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1.1 Goal of this course 

Our goal this semester is to understand Albert Einstein’s theories of relativity, and what 
they tell us about the structure of the laws of physics. We will study the special theory of 
relativity in great detail for most of the semester. In the last several weeks of the term, we 
will briefy explore general relativity, focusing on situations in which what we learn from 
special relativity can be “upgraded” to the general case with relative ease. 

More generally, our goal this semester is to think about how we formulate physics in such 
a way that a deep underlying principle is built into these laws. During the frst few weeks of 
this course, we will motivate how on both theoretical and experimental grounds we came to 
understand that our universe respects a principle we call Lorentz symmetry. We will fnd that 
some of the laws of physics we learned previously exactly respect this symmetry, whereas 
others are approximations (albeit incredibly accurate approximations under the “everyday” 
conditions that one typically encounters in our day-to-day life, and even in cases where very 
precise measurements can be made). We will then develop a way of representing physical 
laws such that they automatically satisfy Lorentz symmetry. You can take this as a kind of 
“warm-up exercise” for including other symmetries that nature respects, and other principles 
that we may need to build into physics. 

1.2 Newtonian physics and Galilean relativity 

Let us begin by examining Newtonian physics. Newton’s laws obey a law of relativity, though 
it is not the one that we usually think of when we discuss “relativity” in physics. Rather 
than Einstein’s relativity, Newton’s laws respect what we call Galilean relativity, following 
principles that were originally laid out by Galileo. We will begin by examining Galilean 
relativity in order to see a relativity principle in action, based on laws of physics that we 
thoroughly know and love . . . and to see an interesting shortcoming we quickly fnd when we 
combine Galilean relativity with physics that we encounter early in our physics studies. 

To begin this discussion, we need to defne some terms: 

• Event: An “event” is something that happens somewhere at some time. An event is 
essentially a particular point in both space and time. A key feature is that the event’s 
reality is independent of how we label it, which can depend on our “reference frame.” 

• Reference frame: A system for labeling events in space and time. One can regard 
a reference frame as essentially a clock and a set of coordinate axes that are tied to a 
particular observer. For example, the professor, standing in front of the classroom uses 
a clock on the wall to defne time, and takes the position of their feet as the origin. 
They imagine an x axis pointing from their feet toward the back of the classroom; a 
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y axis pointing from the professor’s feet to their left, and a z axis pointing from the 
professor’s feet up to the ceiling. (We have carefully defned the axes so that they form 
a right-handed coordinate systems. If you are unfamiliar with this concept, please ask 
one of the staf for a clarifcation.) 

A student, sitting in the front row, sets up a similar reference frame. Also using the 
wall clock for time, the student likewise defnes their position as the origin, imagines 
an x axis that points from their feet to the front of the classroom (they are facing in 
the opposite direction as the professor, so “forward” for them is opposite of “forward” 
for the professor), a y axis pointing from their feet to their left, and z axis pointing 
from their feet to the ceiling. 

These two reference frames assign diferent labels to events, but both are perfectly 
valid provided they are used consistently. � 
Aside: This is a good point to introduce some notation and defnitions. Once we’ve 

introduced coordinate axes, it is very useful to defne unit vectors which point along 
these axes. We will call the unit vectors along the x, y, and z axes ex, ey, and ez 

respectively. ex is a dimensionless vector of magnitude 1 that is parallel to the x 
axis; likewise for the other two unit vectors. If more than 1 reference frame is being 
discussed, we will include some kind of label to distinguish them; e.g., exP is the x 
unit vector for the professor’s reference frame; exS is the x unit vector for the student’s 
reference frame. 

In our typed-up notes, we will use boldface to denote vectors in 3-dimensional space. 
This does not work well in chalk, so we will instead use an undertilde (e.g., ex) when � ˜we write such vectors on the chalkboard. 

• Geometric object: Something with properties that exist independent of the reference 
frame that we use to describe it. 

An example of a geometric object is an event. Suppose that at 2:47 pm on 4 September 
2024, a piece of chalks strikes the professor’s forehead. All observers note this event. They 
may assign diferent labels to it — the professor calls it t = 14:47 04-09-2024, x = 0, y = 0, 
z = 1.8 meters; the student calls it t = 14:47 04-09-2024, x = 3 meters, y = −1 meter, 
z = 1.8 meters. Our labels difer, but they describe exactly the same thing. This very much 
like the way in which diferent languages use diferent sounds to describe the same thing: 
whether you call a bound collection of pages and words a book, un libro, ein Buch, or any 
of the many other words used by people around the world, you know what it is. 

Another example of a geometric object is a vector. Consider a meter stick that points 
from a table at the front of the classroom. All observers agree1 that it has a length of 1 
meter, and all agree that is poking out of the table at some angle. However, depending on 
the reference frames being used, diferent observers will use diferent representations of that 
vector. This is of course fne as long as the diferent representations are used consistently 
in describing the physics of the system under study. Figure 1.2 illustrates this concept in a 
simple 2-dimensional example. 

1The agreement among diferent observers about the length of this stick in this example won’t hold up 
once we move beyond Galilean relativity! Hold that thought for now. 

2 



A

B

C

Figure 1: Three observers, three diferent inertial reference frames. (Imagine they are in a 
gravity-free environment so that each observer is inertial.) Each agrees that there is a large 
stick embedded in the table, making a 45◦ angle with its top and side. Observer A orients √ 

A A Bit along the direction (ex + ez )/ 2; observer B orients it along ez ; and observer C orients √ 
it along (eCx − eCz )/ 2. These diferent representations are consistent, provided we correctly 
relate each observer’s choice of coordinate axes to those of the other observers. 

Much of relativity, whether it is Galileo’s or Einstein’s, is about making sure that we 
carefully and consistently describe things in diferent reference frames, and that we correctly 
relate the description of quantities according to one reference frame to those quantities 
according to another reference frame. Geometric objects are excellent tools for describing 
physics because objects like events, vectors, and tensors (which will be introduced and defned 
soon) have a meaning that transcends a particular reference frame’s representation of that 
object. It is very important (and useful) to maintain a distinction in your mind between the 
object (e.g., a particular vector) and the representation of that object (e.g., the components 
of that vector according to some given frame of reference). 

A particularly important reference frame is an inertial reference frame, or IRF; we will 
use this term enough that it is worth abbreviating. This is a frame of reference in which a 
body’s momentum is constant if no forces act on it: It is an unaccelerated reference frame. 
Non-inertial reference frames certainly exist, and require us to introduce what are sometimes 
called “fctitious” or “non-inertial” forces2 , like the centrifugal force or the Coriolis force. 

1.3 Galilean transformations 

How do we relate quantities as described in one reference frame to those in another? We 
can deduce how to do this by thinking about the (hopefully, straightforward) connection 
between how the two frames relate the representations of geometric objects. Doing so, we 
build a mathematical “machine” for connecting quantities between two reference frames. In 

2I prefer “non-inertial” to “fctitious,” since “fctitious” sounds quite a bit like “fake.” Anyone who has ever 
crashed a bike taking a turn too fast or hurt their neck on an amusement park ride can tell you that there 
is nothing at all fctitious about those forces if you happen to be in the non-inertial frame. 
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Newtonian physics, we call the resulting mathematical machine the Galilean transformation. 
Let us say IRF C is used by the class to label objects and events; IRF P is used by the 

professor. The professor and the class are oriented in the same way, so that their x, y, and z 
axes all point in the same direction. However, the professor is walking across the classroom: 
the class sees the professor moving with constant speed v in the x direction. How do we 
relate these two IRFs? 

Consider time frst. Is there any diference in time according to the class and to the 
professor? In Newtonian physics, the answer is no: Both the class and the professor get 
their time from the wall clock, no matter whether they are in motion or not. So we have 

tP = tC . (1.1) 

 

Their representations of space difer, however. An object at a fxed position in IRF C “falls 
back” along x in IRF P : 

 

− vt x = xP C P 

 

= xC − vtC , (1.2) 
yP = yC , (1.3) 
zP = zC . (1.4) 

(Notice that and coincide when The which coordinates moment at0t tx x = = .P C P C 

 

coincide should be specifed when the relationship between the IRFs is laid out.) The set of 

 

four equations, (1.1)–(1.4), relating quantities in P to quantities in C is a Galilean spacetime 
transformation. It can be neatly written as a matrix equation:  

tP 1 0 0 0 tC  
xP 

yP 

 = 
 
−v 1 0 0 
0 0 1 0 

 · 
 
xC 

yC 

 . (1.5) 

zP 0 0 0 1 zC 

Writing out 4 × 4 matrices like this gets unwieldly; a more compact form is 

x⃗P = G · ⃗xC . (1.6) � 

� 

Aside: Here is another good point to introduce some more notation. When studying 
relativity, it will be useful to make “4-vectors,” vectorial quantities with 4 components: the 
3 spatial ones that you are probably familiar with from previous coursework, plus 1 more for 
a time component. In this course, whenever we write an object with an overarrow like x⃗P , 
it refers to such a 4-vector. The same symbol in boldface or with an undertilde (xP or xP )

˜refers to only the spatial components. (It is worth noting that other conventions exist, and 
we will briefy mention at least one of them when we discuss tensors. For 8.033, I will stick 

 

with the overarrow for 4-vectors and boldface/undertilde for 3-vectors.) 
How do we invert the relation we just wrote down? That is, given Eq. (1.5) relating 

quantities in frame C to those in frame P , how do we relate quantities in frame P to those 
in frame C? On the grounds of physics, this is simple: if C says that P moves with velocity 
v = vex, then P says that C moves with v = −vex. We quickly deduce that 

tC 1 0 0 0 tP  
xC 

yC 

 = 
 
v 1 0 0 
0 0 1 0 

 · 
 
xP 

yP 

 , (1.7) 

zC 0 0 0 1 zP 
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which we will write more compactly as 

x⃗C = G ′ · ⃗xP . (1.8) 

It is easy to verify that G ′ = G−1 , i.e., that G ′ is the matrix inverse of G. This is an exercise 
on problem set #1. 

Another example of a Galilean transformation: Suppose IRFs C and P are at rest with 
respect to each other, but are rotated about the z axis, as shown in Figure 1.3. 

xC

yC

xP

yP

φ

Figure 2: x and y axes for IRFs C and P , related to each by a rotation about the z (which 
is the same to both frames). 

