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Lecture 22 
Our universe at large 

22.1 Does T µν = 0 describe our universe? 

Strong-gravity spacetimes tell us about “compact” bodies, things that can be localized to 
some spatial region. They reproduce Newtonian gravity, and they introduce new behavior 
that (so far, at least!) all fts the data. However, these spacetimes are “asymptotically 
fat”: when we go very far away from the source of mass in the spacetime, we fnd ds2 → 
−c2dt2 + dx2 + dy2 + dz2 . Does this behavior describe our universe? Spacetimes for which 
this true all solve the Einstein feld equations if T µν = 0. Is this an accurate description of 
our universe? 

The answer to this, very clearly, is no! Looking out, we see our galaxy, other galaxies, 
clusters of galaxies, light, gas. Indeed, on the very largest scales, the universe appears to 
be a uniform fog of matter and radiation, limiting to a haze of microwaves known as the 
“cosmic microwave background,” or CMB, at the largest distances that we are able to probe. 
However, an interesting property of what we see is that the universe is quite uniform on the 
largest scales. For example, on the very largest scales we can measure, variations in the 
CMB are a fraction of about 10−5 of its mean level1 . Things become clumpier on smaller 
scales because gravity tends to make things clump up. 

On the very largest scales — larger than about 10 − 100 Megaparsecs2 — we can think of 
our universe as a perfect fuid. This may seem crazy, but it is an acceptable treament as long 
as we focus on scales where matter’s granularity has no efect. It’s kind of the way we treat 
water as a fuid, even though we know it is made of individual molecules. On large enough 
scales, the granularity of water cannot be perceived; on large enough scales, the granularity 
of stars and galaxies cannot be perceived. 

22.2 A spacetime for the large-scale structure of the universe 

Although the universe is uniform in all spatial directions on the largest lengthscales, it is not 
uniform in time. Light travels at fnite speed, so large distances are seen at earlier times. 
What we see at earlier times is a universe that was much denser than today. 

To describe the large-scale structure of our universe’s spacetime, we want to use a metric 
that is uniform in space, but not in time. It can be proven that the most spatially symmetric 
spacetime has the form � 

dr̄  2 
� ��2 

ds2 = −c 2dt2 + a 2(t) 
2 
+ r̄  dθ2 + sin2 θ dϕ2 . (22.1)

1 − kr̄  

1After correcting for a Doppler efect. The CMB defnes a preferred rest frame, and we are moving with 
respect to that rest frame due to the motion of our solar system with out galaxy, plus the infall of our galaxy 
toward the local cluster of galaxies. 

21 parsec = 3.26 lightyears. This is a unit of distance that is particularly useful in astronomy, because it 
arises directly from measurements we can make using parallax. 
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This is a “Robertson-Walker” spacetime. It has the following important properties: 

• The function a(t) is the scale factor, and controls the physical scale associated with 
distance between two objects. If k = 0, the distance between (r̄1, θ, ϕ) and (r̄2, θ, ϕ) is 

L = a(t) [r̄2 − r̄  1] . (22.2) 

Notice that if two objects are at spatial rest in the coordinate system (so that r̄, θ, and 
ϕ are all constant) then the physical distance between them is nonetheless changing if 
a(t) changes with time. 

• The coordinate r̄  is a dimensionless radial coordinate. For k = 0, a(t)r̄ is essentially 
just our “normal” spherical distance. 

• The parameter k is called the “spatial curvature” parameter, and takes the value −1, 
0, or 1. For k = 1, we defne 

dr̄  √ = dχ 7→ r̄  = sin χ . (22.3)
1 − r̄2 

In this case, the value of r̄  is bounded: we can never exceed r̄  = 1. This describes 
a closed universe: the physical separation between objects has a maximum at each 
moment in time. 

For k = −1, we defne 
dr̄  √ = dχ 7→ r̄  = sinh χ . (22.4)

21 + r̄  
This describes an open universe: the physical separation between objects is totally 
unbounded. 

For k = 0, space has a “fat” Euclidean geometry: for dt = 0, � � �� 
= a(t)2 2 2ds2 dr̄ + r̄  dθ2 + sin2 θ dϕ2 . (22.5) 

This is often called a “fat universe,” though that is a bit misleading — spacetime is 
curved. 

