

0.890

0.892

0.894

Veff (units of c^2)

L̂ = 3.5GM/c
3.49GM/c

3.48GM/c
3.47GM/c

3.4641GM/c
3.45GM/c

Figure 7: A zoom onto the region of the minimum for a sequence of Vef (r), looking at 
diferent values of L̂z. 

As L̂ 
z gets smaller, the minimum moves to smaller values of r. At the same time, the 
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L̂z = ±

√
GMr

1− 3GM/rc2
, Ê =

1− 2GM/rc2√
1− 3GM/rc2

. (20.10)

(The ± on the angular momentum is because we take a square root at one point, and both
solutions are valid. The signs describe orbits going in opposite ϕ directions at radius r.)

One last point before moving on: if we examine a sequence of potentials, we find some-
thing interesting and a little odd. For almost all values of L̂z, the potential qualitatively has
the shape we saw in the previous figures — a peak at small radius, with a minimum at some
finite r, the asymptoting to Veff → c2 as r → ∞. However, if we make L̂z small enough, we
see that there is a change. Figure 7 shows what happens as we reduce L̂z from 3.5GM/c to
3.45GM/c:



vicinity of the minimum gets progressively flatter, and is less well defined as a minimum.
In fact, at a certain point the function flattens out so much that the minimum goes away
altogether. When this happens, there are no more stable circular orbits.

To find when the minimum goes away, we look for the point along the sequence at which
the first and second derivatives both vanishes: ∂Veff/∂r = 0 and ∂2Veff/∂r

2 = 0 at the same
value of r. A quick analysis shows us that this condition is met when

L̂z =
√
12GM/c ≃ 3.4641GM/c . (20.11)

(The purple curve in Fig. 7 was computed with exactly this special value of L̂z.) Using the
formula that relates a circular orbit’s energy to its radius tells us that this happens when
r = 6GM/c2. Here is a prediction about strong-field orbits that is starkly different from
what we encountered with Newtonian gravity: No stable circular orbits exist at all for
radii r ≤ 6GM/c2.

20.4.2 The motion of light

On problem set #9, you looked at how light is bent by gravity in the weak gravity limit.
What is the strong-field analog of this?

To answer this question, let’s think about the geometry of a light ray that comes in from
very far away. Let’s imagine that the black hole is at the origin of coordinates, and the light
ray comes in parallel to the x axis. Far away, it is displaced from the axis by a distance
b. We will call this distance the impact parameter of the incoming light ray. From basic
mechanics, we can say that the light ray has an angular momentum that is related to the x
component:

|L| = |r× p| = bpx = bE/c ≡ Lz . (20.12)

All of the quantities in this equation are evaluated very far away, where the spacetime is the
same as that of special relativity. The geometry of this situation is illustrated in Fig. 8.

b

pt = E/c , px = E/c , py = pz = 0

Lz = |r × p | = bpx = bE/c

Figure 8: The geometry of a photon that is “launched” from far away toward the black hole.

To figure out how the photon evolves as it propagates in to the strong gravity region,
consider the Lagrangian for light:

Llight =
1

2
gαβẋ

αẋβ =
1

2

[
−
(
1− 2GM

rc2

)(
c
dt

dλ

)2

+

(
1− 2GM

rc2

)−1(
dr

dλ

)2

+ r2
(
dϕ

dλ

)2
]

.

(20.13)
(We’ve simplified this a bit by putting θ = π/2, dθ/dλ = 0, and we are using ẋα = dxα/dλ.)
Because ∂Llight/∂t = 0 and ∂Llight/∂ϕ = 0, we identify both ∂Llight/∂ṫ and ∂Llight/∂ϕ̇ as
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constants of the motion:

∂Llight

∂ṫ
= −

(
1− 2GM

rc2

)
c2

dt

dλ
= c gttp

t = c pt ≡ −E ; (20.14)

∂Llight

∂ϕ̇
= r2

dϕ

dλ
≡ Lz = bE/c . (20.15)

In setting these equalities, we’ve used the fact that it is very easy to compute pt and Lz

very far from the black hole. But, because they are constants along the light ray, once we’ve
computed them, we can use these values through the entire calculation.

Using p⃗ · p⃗ = 0 in combination with these relations between E, dt/dλ, Lz, and dϕ/dλ we
find an equation for dr/dλ that is similar in form to the equation we found for the motion
of a material body: (

dr

dλ

)2

=
E2

c2
− Lz

2

r2

(
1− 2GM

rc2

)
. (20.16)

This is a useful form because it parameterizes the motion in terms of the constants of motion
Lz and E. However, we can do better, since we know that Lz = bE/c. Let’s use this to
eliminate E from the equation:(

dr

dλ

)2

=
Lz
2

b2
− Lz

2

r2

(
1− 2GM

rc2

)
. (20.17)

And, since Lz is itself a constant of the motion, we can eliminate it from the right-hand side:

1

Lz
2

(
dr

dλ

)2

=
1

b2
− 1

r2

(
1− 2GM

rc2

)
=

1

b2
− Vlight(r) . (20.18)

This equation now tells us that light propagates whenever 1/b2 > Vlight, where Vlight plays
a role in our analysis just like the effective potential that governs the motion of material
bodies. However, Vlight is much simpler — it doesn’t depend on any free parameters.
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b = 7.07 GM/c2
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b = 3 3 GM/c2 = 5.196 GM/c2
b < 3 3 GM/c2

Figure 9: The potential Vlight(r) that governs the motion of light in the Schwarzschild space-
time, plus a few lines illustrating 1/b2 for several values of b.