Space and time are related between the two frames with the equations 

tP = tC , (1.9) 
xP = xC cos ϕ + yC sin ϕ , (1.10) 
yP = −xC sin ϕ + yC cos ϕ , (1.11) 
zP = zC . (1.12) 

The spatial part of this transformation is just a simple rotation. We can write this  
tP 1 0 0 0 tC  
xP 

yP 

 = 
 
0 cos ϕ sin ϕ 0 
0 − sin ϕ cos ϕ 0 

 · 
 
xC 

yC 

 , (1.13) 

zP 0 0 0 1 zC 

or 
x⃗P = GR · ⃗xC , (1.14) 

where GR denotes a Galilean transformation that’s a pure rotation. 
The examples discussed here are not comprehensive3 , but hopefully give you the gist of 

the idea. We will explore these concepts a bit more on the problem sets. 
3There’s another very simple one that is worth mentioning: A shift of origin. Suppose the professor and 

the class have the same orientation, but the professor center spaces on their location, and perhaps their 
watch is set to a diferent time zone. Then, x⃗P = x⃗C +∆x⃗, where ∆x⃗ is a constant ofset. 

5 



1.4 Transformation of velocities and accelerations 

A key feature of the transformations we have been discussing is that they leave inertial frames 
inertial. To see this, let’s go back to our frst example, the professor moving with speed v in 
the x direction as seen by the class and examine how an object’s velocity transforms under 
Galilean transformations. Consider an object moving with velocity u, where ux = dx/dt, 
uy = dy/dt, uz = dz/dt. (Notational note: We will use the letter v or v to denote the relative 
velocity of two diferent frames of reference; we will use the letter u or u to denote velocity 
within some specifed frame.) 

Suppose the class sees some object moving with velocity uC , with components 

u xC = 
dxC 

dtC 
, uy

C = 
dyC 

dtC 
, u zC = 

dzC 
. (1.15)

dtC 

What are the components as seen by the professor? Let’s apply the Galilean transformation 
rules and fnd out: 

dxPx
Pu = 

dtP 

d 
= 

dt 
−( )vt xC C 

P 

d 
= (xC − vtC )

dtC 

= u xC − v . (1.16) 

By a similar calculation, we see that uy
P = uy

C , uz
P = uz

C . This is nothing more than the 

x
P 

“normal” velocity transformation that we are familiar with from Newtonian mechanics. 
How about accelerations? As usual, we have a = du/dt. Imagine that the object is seen 

by the class to have acceleration a, and use the Galilean transformation to deduce what the 
professor sees for its acceleration: 

du x
Pa = 

dtP 

d 
= (u 

dtP 

d 

x
C − v) 

= (u 
dtC 

x
C − v) 

= a xC . (1.17) 

We likewise fnd ayP = ayC , azP = azC : the class and the professor agree on the object’s acceler-
ation, at least as long as v is constant in time. As long as the two frames are not accelerated 
with respect to one another, Galilean transformations take one inertial representation and 
yield another inertial representation. 
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1.5 Relativity, covariance, and invariance 

You have now been introduced to the workings of Galilean relativity. Having seen a few 
examples of how it works, this is a good opportunity to carefully defne a few terms that we 
are going to use a lot in this course. 

• Relativity: We’ve been using “relativity” quite a bit without actually defning it explic-
itly. A relativity framework is just a way of transforming observables — particularly 
the representation of geometric objects which we use to describe important quantities 
in physics — from the reference frame of one observer to that of another. 

• Covariance: We describe a law or principle of physics as covariant if it holds in all 
frames of reference. For example, as you will explore on a problem set, the law of 
momentum conservation is covariant in Galilean relativity. This does not mean that 
observers in all inertial frames agree on the value of an object’s momentum; indeed, 
you should be able to convince yourself that you can make that object’s momentum 
take any value at all by changing frames of reference. However, all observers agree that 
if that body interacts with another body, then the momenta of the two bodies after 
their interaction is the same as it was before. 

• Invariance: Some quantities are in fact exactly the same in all frames of reference. 
The mass of a body is the same to all observers in Galilean relativity; a particular 
notion of mass is the same to all observers in Einstein’s relativity; a body’s electric 
charge is the same to all observers in all forms of relativity. Quantities which are the 
same in all frames of reference are called invariants. Learning when and how to exploit 
invariance is one of the skills we will practice this term. Used well, invariants often 
make it possible to signifcantly simplify a calculation. 

1.6 Transformation of waves in Galilean relativity 

A particularly important example for our discussion is to consider how the representation of 
a wave is afected by a Galilean transformation. Let us frst consider waves in general. We 
imagine there is some feld F that propagates through space and has the functional form 

F = F (x − wt) . (1.18) 

(More generally, we should have F = F (r − wt), where r is a general displacement in three 
dimensions; we focus on the 1-dimensional limit for simplicity.) The feld F depends on the 
specifc physics of the wave under consideration: it could be the pressure of a sound wave, or 
the height of a water wave, or the displacement from equilibrium of an element of a spring, 
or . . . Sufce it to say that many phenomena propagate as waves. The quantity w is the 
speed with which the wave propagates; its value also depends on the specifc physics of the 
system under consideration. 

A wave of this form satisfes the diferential equation 

∂2F ∂2F − w 2 = 0 . (1.19)
∂t2 ∂x2 

It should be emphasized that it can take a fair amount of labor and analysis for the physics 
of the phenomenon under study to reduce to (1.19). This form could emerge from a detailed 
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study of displacement and tension along a string, or a study of weight versus buoyancy in 
a fuid, to give two examples. Equation (1.19) which emerges as the typical outcome of 
performing all this labor and analysis is known as the wave equation. 

Suppose that t and x in Eq. (1.19) are quantities as measured by the class. How does 
the wave behave according to the professor? On an upcoming problem set, you will examine 
this problem by applying a Galilean transformation to the wave equation. You will fnd that 
the wave equation changes such that w → w − v. In other words, if the class describes the 
wave as 

then the professor describes the wave as 

F = F (xC − wtC ) , (1.20) 

F = F (xP − (w − v)tP ) . (1.21) 

This is as expected given our discussion of how velocities transform in Galilean relativity. 
Equations (1.20) and (1.21) have a very important consequence: they tell us that there 

is a particular, special IRF in which the wave speed is w. This is the “rest frame” of the 
medium that supports the wave. For example, for a water wave, the wave’s speed is as 
measured in the frame in which the water does not fow. 

At the end of the 19th century, everything that we have discussed here was quite well 
understood. In particular, “natural philosophers” (which includes what we more or less think 
of as physicists today) of this time period had studied many wave phenomena, and all of 
them were of this form: a wave was a disturbance that propagated in some kind of medium, 
and the “natural” wave speed corresponded to the rest frame of that medium. 

This lasted until Maxwell formulated the equations of electrodynamics that bear his 
name. Then things got interesting. 

Nature and Nature’s laws lay hid in night: 
God said “Let Newton be!” And all was light. 

Alexander Pope (1688 – 1744) 

It did not last: The Devil howling “Ho! 
Let Einstein be!” restored the status quo. 

John Collings Squire (1884 – 1958) 
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Lecture 2 
Electromagnetic radiation and Galilean relativity 

2.1 An aside ... why not accelerated reference frames? 

Our discussion of Galilean relativity described in some detail how to relate quantities mea-
sured in one IRF to quantities measured in another IRF. However, one could imagine frames 
whose relative motion is accelerated. Could we not broaden our discussion to include such 
non-inertial relative motions? 
Certainly we could include accelerations between reference frames. Doing so requires 

that we introduce non-inertial forces in order for Newton’s laws, in particular F = ma, to 
work. Our main reason for not doing this is simplicity — including accelerations makes the 
analysis more cumbersome, and is a diversion from the main thrust of our discussion. It 
is, however, a well-developed topic, and interested students can certainly fnd discussions of 
this in many excellent textbooks. 
What if the diferent frames are accelerated, but the frames experience the same accel-

eration? In such a case, one could imagine defning a transformation that takes us from 
one frame accelerating with a to another frame that is also accelerating with a. Indeed, 
in this circumstance it is not hard to see that the Galilean transformations we discussed 
in the previous lecture work perfectly, translating quantities from one accelerating frame to 
the other. Given this, one might wonder: if everything experiences the same acceleration, 
does that acceleration mean anything interesting? Given that all geometric objects in all 
the frames that we consider experience the same acceleration, perhaps we could just defne 
this as a somewhat peculiar notion of “rest.” 
This question in fact gets at the heart of the issues and concepts which lie at the core of 

Einstein’s general relativity, hinting at the principle of equivalence. We will return to a very 
similar discussion in several weeks in a more Einsteinian context. 

2.2 Galileo meets Maxwell 

In our previous discussion, we noted that wave equations have an interesting property: the 
physics of the wave introduces a special speed, which we labeled w. This describes the 
speed with which the wave propagates with respect to the medium that supports the wave. 
An observer moving with respect to the medium will observe the wave propagating with a 
diferent speed, in accordance with how velocities add in Newtonian mechanics. 
This made perfect sense until roughly the late 1800s. To see what started confusing the 

situation, consider Maxwell’s equations: 

∇ · E = ρ/ϵ0 , ∇ · B = 0 , (2.1) 
∂B ∂E ∇× E = − , ∇× B = µ0J + µ0ϵ0 . (2.2)
∂t ∂t 
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Let us consider the vacuum limit (ρ = 0, J = 0), and let us take the curl of the curl equations. 
Using some vector calculus identities, this is straightforward. Look at the curl of the left-
hand sides of the curl equations frst: using vector calculus identities, it is straightforward 
to show that 

∇× (∇× E) = ∇ (∇ · E) −∇2E , 

∇× (∇× B) = ∇ (∇ · B) −∇2B . (2.3) 

Look next at the right-hand sides: � � 
∂B ∂ ∂2E ∇ × � 

− = − (∇ × B) = −µ0ϵ0 ,
∂t ∂t ∂t2 � 
∂E ∂ ∂2B 

(2.4) 

∇ × µ0ϵ0 
∂t 

= µ0ϵ0 (∇ × E) = −µ0ϵ0
∂t ∂t2 

. (2.5) 

Putting the right-hand and left-hand sides together, using ∇ · B = 0 and using ∇ · E = 0 
when ρ = 0, we see that E and B each obey wave equations: 

∂2E − 
1 ∇2E = 0 , (2.6)

∂t2 µ0ϵ0 

∂2B 1 − ∇2B = 0 . (2.7)
∂t2 µ0ϵ0 

Further, we see that the parameter w which characterizes the speed of the wave is given by √ 
1/ µ0ϵ0. This speed is given the label c (which comes from the word celeritas, meaning 
swiftness), and takes the value 

c = 2.99792458 × 108 meters/second 

≃ 3 × 108 meters/second 

≃ 1 foot/nanosecond . (2.8) 

The equality on the frst line is exact. A we’ll discuss briefy a bit later in the course, we 
now actually use this value to defne the meter. The near equality on the second line is good 
enough for most of the calculations we do in this class. The fnal near equality is amusing 
for those of us educated in parts of the world that still use inches and feet as their common 
measurement unit, and can be surprisingly useful in a number of practical situations. 
If we imagine that E and B only depend on t and x, then the wave equations reduce to 

∂2E 1 ∂2E − = 0 , (2.9)
∂t2 µ0ϵ0 ∂x2 

∂2B 1 ∂2B − = 0 , (2.10)
∂t2 µ0ϵ0 ∂x2 

which have solutions of the form E(x ± ct), B(x ± ct). 
When an analysis of this form was frst done in the late 19th century, it was regarded as√ 

something of a triumph. In particular, the fact that the equations predicted c = 1/ µ0ϵ0 was 
somewhat stunning. Bear in mind that ϵ0 was an empirically measured parameter that played 
a role in determining the capacitance of a conductive system; µ0 was a similar parameter 
that played a role in determining a system’s inductance. The fact that parameters that were 
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light 
source

beam splitter
mirror

mirror

L1

L2

determined from static or very slowly varying felds could be so intimately related to the 
speed of light (whose value had been known to fairly good accuracy for quite some time, 
and was certainly known to be incredibly fast) was regarded as amazing. This association 
cemented the connection between light and electromagnetic felds. 
Like most wave equation analyses, this calculation picked out a special speed. But, in 

what frame did we do this analysis? 