22.3 Propagation of light in this spacetime 

The value of k and the behavior of a(t) are connected to the matter that flls the universe, 
and can be determined from the Einstein feld equations. Before discussing those quantities, 
it is useful to examine how light and matter behave in these spacetimes. 

t r̄Begin by asking what happens to observers at rest in the coordinates: u = c, u = 
uθ = uϕ = 0. When we examine geodesics, we fnd that they remain fxed at coordinate 
(r̄, θ, ϕ). However, as those observers remain fxed at that coordinate, we see that the proper 
separation of observers changes as a(t) changes. Those observers “co-move” as the universe’s 
geometry changes3 . 

3Note that this only applies to comoving points. This means points which do not experience forces which 
“push” them away from the geodesic. The separation between us and a very distant galaxy changes as a(t) 
changes. However, that galaxy’s size does not change because it is a bound object — it is not built out of 
things that are comoving in the Robertson-Walker spacetime. The scales of things that are bound together — 
like stars, planets, solar systems, people — do not change as a(t) changes. The Robertson-Walker spacetime 
describes the geometry of events on very large scales; it doesn’t describe things on small scales. 
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Next examine light — which is our main tool for measuring and understanding our 
universe. For simplicity, we will focus on k = 0. (The calculation can be generalized to 
k = ±1, but the details are a bit messy using the tools of 8.033; we’ll just quote the result 
for these cases.) Imagine that light is emitted at some time te, and is received by an observer 
at some time tr. It’s enough to consider light that moves radially, so we’ll put pθ = pϕ = 0. 

Our goal is to compare the energy of light when it is emitted to the energy when it is 
received. To do this, we imagine one comoving observer measures the light at emission, and 
another at reception: 

tEemit = −p⃗emit · ⃗uemit = p (22.6)emitc . 

Here we used the fact that the comoving observer has only one non-zero 4-velocity compo-
nent, which we can write ut = −c. Likewise, we fnd Erec = prec 

t c. 
Let’s now propagate this light across spacetime as a radial geodesic and see what energy 

it has at t = tr. We use two rules to propagate the light: 

1. It follows a light-like trajectory or null trajectory, so p⃗ · p⃗ = 0: 

t)2 r)2−(p + a 2(t)(p ¯ = 0 → p r̄  = p t/a(t) . (22.7) 

2. It follows a geodesic, so we extremize � �2 � �2
1 dxα dxβ c2 dt a(t)2 dr̄  

L = gαβ = − + . (22.8)
2 dλ dλ 2 dλ 2 dλ 

Let’s focus on the x0 = ct component of the Euler-Lagrange equations: 

∂L 1 ∂L 1 da 
= = aȧ (p r̄  )

2 
, where ȧ = ; (22.9)

∂x0 c ∂t c dt 
∂L dt t = −c = −p ; (22.10)

∂(dx0/dλ) dλ� � 
d ∂L dpt 

= − . (22.11)
dλ ∂(dx0/dλ) dλ 

Put all these ingredients together: � � 
∂L d ∂L − = 0 (22.12)
∂x0 dλ ∂(dx0/dλ) 

becomes 
aȧ 2 dpt 

(p r̄  ) + = 0 . (22.13) 
c dλ 

Using the constraint p⃗ · p⃗ = 0, this becomes 

1 ȧ � �2 dpt 
p t + = 0 . (22.14) 

c a dλ 

But we also know that 
t da dt da 

˙ = = c . (22.15)a p c 
dt dλ dλ 
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With this, our equation becomes 

da/dλ t dpt 
p + = 0 , (22.16) 

a dλ 
or 

da/dλ dpt/dλ 
= − , (22.17) 

a pt 

Integrate both sides from λ = λe (corresponding to the moment te when light is emitted) to 
λ = λr (corresponding to the moment tr when light is received): � � � � 

pt(tr) a(tr)
ln = − ln , (22.18) 

pt(te) a(te) 

or 
pt(tr) a(te) 

= . (22.19) 
pt(te) a(tr) 

From the fact that Eemit = cpt(te) and Erec = cpt(tr), this means � � 
a(te)

Erec = Eemit . (22.20) 
a(tr) 

In other words, the energy associated with the light that we measure gives us a way to directly 
probe the scale factor of the universe. (The result turns out to be identical for k = ±1.) 

So how do we use this? We take advantage of the fact that atoms and molecules whose 
electrons are in an excited state emit light with distinct spectral lines. Figure 1 illustrates 
what the spectrum from a gas cloud might look like if the atoms and molecules in the 
gas all undergo known electronic transitions. The blue curve in this fgure illustrates the 
spectrum in the “rest frame,” i.e., what we might measure in a laboratory. In this sketch, 
we imagine that there are 4 diferent “lines,” each at a wavelength λ1,2,3,4 that has been very 
well characterized (e.g., by laboratory measurements and/or theoretical calculations). 