Figure 9 plots this potential as a function of r. Its maximum occurs at r = 3GM/c2; its
value at the maximum point is given by

Vlight(3GM/c2) =

(
c2

GM

)2 [
1

9

(
1− 2

3

)]
=

c4

27G2M2
=

(
c2

3
√
3GM

)2

. (20.19)

Figure 9 also includes several lines illustrating 1/b2 for several interesting values of b. Light
propagates in radius as long as (dr/dτ)2 > 0, which occurs when 1/b2 > Vlight. With that in
mind, let’s examine how light behaves in this spacetime for several values of b:

• If b > 3
√
3GM/c2, light propagates in from infinity just fine until it reaches the radius

at which 1/b2 = Vlight. At this point, the light reverses radial direction, and heads back
out to larger radius. When we look at the motion in the equatorial plane, we see that
it comes in, has its trajectory bent as it comes closest to the black hole, then heads
back out to large radius. An example of this is shown in the top-left of Fig. 10.

•
√

If b < 3 3GM/c2, light propagates from infinity all the way to r = 0. In this case,
light passes into the event horizon and disappears from us forever. This is illustrated
in the top-right of Fig. 10.

• If b = 3
√
3GM/c2, light comes in until it reaches r = 3GM/c2. At this point, dr/dτ =

√in0, so it sits this light orbit forever. This is an unstable orbit, so the slightest deviation
from b = 3 3GM/c2 means that the light will either eventually zoom away or else fall
in. The bottom of Fig. 10 shows what happens when b is too large by 4× 10−8GM/c2.
In this case, the light completed about 3.7 orbits before zooming away.
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b = (3 3 + 4 × 10−8)GM/c2
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Figure 10: Examples of the (r, ϕ) motion for light propagating in the Schwarzschild space-
time. 

This light orbit, or light ring is a distinctly non-Newtonian feature. But, it turns out 
to be something that makes a very strong observational prediction. Imagine that a black 
hole in Nature is immersed in some kind of hot gas or plasma. That material will emit 
electromagnetic radiation across a wide range of wavelengths. If some of that radiation 
passes close to the black hole hole, we expect that its trajectory will be bent very strongly 
around the black hole. Some of it will even get “trapped” into the light orbit at radius 
r = 3GM/c2 , at least for several orbits. When that radiation escapes from the light√ orbit, it 
can propagate toward us. The expectation is that we could see a ring of radius 3 3GM/c2 

on the sky. This has long been regarded as a “smoking gun” of the strong-feld nature of a 
black hole spacetime. 
It turns out other kinds of radiation get trapped at that radius too, and leave an imprint 

that likewise is a smoking gun of the nature of the spacetime. We will discuss that in the 
next lecture. 

20.5 Summary: Features of strong-gravity motion 

This set of lecture notes is extremely dense. I hope that everyone who takes 8.033 is now 
capable of going through and understanding everything that is presented here; however, 
there is so much material (and this comes at such a stressful point in the semester) that I 
have little illusion that everyone will actually do that. So let me summarize what I regard 
as the most important points to note: 

• Infall parameterized by τ looks completely diferent from infall parameterized by t. This 
is because t describes clocks that are very far away; they connect to clocks at small 
r using the trajectories of light. As one approaches r = 2GM/c2 , the propagation of 
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light is hugely afected by gravity. The observer who is far away never sees an infalling 
observer cross r = 2GM/c2 because the light they would use to make this measurement 
never reaches them. 

• The radius r = 2GM/c2 marks an event horizon in the spacetime. Events at r < 
2GM/c2 cannot communicate with events “outside the horizon.” Once any trajectory 
crosses this radius, it is doomed to eventually reach r = 0, where it will fnd a quick 
(as measured by the trajectory’s own clock) and violent end. 

• The Lagrangian for the orbits of material bodies in this spacetime can be studied in the 
usual way with the Euler-Lagrange equations. Given an orbit’s angular momentum per 

ˆ ˆunit mass Lz and its energy per unit mass E, one can fgure out the kind of motion one 
is likely to get. We examined one example of an “eccentric” orbit (which generalizes 
the “elliptical” orbits of Newtonian gravity), and characterized circular orbits (which 
you will examine on pset #9). 

• Stable circular orbits do not exist for r < 6GM/c2 , starkly non-Newtonian behavior. 

• Light can be bent so strongly by gravity that it forms an orbit at√r = 3GM/c2 . 
Observers far away may be able to see a ring of light with radius b = 3 3GM/c2 . This 
value of b is set by the impact parameter that puts light exactly on the light ring. 
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