2.3 The Michelson-Morley experiment 

The consensus of the late 19th century was that electromagnetic waves are a disturbance in√ 
the so-called “luminiferous ether” (aka the “ether”), and that c = 1/ µ0ϵ0 is the speed of 
propagation with respect to that ether. In this framework, the ether defnes a preferred rest 
frame, and the speed of light should only be c if we are in that preferred rest frame. 
This line of reasoning tells us that if we measure light propagating across a laboratory 

that moves relative to the ether, then we should fnd that it moves with a speed that is not 
c. Our labs are on the surface of the Earth; the Earth spins on its axis, and orbits the Sun. 
Even if our lab is at rest with respect to the ether at some moment, it will no longer be at 
rest later in the day, or later in the year. 
Albert Michelson and Edward Morley carried out an ingenious experiment in 1887 to test 

this hypothesis. Their idea was to use the wave nature of light to build an interferometer. 
The basic experimental setup is sketched in Fig. 1. 

Figure 1: Basic layout of the interferometer used in the Michelson-Morley experiment. A 
beam of light enters from the source at left and is split by the beam splitter (a piece of 
partially silvered glass which refects half of the light up, and allows half to transmit to the 
right). Both of these beams are refected at the mirrors at the ends of the arms, return to the 
beam splitter, and then recombine. Exactly what happens when they recombine depends on 
the optical phase diference they experience along their two travel paths. 
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What happens when the light returns to the beam splitter? The answer depends on the 
details of the paths that the light takes in the two arms. To analyze this, let’s make some 
defnitions: 

• Let t1 be the travel time for light to go from beam splitter to mirror to beam splitter 
in arm 1 (of length L1) 

• Let t2 be the travel time in arm 2 

• Defne ∆t ≡ t2 − t1. 

The quantity c ∆t is known as the optical path diference; it measures the diference in 
distance traversed by light as it back and forth through the two arms. Dividing this by λ, 
the wavelength of the light, yields1 the optical phase diference. 
Because light is a wave, the optical phase diference is an extremely important quantity 

for understanding what happens when light recombines at the beam splitter. If c ∆t/λ = 
0, ±1, ±2, . . ., then the light constructively interferes: Peaks and troughs in the wave from 
one arm line up with peaks and troughs in the wave from the other: 

+ =

1Strictly speaking, the optical phase diference is 2π times this quantity. 
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On the other hand, if c ∆t/λ = ±1 
2
, ±3 

2
, ±5 

2
, . . . then the light destructively interferes: 

Peaks in the wave from one arm line up with troughs in the other: 

+ =

In general, we expect c ∆t/λ to be some value between an integer multiple of 1 and an 
(odd) integer multiple of 1 

2
; the recombined amplitude will be some value between the peak 

of perfectly constructive interference, and the zero of perfectly destructive interference. In 
addition, Michelson and Morley used white light as their light source. This means that their 
measurement using a wide range of wavelengths. As such, we expect the light read out of 
the beam splitter (where the eye is placed in Fig. 1) to show an interference fringe pattern, 
with constructive interference for some wavelengths, destructive interference for others, and 
many values in between. 

Figure 2: Example of a fringe pattern from readout of a Michelson-type interferometer. 
Source: https://commons.wikimedia.org/wiki/File:MichelsonCoinAirLumiereBlanche.JPG 

© Alain Le Rille on Wikimedia Commons. License CC BY-SA. All rights reserved. This content is excluded 
from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 
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beamsplitter is 

t1 
L1 

c − v 
+ 

L1 

c + v 
2L1 

c 

� 
1 

1 − v2/c2 

� 

. 

asymmetry between the two terms is because of the asymmetry in the light’s 
to the apparatus along the two legs: in the frst term, the mirror is “running 
light, so relative to the apparatus the light’s speed is c − v; in the second 
switches direction, and the beam splitter is now “running toward” the light, 

relative speed c + v. 
2 is a bit more complicated to analyze, as the light is in this case moving 
to the motion of the apparatus in the rest frame of the ether. Figure 3 lays 

geometry: 

With this background in mind, let us compute what optical phase diference we expect 
if c is the speed of light with respect to the ether, and if the Michelson-Morley apparatus 
moves with speed v with respect to the ether. More specifcally, let’s imagine that the lab’s 
velocity v is parallel to arm 1. The time it takes for light to travel up arm 1 and then back 
to the 

= = (2.11) 

The motion 
relative away” 
from the term, 
the light with 
a 
Arm perpen-

dicular out the 

Figure 3: Light travel in arm 2 of the Michelson-Morley apparatus, as viewed in the rest 
frame of the ether. The light starts at the lower left, travels to the mirror, bounces, and 
returns to the upper left. During that time, the beam splitter moves from the position in 
the lower left to the position in the upper left. The light takes a total time t2 to travel from 
the beam splitter to the mirror and back to the beam splitter. In that time, it covers a 
horizontal displacement of L2 twice, and moves through a vertical displacement vt2. 

We defned t2 as the time it takes for light to travel from the beam splitter to the mirror 
and back. As shown in the fgure, in the rest frame of the ether the light moves on a 
diagonal path with horizontal displacement L2 twice, and with vertical displacement vt2. 
The equation governing t2 is thus given by s �2� 

ct2 = 2 L2
2 + 

vt2 
, (2.12)

2 

from which we fnd 
2L2 1 

t2 = p . (2.13) 
c 1 − v2/c2 

Combining this with our result for t1 yields " # 
2 L2 L1

∆t = p − . (2.14) 
c 1 − v2/c2 1 − v2/c2 
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At this point it is a useful to examine some numbers, in particular what we expect for 
v/c. The speed of the lab with respect to the ether is roughly bounded by the orbital speed 
of the Earth about the Sun, so v ≲ 2 × 104 meters/second. The speed of light is 3 × 108 

meters/second, so 
v 
≲ 10−4 . (2.15) 

c 
This is a small quantity; the expression we’ve derived for ∆t depends on this ratio squared, 
and even smaller quantity. Examining how this very small quantity enters our analysis, we 
see it is appropriate to use the binomial expansion, (1 + αx)n ≃ 1 + nαx for x ≪ 1, to 
simplify what we have: � � 

2 � � 
2 �� 

2 1 v v 
∆t ≃ L2 1 + − L1 1 + . (2.16)

2 2c 2 c c 

Michelson and Morley introduced one more very important factor into their experiment: 
They made it possible to rotate the interferometer’s arms, efectively exchanging arms 1 and 
2. (They did this by foating their entire optical table, which was built on a very heavy block 
of sandstone, on a pool of mercury. This both allowed the apparatus to rotate with very 
little friction, and provided signifcant isolation from vibrations in the building in which they 
did the experiment.) Rotating the apparatus, we get new light travel times: � 

2 � 
2L1 1 2L1 1 v 

t ′ 1 = p ≃ 1 + , (2.17) 
c 1 − v2/c2 c 2 c2 � 

2 � 
2L2 1 2L2 v 

t2 
′ = ≃ 1 + , (2.18) 

c 1 − v2/c2 c c2 � � 
2 � � 

2 �� 
′ 1 v′ ′ 2 v 

∆t = t − t = 1 + 1 + . (2.19)2 1 L2 2 
− L1 2c c 2 c 

Let us defne δt as the change in the diference of light travel times between the two confg-
urations: 

δt ≡ ∆t ′ − ∆t� �
2 2 2 22 L2v L1v L2v L1v 

= L2 + − L1 − − L2 − + L1 + 
2 2 2 2c c 2c 2c c� � 

L1 + L2 v2 

= . (2.20)
2c c 

Their ingenious trick of rotating the interferometer means that the quantity they measured 
only depends on the sum L1 + L2, rather then depending sensitively on the individual arm 
lengths L1 and L2. 
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With all this laid out, let’s review how this experiment works: 

1. We begin with the experiment in a particular confguration. The experimenter monitors 
light that recombines at the beam splitter (indicated by the eyeball in Fig. 1), seeing 
a fringe pattern much like that shown in Fig. 2. 

2. If there exists an ether and the laboratory is moving with respect to this ether, then 
light traveling in the two arms experiences the optical path diference c ∆t. The initial 
fringe pattern the experimenter measures corresponds to the optical path diference 
associated with this initial confguration. 

3. The entire interferometer is rotated by 90◦ . The experimenter (rotating along with it!) 
monitors the fringe pattern during the rotation. The expectation is that the optical 
path diference will change by c δt during this rotation. This will be visible to the 
experimenter by a shifting of the fringe pattern as the apparatus is rotated. 

One of the beautiful features of an interferometry experiment is that a shift of fringe can 
be measured very precisely. Carefully calibrating the positions of the mirrors, Michelson and 
Morley were confdent that they could measure an optical phase shift c δt/λ ≈ 0.01. This 
would have been plenty to detect the efect of motion with respect to the ether, as can be 
seen by plugging in some numbers for the experiment: 

• Size of the apparatus: L1 + L2 ≃ 10 meters 

• Speed with respect to the ether: (v/c)2 ≃ 10−8 

• Wavelength of light: λ ≃ 500 nm = 5 × 10−7 meters 

The expected optical phase shift due to motion with respect to the ether is thus 

c δt ≃ 0.2 . (2.21)
λ 

This is a factor of 20 larger than what Michelson and Morley could discern, which is huge. 
The value they in fact measured was zero. Since their pioneering experiment in 1887, 

measurements of this kind have been repeated. Measurement technology has improved to 
the point that we can now measure c δt/λ ≃ 10−10 . No motion of an apparatus relative 
to an ether has ever been detected. 