Figure 1: Sketch of how the universe’s scale factor afects an object’s light emission spectrum. 
Blue curve sketches a spectrum as it would be viewed in that object’s “rest frame.” This is 
what we would measure in the laboratory, for example. Imagine that this light is emitted 
at te, and is measured at tr. Orange curve shows that same spectrum if it is measured at tr 

such that a(tr)/a(te) = 1.1. 
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Imagine that the light is emitted at te, when the universe’s scale factor is a(te). The 
orange curve in Fig. 1 illustrates what this spectrum might look like if it is measured at tr, 
when the scale is now a(tr). Each photon that contributes to the light has been redshifted by 
the expansion of the universe. Because the energy of light relates to its wavelength according 
to E = hc/λ, each “line” at λi has been shifted to � � 

a(tr)
λ ′ i = λi ≡ λi(1 + z) . (22.21) 

a(te) 

This equation defnes the cosmological redshift, z. This is what we determine when we 
measure a spectrum and deduce the nature of the atoms or molecules that emitted its light. 

The punchline is that by measuring the spectra of distant objects and looking for the 
“fngerprints” of known4 atomic and molecular transitions, we can deduce the scale factor 
at which the light was emitted, compared to the scale factor’s value today. If you do this 
for a large number of sources, you can build up map of how the scale factor evolves. If we 
understand how the scale factor evolves as a function of time, we can then use measurements 
of many diferent sources’ redshifts in order to learn how the universe is evolving. 

22.4 The behavior of a(t) and k 

If you run the Robertson-Walker line element through the Einstein feld equation, you fnd 
that the scale factor a(t) and the curvature parameter k are related to the energy density of 
“stuf” in the universe according to � �2 

ȧ 8πGρ kc2 

= 
2 
− 

2 
. (22.22) 

a 3c a 

This relationship was frst discovered by Alexander Friedmann in 1922, and is known as the 
Friedmann equation. Any Robertson-Walker spacetime for which a(t) and k connect to ρ by 
this relationship is known as a Friedmann-Robertson-Walker (or FRW) cosmology. 

Before discussing some details, it is useful to introduce some terminology: 

ȧ ≡ H The “Hubble” expansion parameter. (22.23) 
a 

Noice that this parameter has the dimensions of 1/time. The value of the Hubble parameter 
today is a subject of quite a bit of active research: 

H0 ≡ H(t = now) ≈ 70(km/sec)/Mpc . (22.24) 

The precise value of H0 is somewhat controversial as I write this document, with diferent 
techniques yielding somewhat diferent values, ranging from about 67 in these units up to 
about 73. Not that long ago, methods that yielded values this close to one another (each 
difers by about 5% from 70) would have been celebrated as a triumph; when I started grad-
uate school, people were concerned about whether the value was closer to 50 or to 100. One 
reason that there is a lot of interest in the diferent values obtained by current measure-
ments is that it is not clear whether these numbers refect diferent systematic uncertainties 

4Note that in principle there’s a big assumption being used here: We assume that the basic physics 
describing atoms and molecules is the same now as when and where the light was emitted. 

192 



in the diferent methods, or whether the physics of the diferent methods means that they 
are measuring fundamentally diferent things. 

Another useful parameter is a critical density: 

3H2c2 

ρcrit 

ρcrit = 
8πG 

. (22.25) 

We can normalize density to this value: 

ρ 
Ω ≡ , (22.26) 

and then rearrange the Friedmann equation using this defnition: 

8πGρ kc2 ρ kc2 

1 = − = − , (22.27)
3H2c2 a2H2 a2H2ρcrit 

or 
kc2 

Ω − 1 = 
a2H2 

. (22.28) 

This lets us see the signifcance of ρcrit: 

• If ρ > ρcrit, then Ω > 1 and we must have k positive. We must have a spatially closed 
universe if ρ > ρcrit. It can be shown in this case that the universe expands to a 
maximum size, then recollapses. 

• If ρ < ρcrit, then Ω < 1 and we must have k negative. We must have a spatially open 
universe if ρ < ρcrit. It can be shown in this case that the universe expands forever. 

• If ρ = ρcrit, then Ω = 1 and we must have k = 0. We must have a spatially fat universe 
if ρ = ρcrit. It can be shown in this case that the universe expands forever, but (in most 
cases) with ever decreasing speed. (There is one interesting an important exception to 
this trend, which we describe in more detail below.) 