2.4 Explanations 

In 1887, the Michelson-Morley null result was a surprise. Both Michelson and Morley in fact 
considered it to be “failed experiment,” and moved on to other things. However, it became 
clear over the years that the measurement had been done correctly, and the lack of phase 
shift was not experimenter error. This result begged explanation. Over time, four possible 
explanations emerged: 

1. The ether is dragged along by the Earth, somehow, so that our labs are always locally 
at rest with it. 

This hypothesis in fact was the consensus view of how things would work at the time of 
the Michelson-Morley measurement. Part of what was so confusing about their result 
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was that it contradicted other experiments at the time which preferred the ether to be 
“partially” dragged by the Earth; Michelson and Morley’s result implied that any ether 
must be completely dragged along, so that the lab is always at rest with respect to 
the ether. Folding in more modern measurements, the ether drag hypothesis does not 
hold up when we make measurements on very long baselines (e.g., into space) where 
the efect of Earth’s ether dragging should be greatly reduced or negligible. 

2. Maxwell’s equations are wrong. 

This hypothesis simply does not work: no wrongness has ever been found which can 
explain the Michelson-Morley measurements. Electrodynamic efects can be measured 
with exquisite precision, and Maxwell’s equations work tremendously well. 

3. The ether squashes moving objects just enough to compensate for the travel time shifts. 

This explanation “works” in the sense that one can design a squashing that fts the 
data, but raises a new question — how and why do such “length squashings” occur? 

4. There is no ether; there is no special rest frame for Maxwell’s equations. Light travels √ 
at c = 1/ µ0ϵ0 in ALL inertial reference frames. 

The 4th option is where Einstein chose to begin his analysis. After all, no such frame is called 
out when Maxwell’s equations are written down, so on what grounds should we imagine that 
this frame exists? This is where we will focus our studies. 

2.5 Historical note 

It should be noted that the historical record is somewhat unclear regarding the extent to 
which Einstein was infuenced by Michelson and Morley. Some of his statements and writings 
suggest he was not infuenced by their result, though other statements indicate that he was 
aware of the result and that it had some infuence. It is clear, though, that he was aware 
of similar experiments (particularly those of Fizeau, whose experiment you will explore on 
problem set #1). It is fair to say that Einstein was aware the ether hypothesis was having 
trouble fnding experimental support. 
Einstein’s historical motivations aside, with the beneft of over 130 years of hindsight, the 

importance of Michelson and Morley (and of similar experiments done since then) is clear to 
us: these measurements clearly demonstrate that the simple picture of Maxwell’s equations 
being formulated in the “rest frame of the ether” (whatever that ether might actually be) 
cannot be correct. Einstein’s choice of option #4 on the list above appears to be driven 
largely by simplicity: there is no ether and no special rest frame referred to anywhere in our 
formulation of the Maxwell equations, so why would we introduce them? Why not take at 
face value the fact that c emerges as the speed of light with no reference to a particular rest 
frame, and see what that implies? 
Seeing what this implies will be our focus for the next several weeks. 
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Lecture 3 
From Galilean relativity to ... ? 

3.1 Speed of light is c to all observers 

Much of what we will study over the next several weeks boils down to a detailed examination 
of the consequences of Einstein’s hypothesis that all observers measure the speed of light 
to be c. The speed of light is thus an invariant — it is the same for all observers, in 
all frames of reference. As you will hopefully come to appreciate over the course of this 
semester, invariants are incredibly useful: we can exploit the fact that they are the same for 
all observers to facilitate many of the analyses we will want to perform. 
The invariance of the speed of light tells us that the distance light travels per unit time 

is the same to all observers. In the Galilean transformation, we saw that displacement, and 
thus distance between events, varies depending on frame. As a consequence speed (distance 
per unit time) must vary as well. The Galilean transformation is thus inconsistent with the 
idea that the speed of light is the same to all observers: it must be corrected. If displacement 
varies according to the frame of an observer, but something’s speed is invariant, we must 
fnd that time intervals vary by frame. Allowing the time interval to vary by frame is the 
only way that speed (displacement interval per unit time interval) can be invariant. 
It’s worth keeping in mind, however, that the Galilean transformation works very well in 

many circumstances, so it is approximately correct. Our “generalized” transformation law 
must be consistent with Galileo in some appropriate limit.� 

Aside: The invariance of the speed of light also means that it is a great thing on which 
to base a metrology standard. That’s why we take c to be exactly 2.99792458×108 meters per 
second. We then determine the meter to be the distance light travels in 1/(2.99792458×108) 
seconds. Techniques in atomic physics have taught us how to measure time intervals very� 
precisely, so this is a way of getting the meter out that capitalizes on what we measure best. 

3.2 Consequences I 

Before generalizing the Galilean transformation, let’s work through a few “thought experi-
ments” which illustrate some of the consequences of light speed’s invariance. We will consider 
two observers: Observer S is standing in a station; observer T is standing in a train that 
is moving with speed v through the station. These two observers each make measurements 
whose values we will compare. 
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First, imagine there is a light bulb inside the train. This bulb emits a pulse of light at 
some moment; we call this event A. The pulse of light propagates downward through the 
train, striking a photodetector on the foor, which records the moment the light strikes. We 
call this event B. Events A and B are geometric objects; all observers agree on the existence 
of these two things happening, though they may label the coordinates in time and space of 
these events diferently. 
We being our analysis by asking: What interval of time do observers T and S measure 

between events A and B? 

v

T

S h

Let’s do this frst in observer T ’s frame of reference. Observer T sees the light move through 
a vertical displacement h, so they deduce 

∆tT = h/c . (3.1) 

Observers in the station agree that the light moves through a vertical distance h, but also 
see it move through a horizontal distance that depends on the train’s speed: p

h2 + (v∆tS )2 

∆tS = D/c = , (3.2) 
c 

from which we fnd 

h/c
∆tS = p ≡ γ∆tT , (3.3) 

1 − v2/c2 

1 � �−1/2 
where γ = p = 1 − β2 . (3.4) 

1 − v2/c2 
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v

Notice that the factor γ ≥ 1. The interval of time as measured on the station is longer than√ 
the interval measured on the train. For example, if the train moves at v = 3c/2 and the 
observers on the train measure 7 nanoseconds for the light to reach the photodetector, then 
observers in the station measure 14 nanoseconds for the light to reach the photodetector. 
Less time accumulates between the two events according to train observers than accumulates 
according to station observers. 

Moving clocks run slow. This is a phenomenon known as time dilation.� 
Aside: In doing this analysis, we’ve assumed that both the train and the station� 

observers measure the same height h for the light’s vertical displacement. Hold that thought! 

3.3 Consequences II 

Let’s next imagine that we arrange the light pulse so that it travels to the front of the car, 
bounces of a mirror, and returns to a photosensor1: 

Both the train and station observers measure the time interval between the fash and the 
light striking the photodetector, and use this to infer the length of the train car. On the 
train (neglecting the size of the light bulb and the fnite thickness of the sensor and mirror 
which are features of the sketch), the observer measures a time interval of ∆tT between the 

1A common question asked about this set up is “Why the bounce? Why not have the photosensor on 
the front of the train so that the light only travels one way?” The reason we include the bounce is that for 
this frst examination of light travel phenomena, it is very convenient for the net displacement of the light 
pulse to be zero along the direction of the train’s travel in frame T . We will develop tools to handle more 
general situations very soon. Doing so, we’ll see that having the light begin and end at the same coordinate 
in frame T simplifes the analysis in a way that is very useful for exploring basic concepts. (Notice that the 
net displacement along the direction of travel was zero in the previous example too.) 
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fash and the light striking the photodetector, and deduces that the train has a length 

∆xT = c∆tT /2 . (3.5) 

The size measured by observers on the train is just the time it takes light to travel from one 
end of the train to the other and back, divided by two. 
To compute the size measured by observers in the station, let’s break the calculation into 

two pieces: one piece gives us the time to travel from the bulb fash to reach the mirror; the 
other times travel from the mirror back to the photodetector. The interval of time measured 
for these two legs is 

(∆xS + v∆tS,1) ∆xS
∆tS,1 = −→ ∆tS,1 = ; (3.6) 

c c − v 
(∆xS − v∆tS,2) ∆xS

∆tS,2 = −→ ∆tS,2 = . (3.7) 
c c + v 

Notice the asymmetry in the two contributions: in the frst interval, the light travels the 
length of the train ∆xS plus the additional distance the train moves during this time in-
terval; in the second interval, the light again travels the length ∆xS , but now minus the 
additional distance the train moves. The fash of light “chases” the mirror during interval 
1, but is heading toward the advancing photodetector during interval 2. We add these two 
contributions to get the total travel time: 

2∆xS /c
∆tS = ∆tS,1 +∆tS,2 = 

1 − v2/c2 

= 2γ2∆xS /c . (3.8) 

We have now related ∆tS to ∆xS , and ∆tT to ∆xT . What we really want is a relation 
between ∆xS and ∆xT . To cut through the diferent relations, let’s take advantage of our 
previous result that the moving clock runs slow, i.e. that ∆tS = γ∆tT . Using this, we can 
rewrite Eq. (3.8) as 

γ∆tT = 2γ
2∆xS /c . (3.9) 

But we know that ∆tT and ∆xT are related by Eq. (3.5). Using this in Eq. (3.9) yields 

∆xS = ∆xT /γ . (3.10) 

This at last relates the spatial distance measured by the train observer to that measured by 
the station observer. Note that since γ ≥ 1, Eq. (3.10) means the distance interval measured 
in the station is shorter than the distance interval measured on the train. 

Moving rulers are shortened along the direction of motion. This is a phenomenon known 
as length contraction. 
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3.4 Consequences III 

Are moving rulers afected along axes other than along the direction of motion? The answer 
is no: If they were, then we would get inconsistent physics — diferent events occurring in 
diferent frames of reference. √ 
Imagine a train going at a speed v = 3c/2, so that γ = 2. Suppose the train is 5 meters 

tall, and is approaching a tunnel whose opening is 8 meters high. If length contraction 
afected the train’s height, we’d have a serious problem: 

• Tunnel rest frame: The train’s height is contracted by a factor of γ, making it 2.5 
meters tall — easily ftting into the 8 meter tunnel opening. 

• Train rest frame: The tunnel’s height is contracted by a factor of γ, making it 4 
meters tall. The 5 meter train experiences a very high speed collision, destroying the 
train, the mountain into which the tunnel is carved, and very likely a good fraction of 
the surrounding countryside. 

We require all observers to agree on events, even if they describe them using diferent labels. 
But these two outcomes — train merrily passing through a tunnel in one frame; chaos, 
death, destruction, and sadness in another — are not mere diferences of label. These are 
completely inconsistent outcomes. 

In order for events to be consistent between diferent reference frames, it must be the case 
that moving rulers are unafected along directions orthogonal to their direction of motion. 
Post facto, this justifes our assumption that both the train observer and the station observer 
measure a vertical displacement of h, as we used in “Consequences I.” 

3.5 From Galileo to Lorentz 

In the examples we’ve discussed above, we have allowed our notions of time and space inter-
vals to get mixed up by our demand that all observers measure light to have a propagation 
speed of c. As we can see, this leads to some rather nonintuitive consequences. However, 
these consequences follow straightforwardly from our requirement that c be an invariant. 
Let us now think about how to mix up diferent intervals in a more systematic manner. 

Galilean transformations allowed diferent inertial frames to defne diferent standards for 
space: what’s “left” to you is a mixture of “left” and “forward” to someone with a diferent 
orientation; what’s “there” to you is “there and steadily moving farther away” to someone 
moving with a fxed speed. But time is the same for everyone. 
Let’s think about a category of transformations that can mix up space and time, doing 

so in such a way that the speed of light is left invariant. Let’s think about a station observer 
who labels events with coordinates (tS, xS , yS, zS ), and a train observer who labels events 
with coordinates (tT , xT , yT , zT ). The station observer sees the train moving with v = vex. 
We will begin by assuming that the train frame’s coordinates are related to those of the 

station with the following linear relations: 

tT = AtS + BxS (3.11) 

xT = DtS + FxS (3.12) 

yT = yS (3.13) 

zT = zS (3.14) 
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This form was chosen2 by noting that since we are moving along x, the coordinates y and 
z cannot be afected. We require it to be a linear transformation because non-linear terms 
(e.g., a t2 term) would make the transformation non-inertial. 
We now solve for A, B, D, F by matching important quantities in the two systems and 

imposing invariance of c. Our frst two steps are familiar from the Galilean transformation 
— we simply require that constant x coordinates in one frame move with speed v in the 
other frame. Let us focus in particular on the spatial origin: 

1. Match the spatial origin of the train frame, xT = 0, with events in the station frame 
at xS = vtS : 

xT = DtS + FxS 

0 = DtS + F vtS 

−→ D = −Fv . (3.15) 

This tells us that our x transformation law can be written xT = F (xS − vtS ). 

2. Next, match the origin of the station frame (xS = 0) to events in the train frame at 
xT = −vtT : 

xT = F (xS − vtS ) 

−vtT = −F vtS (3.16) 

This tells us that tT = FtS for events at xS = 0. But we also know 

tT = AtS + BxS (3.17) 

Plugging in xS = 0 and tT = FtS , we see that 

−→ F = A . (3.18) 

We have now pinned down 2 of the 4 unknown coefcients, and the transformation law 
for t and x reads 

tT = AtS + BxS (3.19) 

xT = −AvtS + AxS 

= A(xS − vtS ) . (3.20) 

To pin down A and B, we use the physics that is the focus of this lecture: all observers 
agree that light propagates with speed c, so we examine the propagation of light as 
measured in the two reference frames. 

2We do not use the letter C to avoid confusion with the speed of light. We also skip E to avoid confusion 
with energy, which we will be discussing soon. 
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3. Imagine a light pulse emitted at tS = tT = 0, and examine its propagation along the 
xT and xS axes. As seen in the station, it travels with xS = ctS ; as seen on the train, 
it travels with xT = ctT : 

xT = ctT 

A(xS − vtS ) = c(AtS + BxS ) (Substituting the transformation rules) 

A(ctS − vtS ) = c(AtS + BctS ) (Substituting xS = ctS) 

−AvtS = Bc2tS 

Av −→ B = − 
2c
. (3.21) 

The transformation law now reads 

tT = A(tS − vxS /c
2) (3.22) 

xT = A(xS − vtS ) . (3.23) 

4. Now look at how that pulse travels in the y direction according to observers in the 
station. They see it moving with xS = 0, yS = ctS . Observers on the train measure it 
moving diagonally, following a trajectory in xT and yT that satisfes 

(xT )
2 + (yT )

2 = c 2(tT )
2 . (3.24) 

Substitute xT = A(xS − vtS ), tT = A(tS − vxS /c
2), yT = yS = ctS , and fnally plug in 

xS = 0: 
2 2 2 2 2A2 2A2 v tS + c tS = c tS . (3.25) 

This is easy to solve for A: 
1 

A = p = γ . (3.26) 
1 − v2/c2 

(If you’re being really pedantic you might wonder why we don’t consider the negative 
square root. Consider the v = 0 limit, for which the two coordinate systems should be 
identical; this shows that you need the positive root here.) 

Our complete transformation law becomes � 
tT = γ tS − xS v/c

2 (3.27) 

xT = γ (−vtS + xS ) (3.28) 

yT = yS (3.29) 

zT = zS . (3.30) 

This result is called the Lorentz transformation. 
A few comments: First, we can make it a bit more symmetric looking by using the 

defnition β = v/c we introduced earlier, and by writing ctT and ctS as our time variables. 
This gives our time coordinates the same dimensions (or units) as for space. With these 
minor tweaks, the Lorentz transformation can be written in the matrix form  

ctT γ −γβ 0 0 ctS  
xT 

yT 

 = 
 
−γβ γ 0 0 
0 0 1 0 

 
 

xS 

yS 

 . (3.31) 

zT 0 0 0 1 zS 
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Second, note that Nature doesn’t care how we label the axes; we could very well have 
defned things moving in the y direction or the z direction, or some direction that is at an 
angle between those directions. If we had the train moving with v = vey, then we would 
have found  

ctT γ 0 −γβ 0 ctS  
xT 

yT 

 = 
 

0 1 0 0 
−γβ 0 γ 0 

 
 

xS 

yS 

 . (3.32) 

zT 0 0 0 1 zS 

You can probably deduce how things look for v = vez. 
Finally, how do we invert this transformation? The “brute force” approach is to compute 

the matrix inverse. However, a little physics helps us see the answer: If the station observer 
sees the train moving with v = vex, the train observer must see the station moving with 
v = −vex. They must develop exactly the same Lorentz transformation, but with the terms 
linear in v fipped in sign:  

ctS γ γβ 0 0 ctT  
xS 

yS 

 = 
 
γβ γ 0 0 
0 0 1 0 

 
 

xT 

yT 

 . (3.33) 

zS 0 0 0 1 zT 

It’s not hard to show that the matrix in Eq. (3.33) is the inverse of the matrix in Eq. (3.31). 

3.6 A comment on the road ahead 

Much of what we will do in the next few weeks essentially amounts to examining the conse-
quences of the Lorentz transformation, assessing what aspects of physics as we know it hold 
up and what aspects will need modifcation. Many of our discussions will involve “thought 
experiments” of the kind we discuss in the “Consequences” sections above. As such, one can 
be misled into thinking that much of “Einsteinian” physics is about abstract weird situations 
like trains that move at nearly the speed of light. 
I want to take this moment to make it clear that, though such discussions are useful for 

understanding important concepts, they are not what relativity is about. Like all physics, 
relativity is a framework by which we understand the world as we actually measure it. Special 
relativity in particular is one of the best-studied theories that we have; its consequences — 
including the physics of efects like time dilation — have been tested with exquisite accuracy. 
(Indeed, in a very real sense, magnetism is nothing more than a consequence of Coulomb’s 
law of electrostatics plus the Lorentz transformation.) In recent years, the consequences of 
general relativity have been measured and tested quite thoroughly as well. 
We study Einstein’s relativity because empirical experience has pointed to the fact that 

it describes our world exquisitely well. Because you are studying physics, you are likely to 
encounter people who wish to sell you an alternative3 . Many of them will claim that the only 
reason that Einstein gets the attention he is given is because physics has become efectively a 
priesthood. Some of these folks are bothered by the fact that many consequences of Einstein’s 

3I get at least 5 and as many as 30 emails a week in this theme; I occasionally get hand-written letters 
and self-published books. One guy sent me an adjustable wrench along with his book, I think because he 
claimed to be “throwing a monkey wrench” into all the “nonsense” that physics departments teach students. 
It’s actually quite a nice wrench. I use it at least twice a year to hook up a hose at my house at the start of 
summer, and to disconnect it when the weather gets cold. 
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relativity go against “common sense”; a few (including some of the more frightening ones who 
write to me) claim darker motivations. We will endeavor as much as possible to bring the 
consequences of relativity into this class, and to keep it grounded in experimental fact. One 
thing should be clear: if measurements did not agree with Einstein’s theories of relativity, 
we would have discarded these theories in a heartbeat. 

3.7 An aside on factors of c 

The speed of light c pops up so much in this subject that it’s very convenient in many 
analyses to defne your units such that c = 1. This means that if you measure time in 
seconds, your basic unit of length is the light second. Amusingly, this means that if you 
measure time in nanoseconds, your basic unit of length is the light nanosecond, which is 
almost exactly4 one foot. With this choice made, the units of time and space are identical, 
the factor β ≡ v, and the Lorentz transformation takes the form  

tT γ −vγ 0 0 tS  
xT 

yT 

 = 
 
−vγ γ 0 0 
0 0 1 0 

 
 

xS 

yS 

 . (3.34) 

zT 0 0 0 1 zS 

In my research, I usually set c = 1. I’m of mixed mind whether I should use these units 
in 8.033. On one hand, it is a great convenience, and cuts down on a symbol that strictly 
speaking isn’t needed; and it is certainly a choice of units that you will see in future course-
work. However, when studying relativity for the frst time, it is worth bearing in mind that 
there are quite a few major points that can be confusing. As a point of pedagogy, I’d rather 
not introduce minor points that also cause confusion. I will endeavor to keep c explicitly in 
formulas that I write on the board, in the notes, and on assignments, but the likelihood that 
I will occasionally mess up is very high. If you think a factor of c has been left out, please 
ask about it. 
When writing up your own assignments, if you’d like to use c = 1 units, feel free to do 

so, but please state that you have made this choice on your writeup. 