To know which of these options corresponds to our universe, we need to know how the 
universe behaves depending on the mixture of “stuf” that goes into it. This is in general a 
complicated problem, but we can get insight by looking at a couple of illustrative limiting 
cases. Let’s take a universe with k = 0 and fll it with matter in the form of dust5 . In this 
limit, the total number of dust particles is fxed, but their density changes as a(t) changes: � �3 3a(now) a 

ρM (t) = ρM (now) ≡ ρ0
0 . (22.29) 

a(t) a(t)3 

When you plug this in to the Friedmann equation (with k = 0), you fnd that a(t) can be 
solved using a power-law in time: � �n 

t 
a(t) = a0 . (22.30)

t0 

Running this through Eq. (22.22), we fnd n = 2/3. This tells us that in a spatially fat 
“matter-dominated” universe, the scale factor grows as a function of time as a ∝ t2/3 . 

5Recall that “dust” can be thought of as a perfect fuid with P = 0. 
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This solution implies an expanding universe. If you run it backwards, it implies that 
a = 0 at some point in the past. This means that all spatial locations were smashed into a 
single zero-size point (assuming that the FRW model holds all the way back to that moment 
— perhaps a rather big assumption!). Spacetime itself comes into existence as we evolve 
from that moment. The birth of all of space is known as the “Big Bang.” Notice it is not an 
explosion into space — it is the creation of space itself. There wasn’t any “there” to explode 
into until the Big Bang happened! 

Another representative example: a universe flled with radiation. Imagine that the num-
ber of photons is fxed, but their density varies as a(t)−3 . In addition, each photon has an 
energy that itself varies as 1/a(t) — the redshift efect. This implies that the energy density 
of radiation obeys � �4 

a0
ρR(t) = ρ0 . (22.31) 

a(t) 

This also admits a power-law solution; running it through Friedmann, we fnd a(t) ∝ t1/2 in 
a “radiation-dominated” universe. 

One last example has been found to be very important — “vacuum energy,” also known 
as a “cosmological constant.” The vacuum energy arises in quantum feld theory as an 
energy associated with the ground state of quantum felds. Its key property is that it must 
be invariant with respect to Lorentz transformations in the freely-falling frame: T µν ∝ ηµν 

in the FFF. This means that this variety of “stuf” looks like a perfect fuid, but one with 
negative pressure: 

PΛ = −ρΛ . (22.32) 

We can see how this contribution evolves by enforcing the rule that the stress-energy tensor 
be divergence free; doing so, we fnd out that ρΛ is constant with time. This rather odd 
behavior is a consequence of the fact that this “fuid” is associated with the vacuum itself. 

When we plug this behavior for the density into the Friedmann equation, here’s what we 
get: � �2 

ȧ 8πGρΛ 
= 

2a 3c r 
8πGρΛ 

ȧ = ±a 
3c2" r # 

8πGρΛ 
a(t) ∝ exp ±t . (22.33)

3c2 

This solution yields exponential expansion. (Or contraction; however, expansion dominates, 
since the contracting solution rapidly crushes away its own relevance.) This case is the 
exception to k = 0 describing expansion with ever decreasing speed. Exponential expansion 
for a(t) accelerates with time. 

The three cases discussed here — matter-dominated, radiation-dominated, vacuum-energy-
dominated — are idealized, but demonstrate how diferent contributions to the universe give 
diferent ways in which a(t) evolves with time. We generally expect a mixture of difer-
ent ingredients, for which these power-law solutions don’t apply. But, these limits provide 
asymptotic solutions which are useful for guiding our understanding. The general case is not 
too hard to solve for by integrating the Friedmann equation numerically. By measuring the 
rate of expansion at many diferent times and comparing to diferent models, we can infer 
what our universe is (apparently) made of. 
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22.5 Measurements and our universe 

What we really want, then, is to measure a (which is encoded in the redshift of distant 
sources) at many values of t. This will let us build up a(t); connect this to some good 
models for matter in the universe, and we should be able to learn something interesting. 

Our main tool for doing this is to measure the distance to diferent objects. Since light’s 
travel speed is known, distance tells us the time at which light was emitted. Time or distance 
plus redshift lets us build a(t). Two tools are particularly important for doing this: 

• Standard rulers are sources whose size is known by some physics. We compare the 
apparent size to the physical size; the ratio tells us the source’s distance. 

• Standard candles are sources whose intrinsic brightness is known. Compare the appar-
ent and intrinsic brightness; the ratio again tells us the source’s distance. 