41 light nanosecond = 29.9792458 cm = 11.8029 inches = 0.9836 feet. 
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Lecture 4 
Spacetime, simultaneity, and the consequences of Lorentz 

4.1 From space and time to spacetime 

The Lorentz transformation shows us that the invariance of c requires space and time to 
be mixed together; what is “space” for one observer is a mixture of “space” and “time” for 
another. This should be familiar as far as spatial directions go — what is “left” for one 
observer can be a mix of “left” and “forward” for another — but mixing time and space 
like this surely feels somewhat odd. We can no longer think of space and time as separate 
things; we instead describe them as a new, unifed entity: spacetime. Each inertial observer 
splits spacetime into space and time; however, how they split into space and time difers. 
This is fundamentally why diferent inertial observers measure diferent intervals of time and 
diferent intervals of distance. 
One of the tools we will use to examine the geometry of spacetime is the spacetime 

diagram. This is a fgure that illustrates how space and time are laid out, as seen by an 
observer in some particular inertial frame. The convention in making such fgures is that the 
vertical axis denotes time, horizontal axes denote space. 

x

t

Worldsheet: Extended 
object moving at 

constant negative v

Single 
event

Worldline: 
Object at rest

Worldline: 
Object moving 

at constant 
positive v

Figure 1: Example of a spacetime diagram. An event is a single point. A worldline is the 
sequence of events swept out by an event as it moves through space and time, with a slope 
that depends on its velocity in the frame. A worldsheet is the set of events swept out by an 
extended set of events as they move through space and time. 
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The units of a spacetime diagram’s axes are usually chosen so that light moves on 45◦ lines 
with respect to the axes of the rest frame: 

x

t

Light cone: Opening 
of trajectories defined 

by motion of light.

1 m 2 m 3 m 4 m

1 m/c

2 m/c

3 m/c

(This is particularly natural if we choose units such that c = 1.) With such units, a pulse of 
light, moving through time and projected onto 1 spatial dimension, makes a lightcone with 
an opening angle of 90◦ . As we will discuss shortly, the lightcone plays an important role in 
helping us to fgure out how events are related to one another. 
When making a spacetime diagram, one draws axes corresponding to some particular 

observer. Suppose we draw the axes of some observer O who uses coordinates (t, x). How 
do we represent the coordinates (t ′ , x ′ ) of an observer O ′ who moves with v = vex according 
to O? In other words, what do the (t ′ , x ′ ) axes look like as seen by O? 
To fgure this out, let’s look at the transformation rule: 

ct ′ = γ(ct) − βγx (4.1) 

x ′ = −βγ(ct) + γx (4.2) 

The t ′ axis is defned as the set of events for which x ′ = 0: 

x x 
0 = −βγ(ct) + γx −→ t = = . (4.3)

βc v 

The x ′ axis is defned by the events for which t ′ = 0: 

βx vx 
0 = γ(ct) − βγx −→ t = = 

2 
. (4.4) 

c c 
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x

t
t’

x’

√ 
Figure 2 illustrates the (t ′ , x ′ ) axes as seen by O for an observer moving with v = 3c/2. 

Figure 2: Axes of observer O ′ as they appear in the frame of O. The dot represents a 
particular event. 

In this fgure, we show a particular event. This event is a geometric object, a single point in 
spacetime. Although both observers agree on where it is in spacetime, they assign it rather 
diferent space and time coordinates. (We will analyze the diferent labels observers attach 
to coordinates in some detail shortly.) 
We could equally well ask how the axes (t, x) appear according to O ′ — we simply use 

the inverse transformation rule, which yields 

′ x ′ ′ −vx ′ 
t = − for the t axis , t = 

2 
for the x axis. (4.5) 

v c 

x

t t’

x’

Figure 3: Axes of observer O as they appear in the frame of O ′ . 
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4.2 Simultaneous for me, not necessarily for thee 

Drawing transformed axes in this way illustrates why length contraction and time dilation 
arise: Events which are simultaneous — occurring at the same time — in one frame of 
reference are not simultaneous in another frame; events which occur in the same location in 
one frame do not occur in the same location in another frame. This is the essence of how 
“space” and “time” are mixed, but “spacetime” remains unifed. Diferent observers agree 
on “spacetime,” but they split it into “space” and “time” in diferent ways. 
Let’s illustrate this breakdown in simultaneity explicitly with a pair of spacetime di-

agrams. Figure 4 shows two events, A and B, which are simultaneous according to the 
observer O who uses coordinates (t, x): we have drawn several surfaces of constant t in this 
space, showing that these events are in a single such surface. 

x

t
t’

x’

A B

Figure 4: Events A and B occur at the same time t as measured by observer O. As measured 
by observer O ′ , event B occurs before event A. 

Do these events occur at the same time in the frame of the observer O ′ , who uses coordinates 
(t ′ , x ′ )? Defnitely not! We can see that event B occurs before event A according to O ′ . 
What does a surface of constant time t ′ look like in the coordinates (t, x)? We can fgure 

this out by using the Lorentz transformation: A surface of constant t ′ is the line in the (t, x) 
plane that corresponds to some value of t ′ : 

′ vx t ′ 
ct = γ(ct) − βγx −→ t = + . (4.6) 

c2 γ 

This is the same slope as the x ′ axis, so surfaces of constant t ′ appear as lines parallel to this 
axis. We show this in Fig. 5, making it clear that B comes earlier in time than A according 
to observer O ′ . 

30 



x

t
t’

x’

A B

C

Figure 5: Events A and B occur at the same time t as measured by observer O. As measured 
by observer O ′ , event B occurs before event A. 

We also show a third event, C, which is simultaneous with A according to O ′ , but occurs 
later according to O. 

4.3 The invariant interval 

Many of the so-called “mysteries” and “counter-intuitive” aspects of physics in special rela-
tivity have their origin in this discussion: two events which are simultaneous to one observer 
will not be simultaneous to all observers. This, plus the fact that two events which occur at 
the same location in space according to one observer are not co-located according to other 
observers, is the root of phenomena such as time dilation and length contraction. 
Is there anything that holds consistently across frames? If there is, then it will defne an 

invariant, some quantity whose value all observers agree upon. Indeed, we can assemble an 
invariant from the “spacetime separation” of two events. Consider events A and B. Compute 
their separation in time and space in some given frame: 

∆t = tB − tA , ∆x = xB − xA , ∆y = yB − yA , ∆z = zB − zA . (4.7) 

From these quantities, compute 

∆s 2 ≡ −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 . (4.8) 

Theorem: All inertial observers, in all reference frames, agree on the value of ∆s2 . 
This theorem is easily proved by simply examining (∆s ′ )2 , the invariant interval computed 

using the coordinate separation of the events as measured in some other frame: 

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ∆t = t − tA , ∆x = x − xA , ∆y = y − yA , ∆z = z − z . (4.9)B B B B A 
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Let us relate these “primed” separations to the “unprimed” ones using the Lorentz transfor-
mation along x we’ve been using: 

c∆t ′ = γ(c∆t) − γβ∆x , (4.10) 

∆x ′ = −γβ(c∆t) + γ∆x , (4.11) 

∆y ′ = ∆y , (4.12) 

∆z ′ = ∆z . (4.13) 

Let us now compute (∆s ′ )2: 

′ )2 ′ )2(∆s = −(c∆t ′ )2 + (∆x ′ )2 + (∆y ′ )2 + (∆z (4.14) 

= −γ2(c∆t)2 + 2γ2β(∆x)(c∆t) − γ2β2(∆x)2 

+ γ2β2(c∆t)2 − 2γ2β(c∆t)(∆x) + γ2(∆x)2 

+∆y 2 +∆z 2 (4.15)� � � � 
2 2 2 = −c 2∆t γ2(1 − β2) +∆x γ2(1 − β2) +∆y 2 +∆z (4.16) 

= −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 (4.17) 

= ∆s 2 . (4.18) 

The frst line of this is just the defnition of (∆s ′ )2 . To go to the second line, we’ve used the 
Lorentz transformation to express the primed-frame quantities in terms of unprimed-frame 
quantities. To go to the third line, we gather terms together, canceling out the terms that 
involve (∆x)(c∆t), and gathering common factors of ∆x2 and c2∆t2 . To go to the fourthp
line, we used the fact that γ = 1/ 1 − β2 . That line reproduces ∆s2 , demonstrating1 that 
this quantity is a Lorentz invariant. 
We are going to do a lot with ∆s2 , a quantity that we call the invariant interval (of-

ten abbreviated to just the “interval”). To start, it’s worth noting that perhaps the most 
important property of this quantity is whether it is negative, positive, or zero: 

• ∆s2 < 0: in this case, the interval is dominated by ∆t. We say that the two events 
have timelike separation. When ∆s2 < 0, it means that we can fnd some Lorentz 
frame in which the events A and B have the same spatial position (i.e., in that frame 
xA = xB, yA = yB , zA = zB); the events are only separated by time in that frame. We √ 
defne ∆τ ≡ −∆s2/c to be the time elapsed between events A and B in that frame. 
We call ∆τ the proper-time interval — it is the interval of time measured by the 
observer who is at rest in the frame in which A and B are co-located. 

It’s worth noting that if the interval between two events is timelike, then one can 
imagine a signal which travels with speed v < c that connects them. 

• ∆s2 > 0: the interval here is dominated by ∆x2 + ∆y2 + ∆z2 , and we say that the 
two events have spacelike separation. In this case, we can fnd a Lorentz frame in 
which events A and B are simultaneous; ∆s is the distance between these events in 
that frame. We call ∆s the proper separation of A and B. 

1It is easy to verify that this works for the transformation along any axis. In another lecture or two, we 
will introduce notation that makes proving the invariance of quantities like this really easy for any Lorentz 
transformation. 
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p
• ∆s2 = 0: in this case, we fnd that c∆t = ∆x2 +∆y2 +∆z2 — events A and B have 
a lightlike or “null” separation. If ∆s2 = 0, then these events can be connected by a 
light pulse. 

The last point helps us to see that the value of ∆s2 is very closely connected to the properties 
of the lightcone mentioned earlier. Suppose a fash of light is emitted from event A. If the 
interval between A and another event is negative, ∆s2 < 0, then the other event must be 
inside the lightcone. If the interval is positive, then the event must be outside the lightcone. 
And if ∆s2 = 0, then the other event must be on the light cone itself. Figure 6 illustrates 
how these notions connect to the lightcone. 

x

t

A

L

O

F

P

Figure 6: The intervals between events A and F and events A and P are timelike: ∆sAF 
2 < 0, 

∆sAP 
2 < 0. In all frames, event F has time coordinate greater than the time coordinate of 

event A: tF > tA. Event F is unambiguously in the future of event A. Likewise, event P has 
time coordinate less than the time coordinate of event A: tP < tA in all frames. Event P is 
unambiguously in the past of event A. Events A and O have a spacelike interval: ∆sAO 

2 > 0. 
Event O is neither in the future nor the past of A; it is “elsewhere,” so the time-ordering of 
these events is not invariant. Events A and L have a lightlike or null interval: ∆sAL 

2 = 0. 
These events are connected by a light beam in all reference frames. 
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4.4 The geometry of spacetime 

The relationship ∆s2 = −c2∆t2 + ∆x2 + ∆y2 + ∆z2 essentially expresses the Pythagorean 
theorem for spacetime. For intuition, consider the Pythagorean theorem purely in space. On 
a fat two-dimensional surface, a right triangle whose sides are ∆x and ∆y has a hypotenuse 
whose length is determined from ∆s2 = ∆x2 +∆y2 . In three dimensions, the distance from 
(x, y, z) to (x +∆x, y +∆y, z +∆z) is given by ∆s2 = ∆x2 +∆y2 +∆z2 . 
In spacetime, it turns out to be extremely useful to regard ∆s2 = −c2∆t2 +∆x2 +∆y2 + 

∆z2 as expressing an invariant notion of “distance squared” between two events. Students 
usually want to know “Why does the c2∆t2 have a minus sign?” The best answer I can give 
is that this is how the geometry of the universe works. The fact that time enters ∆s2 with a 
diferent sign from space refects the fact that time is fundamentally quite diferent from the 
other directions of spacetime. We can forward and backward; we can move left and right; 
we can move up and down. But we can only move toward the future — we cannot step back 
to the past. 
Indeed, the whole notion of “past” and “future” depends on events’ separation in space-

time. If two events are timelike or lightlike separated, then one can describe one event as 
being the future, and one in the past. Although the specifc time coordinates assigned to 
these events will vary by reference frame, the time ordering of these events is invariant: if 
tF > tA in one frame, and if the interval between events A and F is timelike or lightlike, 
then tF > tA in all reference frames. However, if two events are spacelike separated, then 
their time ordering depends on reference frame. Consider the situation shown in Figure 7: 

Figure 7: Observer O measures coordinates for events A and B using the (t, x) axes. Observer 
O ′ , who travels with velocity v = (c/2)ex according to O, measures coordinates for these 
events using the (t ′ , x ′ ) axes. 

Suppose observer O measures these events at the coordinates (tA, xA) = (2 sec, 2 lightsec), 
(tB, xA) = (3 sec, 5 lightsec). So, for observer O, event A happens frst. However, the invari-
ant interval between these events, 

∆s 2 = −c 2∆t2 +∆x 2 = −(1 lightsec)2 + (3 lightsec)2 = 8 lightsec2 , (4.19) 
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is positive — these events are spacelike separated, so diferent observers may very well order 
them diferently. 
Let’s use the Lorentz transformation to compute the events’ coordinates according to√ 

O ′ . Given the relative speed c/2, we have γ = 2/ 3, β = 1/2. Applying the Lorentz 
transformation, we fnd � �√ √ 

ct ′ A = γtA − βγxA = 4/ 3 − 2/ 3 lightsec = √ 
2 
lightsec , (4.20)
3� �√ √ 

′ 2 
xA = −βγtA + γxA = −2/ 3 + 2/ 3 lightsec = √ lightsec ; (4.21)

3� �√ √ 
′ 1 

ctB = γtB − βγxB = 6/ 3 − 5/ 3 lightsec = √ lightsec , (4.22)
3� �√ √ 

xB 
′ = −βγtB + γxB = −3/ 3 + 10/ 3 lightsec = √ 

7 
lightsec . (4.23)
3 

� � 
′ ′ 2 2 −→ (tA, xA) = √ sec, √ lightsec 

3 3 
≃ (1.15 sec, 1.15 lightsec) (4.24) � � 

′ ′ 1 7 −→ (tB, xB ) = √ sec, √ lightsec 
3 3 

≃ (0.577 sec, 4.04 lightsec) . (4.25) 

Notice that t ′ > t ′ the order of the events is reversed according to observer O ′ . UsingA B : 
these numbers, it is not difcult to show that O ′ nonetheless fnds ∆s2 = 8 lightsec2 . 
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Lecture 5 
Introduction to 4-vectors 

5.1 A mathematical interlude 

We are going to have occasional lectures in this class that are more heavy on formalism, 
notation, and mathematics than on the physics. This is one of those lectures. The goal 
of Lecture 5 is to introduce you to the way in which we represent an important class of 
geometric objects: 4-vectors, vectors with four components that point along the 3 spatial 
dimensions as well as time. The reward for setting everything up in this careful way will 
be a representation of many quantities which we use in physics that automatically builds 
into it Lorentz covariance, meaning that quantities are defned in such a way that it is 
straightforward for us to transform them between reference frames. 

5.2 More spacetime geometry: The displacement 4-vector 

We begin with the spacetime diagram and events A and B discussed previously (using ct 
and ct ′ for the “time” directions so that they have the same units as the “space” directions): 

x

ct
ct’

x’

A

B

Figure 1: Two events in spacetime measured by inertial observers O and O ′ . Observer O ′ 

travels with velocity v = (c/2)ex according to O. We show the axes (ct, x) of O, and the axes 
(ct ′ , x ′ ) of O ′ , both as seen by observer O. In the coordinates of O, the events A and B have 
spacetime coordinates (ctA, xA) = (2 lightsec, 2 lightsec), (ctB , xB ) = (3 lightsec, 5 lightsec). √ √ 
Transforming to the frame of O ′ , these become (ct ′ A, x ′ ) = (2/ 3 lightsec, 2/ 3 lightsec), √ √ A 

(ct ′ B, x ′ B) = (1/ 3 lightsec, 7/ 3 lightsec). 
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Just as we can defne 3-dimensional displacement vectors from one point in space to 
another, we can defne spacetime displacement 4-vectors from one event to another in space-
time. Let us defne a 4-vector ∆x⃗A that points from the origin to event A, a 4-vector ∆x⃗B 

that points from the origin to event B, and a 4-vector ∆x⃗AB that points from event A to 
event B: 

x

x’

A

B

Δ ⃗x A Δ ⃗x B

Δ ⃗x AB

ct
ct’

These displacement 4-vectors are each geometric objects, pointing from one geometric object 
(an event) to another (a diferent event). As geometric objects, 4-vectors have frame inde-
pendent properties that transcend their representation in a particular frame. For example, 
all observers agree that ∆x⃗AB points from event A to event B. However, because diferent 
observers assign diferent coordinates to these events, they assign diferent values to the com-
ponents of this 4-vector. In what follows, we will use an overarrow to denote a 4-vector. Any 
quantity with such an arrow can be assumed to be a frame-independent geometric object. 
Let us frst examine one of these 4-vectors in the frame of O. Focusing on ∆x⃗A, we write 

0 1 2 3∆x⃗A = ∆xAe⃗0 +∆xAe⃗1 +∆xAe⃗2 +∆xAe⃗3 
t x y z = ∆xAe⃗t +∆xAe⃗x +∆xAe⃗y +∆xAe⃗z . (5.1) 

The 4-vectors ∆x⃗B and ∆x⃗AB can be written similarly. In writing this out, we have intro-
duced 4 new geometric objects, the unit vectors e⃗t, e⃗x, etc. These are dimensionless 4-vectors 
that point along a particular observer’s coordinate axes. We will soon see that they have 
magnitude 1 (though we need to do a little more setup before we can defne what “magni-
tude” means precisely). The 4-vector e⃗0 ≡ e⃗t points along the t or ct axis; e⃗1 ≡ e⃗x is a unit 
vector along the x axis; etc. Because these unit vectors are geometric objects, all observers 
agree that (for instance) e⃗t points along the ct axis of observer O. As we will see shortly, 
other observers will use diferent unit vectors adapted to their own coordinates. 
We have also used two systems to label the components and the unit vectors. We will 

sometimes fnd it useful to label the axes with a name like t or x; other times, it is useful to 
label them with a number, like 0 or 1. Both are equivalent, and both are commonly used. 
The convention that is now1 most commonly used has the time direction corresponding to 
0, then the spatial directions numbered 1, 2, 3 in a right-handed system. 

1You may fnd older sources that use variations on this scheme; labeling the timelike direction 4 was not 
uncommon especially in the early days of relativity. 
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In Eq. (5.1), we have also introduced the vector’s four components: 

∆x 0 
A = ∆x tA = c∆tA −→ Displacement along ct axis from origin to A 

= 2 lightseconds (5.2) 

∆xA 
1 = ∆xA

x = ∆xA −→ Displacement along x axis from origin to A 

= 2 lightseconds (5.3) 

∆x 2 
A = ∆xy

A = ∆yA 

= 0 (5.4) 

∆xA 
3 = ∆xA

z = ∆zA 

= 0 . (5.5) 

0 1 2 3 tLikewise, we can write down values for the components (∆xB , ∆xB , ∆xB, ∆x ), (∆xB AB, 
∆xx y z ), etc.AB , ∆xAB , ∆xAB 

Let’s look at how the observer O ′ represents ∆x⃗A: they write 

0 ′ 1 ′ 2 ′ 3 ′ ∆x⃗A = ∆xA e⃗0 ′ +∆xA e⃗1 ′ +∆xA e⃗2 ′ +∆xA e⃗3 ′ 

′′ ′ t ′ x y z = ∆xAe⃗t ′ +∆xA ⃗ex ′ +∆xA e⃗y ′ +∆xA e⃗z ′ . (5.6) 

′This observer uses diferent unit vectors — e⃗t ′ points along the ct ′ axis, e⃗x points along the 
x ′ axis — and they break the displacement 4-vector into diferent components: 

0 ′ t ′ ′ ∆x = ∆x = c∆t −→ Displacement along ct ′ axis from origin to AA A A√ 
= 2/ 3 lightseconds (5.7) 

1 ′ x ′ ∆x = ∆x 
′ 
= ∆x −→ Displacement along x ′ axis from origin to AA A A√ 

= 2/ 3 lightseconds (5.8) 

etc. The key thing to bear in mind is that the vector ∆x⃗A is exactly the same object in both 
frames. However, observers O and O ′ break the vector up into diferent components, and 
use a diferent set of unit vectors. 
You hopefully are familiar with ideas like this from thinking about a 3-vector in space as 

represented in two diferent coordinate systems. One coordinate system may be oriented such √ 
′ ′that a vector V = V ez; another may be oriented such that V = (V/ 3)(ex +ey +ez ′ ). This 

is simply telling us that the unprimed and primed coordinate systems difer by a rotation; 
V is the same object either way2 . 