Doing measurements of this kind is an industry. The basic idea is to build a large data set 
containing high-quality data describing distance versus redshift for class of sources, and then 
fnd the solution to the Friedmann equations — some self-consistent solution with H0, ΩM , 
ΩΛ, Ωr, and k — that bests describes these data. 

Nearly current data6 (at least, as of the writing of these notes) tells us 

ΩM = ρM /ρcrit = 0.311 ± 0.006 (22.34) 

ΩΛ = ρΛ/ρcrit = 0.689 ± 0.006 (22.35) 

Ωtotal ≡ ΩM + ΩΛ = 0.9993 ± 0.0019 . (22.36) 

(The contribution of radiation, Ωr, is so small it doesn’t show up in this table.) The data 
are consistent with k = 0, telling us that our universe appears to be spatially fat. 

This is lovely ... but there is some weirdness under the hood. Here are a few current 
mysteries: 

1. What’s the real value of H0? As mentioned, the value of H0 is something that 
diferent techniques disagree on. The table above is based on one of those values (which 
is “self consistent” with the technique that contributes the most to that dataset), but 
other values difer. Is there something prosaic skewing some of the measurements? Or 
is there something deeper going on — perhaps we have overlooked some contributor 
to the Friedmann equations whose importance is not obvious right now? 

2. Why is k = 0? One can show that if Ω − 1 = ϵ, then |ϵ| grows with time in a matter-
or radiation-dominated universe (becoming larger in magnitude, whether positive or 
negative). In other words, the deviation from spatial fatness should be magnifed as the 
universe evolves, if the universe is matter or radiation dominated. Observations indeed 
indicate that our universe is matter dominated now, and was radiation dominated long 
ago (greater than about 13.5 billion years ago). For ϵ to be so close to zero today, it 
would have had to be even closer — many digits closer — at a very early time in the 
universe’s history. 

If, however, the universe is not matter or radiation dominated, but is instead vacuum-
energy dominated, then it is not hard to show that Ω − 1 evolves to zero as a(t) 

6Numbers taken from https://pdg.lbl.gov/2021/reviews/rpp2021-rev-cosmological-parameters.pdf 
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exponentially expands. A way out is thus to imagine that the universe was in such a 
state at very early times — perhaps very, very early in the universe’s history, before it 
became radiation dominated. The idea that our universe behaved this way constitutes 
the theory of cosmic infation. 

Infation comes in diferent favors, depending upon details of how one designs the 
energy of the “vacuum” (more correctly, the false vacuum) that drives the expansion. 
The version most people look at for this today, whose foundations were developed by 
Alan Guth about 40 years ago, suggests that our universe exponentially infated for 
about 10−30 seconds at a very early time. If this is the case, then infation very likely 
left a mark in the form of very weak gravitational waves that have a unique and very 
broad spectrum, stretching from the band to which LIGO is sensitive now, down to 
frequencies of order 1/(billions of years). Searching for the imprint of these waves is 
one of the top problems in observational cosmology today. 

3. What is the matter that contributes to ΩM ? If we add up all the matter we can 
see that produces light — stuf we know about from the standard model of particle 
physics — we get 

Ωb = 0.0489 ± 0.0003 . (22.37) 

(The b on this symbol stands for “baryon,” since most of the mass comes from protons 
and neutrons and the atoms that are built from them.) This is way smaller than ΩM = 
0.311. The remaining ΩDM = 0.262 is apparently some kind of “dark” matter. We can 
see its gravitational infuence, but have never detected any “dark matter particle” in 
any experiment. Lots of people have proposed diferent ways that matter can produce 
gravity, but (apparently!) not couple to electromagnetic felds (or, at best, couple 
weakly enough to evade all detection limits so far). We’re still working on this one. 

4. What is ΩΛ? The fact that the vacuum energy plays an important role in cosmology 
today was a rather large surprise when it was frst clearly measured about 25 years 
ago. We are kind of bafed as to what this ingredient in the universe’s “energy budget” 
consists of; indeed, just last year, preliminary evidence was presented hinting that it 
might not be the “cosmological constant” that one normally thinks of in this context, 
but might be something even weirder7 . 

It is very interesting that when we apply general relativity to compact, strong-gravity 
objects, it passes every quantitative test we have been able formulate so far. When we apply 
general relativity on the largest scales, we fnd it can describe what we observe just fne, but 
it tells us that our universe is even weirder than we realized. This is a story which is not 
even close to being over. 

7See https://arXiv.org/abs/2404.08056 for references presenting this preliminary evidence, as well as 
discussion urging caution about the “evolving dark energy” interpretation. 
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