5.3 Einstein summation convention 
t x zIn a moment, we will examine how to relate the components (∆xA, ∆xA, ∆xy

A, ∆xA) to 
′ 

t ′ x y z(∆xA, ∆xA 
′ 
, ∆xA , ∆xA 

′ 
), and the unit vectors (e⃗t, e⃗x, e⃗y, e⃗z) to (e⃗t ′ , e⃗x ′ , e⃗y ′ , e⃗z ′ ). Before 

doing so, it is worthwhile to pause in order to introduce conventions that are very useful, that 
are used throughout textbooks and literature on relativity, and that we will use extensively 
in this course. 
Writing out 

0 1 2 3∆x⃗A = ∆xAe⃗0 +∆xAe⃗1 +∆xAe⃗2 +∆xAe⃗3 (5.9) 

2This way of thinking about how the two representations are connected is often called a passive coordinate 
transformation in mathematical literature. 
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over and over again is cumbersome. Notice, though, that each term on the right-hand side
is the same except for the index, which shifts in value. This suggests that we rewrite this
using a variable for the indices:

∆x⃗A =
∑3
µ=0

∆xµ
Ae⃗µ . (5.10)

We can do the same thing using the components and unit vectors for observer O′:

∆x⃗A =
∑3

∆xµ
A

′
e⃗µ′ . (5.11)

A

µ′=0

(It’s worth noting that a very common convention, which we will use in this class, is that if
the index is a Greek letter, it denotes a spacetime direction, and so ranges from 0 to 3. If
the index is a Latin letter, it is a spatial direction, and ranges from 1 to 3. It’s also worth
noting that a primed index tends to be difficult to read on the chalkboard, so I will usually
write an overbar when working on the board, e.g. ∆xµ̄ . This is a little more cumbersome to
type up in latex, so I will tend to stick with primes in my typed-up notes.)

The next convention we introduce works as follows: if two symbols with the same index
appear in an expression, one symbol has the index in the “upstairs” position and the other
is “downstairs,” then the summation can be assumed:

∆x⃗A = ∆xµ
Ae⃗µ . (5.12)

This is known as the Einstein summation convention; it appears to have been introduced
in a 1916 paper3 by Einstein describing the foundations of general relativity. We will use it
extensively, and you will have plenty of chances to practice using it.

5.4 Transformations I: Displacement vector components

We now have two ways of writing a displacement vector ∆x⃗, depending on whether we
expand using the components and unit vectors of O, or those of O′. Putting the summation
back in momentarily, we have

∆x⃗ =
∑3
µ=0

∆xµe⃗µ (5.13)

=
∑3
α′=0

∆xα′
e⃗α′ . (5.14)

(Comment: note that I’ve used changed which Greek letter I sum over in these two ex-
pressions. Because this variable gets summed over, it is called a “dummy index” — it is
necessary to have some index in place as we expand the sum, but any letter will serve. Once
the sum is performed, the index is no longer needed, and its name becomes irrelevant. We
are going to start transforming quantities between reference frames, and it is a good idea to
use names that do not get confused as we go between frames.)

As we have emphasized, the vector ∆x⃗ is the same frame-independent geometric object
in both of these equations. The components and unit vectors are not. How do we relate the

3A. Einstein, Die Grundlage der allgemeinen Relativitätstheorie, Ann. der Physik 49, 769 (1916).
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components in one frame to the components in the other, and how do we relate the unit
vectors in one frame to the unit vectors in the other?

Transforming the components is easy: This is a displacement vector, and the compo-
nents are simply the difference between the coordinates we use to label events in the two
frames. Since these coordinates transform with the Lorentz transformation, it follows that
the components of the displacement vector also transform with the Lorentz transformation:

∆x0′

∆x1′

∆x2′

∆x3′

 =


γ −γβ 0 0

γ 0 0
1 0

−γβ
0
0

0
0 0 1




∆x0

∆x1

∆x2

∆x3

 . (5.15)

Writing out the matrix every time is cumbersome, so we use index notation to simplify this:

∆xα′
=
∑3
µ=0

Λα′
µ∆xµ

= Λα′
µ∆xµ . (5.16)

The second line of Eq. (5.16) uses the Einstein summation convention. Notice that we sum
over the index µ, but we do not sum over the index α′. We call α′ a free index — it appears
on both sides of the equation, and we are free to set α′ to any of its allowed values. Equation
(5.16) is thus shorthand for 4 different equations, one for each value that α′ is free to take.

In Eq. (5.16), we’ve introduced the following notation:

Λα′
µ ≡ row α′, column µ of the Lorentz transformation matrix from O to O′ . (5.17)

Notice in writing this quantity, one index connects to quantities defined in the frame ofO, the
other index connects to quantities defined in the frame of O′. The convention we use is that
this quantity is an element of the Lorentz transformation matrix that takes coordinates from
the frame of the lower index to the frame of the upper index. This convention implies that
the elements of the inverse transformation matrix can be written by swapping the position
of the indices:

(5.18)Λµ
α′ ≡ row µ, column α′ of the Lorentz transformation matrix from O′ to O .

We nail this down by requiring these matrix elements to have the following property:

∑3
α′=0

Λµ
α′Λα′

ν = δµν (5.19)

(5.20)
or

Λµ
α′Λα′

ν = δµν .

The quantity δµν is called the Kronecker delta:

δµν = 1 if µ = ν (5.21)

= 0 otherwise . (5.22)

The Kronecker delta is thus an element of the identity matrix, and so Eqs. (5.19) and (5.20)
do exactly what we expect if Λµ

α′ and Λα′
µ are elements of matrices which are in inverse

relation to each other.
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For completeness, it should be noted that Eqs. (5.19) and (5.20) can be written in a form
in which the index associated with the frame of O is the summed-over dummy, and the index
associated with the frame of O′ is free:

∑3
µ=0

Λα′
µΛ

µ
β′ = δα

′
β′

Λα′
µΛ

µ
β′ = δα

′
β′ . (5.23)

5.5 Transformations II: Unit vectors

With all this in mind, let’s deduce what the transformation rule must be for the unit vectors.
Working in index notation and putting sums explicitly in for clarity, we know that the
components transform as

∆xα′
=
∑3
µ=0

Λα′
µ∆xµ . (5.24)

Let’s assume that there exists some matrix whose elements are used to relate the unit vectors
e⃗µ and e⃗α′ :

e⃗α′ =
∑3
µ=0

Mµ
α′ e⃗µ . (5.25)

We do not yet know what the matrix elements Mµ
α′ represent; if the calculation we are

doing is heading in the right direction, then the math will tell us what these elements are.
We also know that the displacement 4-vector ∆x⃗ is the same geometric object no matter

how we represent it:

∆x⃗ =
∑3
µ=0

∆xµe⃗µ (5.26)

=
∑3
α′=0

∆xα′
e⃗α′ . (5.27)

Let us plug in the transformation rules to this final line:

∆x⃗ =
∑3
α′=0

(∑3
µ=0

Λα′
µ∆xµ

)(∑3
ν=0

M ν
α′ e⃗ν

)
. (5.28)

Notice that in writing Eq. (5.28) I was very careful to make sure that all the dummy indices
we sum over are distinct from one another. A common error4 is to get indices “crossed” and
accidentally connect the wrong elements in an expression to one another.

We next exchange the order of sums in Eq. (5.28) and reorganize the terms slightly:

∆x⃗ =
∑3
µ=0

∑3
ν=0

(∑3
α′=0

Λα′
µM

ν
α′

)
∆xµe⃗ν . (5.29)

4Two weeks of my life when I was a postdoctoral researcher were spent debugging a computer code in
which the root issue was exactly this — bad notation that led to indices not being properly distinguished.
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Examining this expression, we see that it will work out perfectly if

∑3
α′=0

Λα′
µM

ν
α′ = δνµ . (5.30)

If this is the case, then

∆x⃗ =
∑3
µ=0

∑3
ν=0

δνµ∆xµe⃗ν

=
∑3
µ=0

∆xµe⃗µ . (5.31)

To go from the first line of (5.31) to the second, we use the fact that the Kronecker delta is
zero unless ν = µ.

Thus, everything works as long as Eq. (5.30) holds. But this equation tells us that

Mν
α′ = Λν

α′ . (5.32)

In other words, the matrix that takes the unit vectors from the frame of O to the frame of
O′ is the inverse of the matrix that does this for the vector components.

5.6 Summary: A glossary of transformation rules

With the results of the previous section in hand, we now have a complete set of rules
describing how to Lorentz transform both vector components and unit vectors between two
different inertial reference frames:

∆xα′
=
∑3
µ=0

Λα′
µ∆xµ = Λα′

µ∆xµ ; (5.33)

e⃗α′ =
∑3
µ=0

Λµ
α′ e⃗µ = Λµ

α′ e⃗µ . (5.34)

To go in the other direction (from quantities in O′ to O), we have

∆xµ =
∑3
α′=0

Λµ
α′∆xα′

= Λµ
α′∆xα′

; (5.35)

e⃗µ =
∑3
α′=0

Λα′
µe⃗α′ = Λα′

µe⃗α′ . (5.36)

We have focused on the spacetime displacement 4-vector, but it’s worth emphasizing that
what we have done will serve as a prototype for developing vectors (and later, tensors) for
a wide range of mathematical objects that we use to describe physics. The key idea we
wish to emphasize is that a mathematical object is a 4-vector if its components transform
between reference frames according to relationships like (5.33) and (5.35). We will assemble
the components into frame-independent geometric objects using the basis vectors we have
defined here, transforming as we have derived here.
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You may be somewhat in despair at this moment, worried that your 8.033 life is going to
be filled with tons of algebra and fiddling with indices and matrices. There will be some of
that, but I ask you to carefully study the expressions (5.33)–(5.36). Notice that the results
are actually quite simple in form provided we remember some simple rules:

• Whether we are transforming the components or the unit vectors, we have one object
in the frame of O on one side of the equation, and one in the frame of O′ on the other.

• We connect them with an element of the “Lambda matrix” that carries out the Lorentz
transformation.

• We “line up the indices” so that we have one free index on the left-hand side (corre-
sponding to the object in the frame that we are transforming to), and we sum over
dummy indices on the other side to “use up” all the indices on the object in the frame
that is being transformed from.

5.7 Matrix multiplication versus index notation

We all hope that you soon become fluent in using the index notation, and that equations
like those in the previous few sections become intuitive and simple to manipulate. However,
experience has shown that many 8.033 students at least start by wanting to write out quan-
tities as column vectors and matrices and then combine things using techniques learned in
linear algebra courses.

This can be done — but it requires some care. If you want to do analyses in this way,
here are a few tricks to bear in mind:

• Think of quantities with a single “upstairs” index as a column vector, e.g.

∆xµ .
=


∆x0

∆x1

∆x2

∆x3

 . (5.37)

• Think of quantities with a single “downstairs” index as a row vector, e.g.

e⃗µ
.
=
(
e⃗0 , e⃗1 , e⃗2 , e⃗3

)
. (5.38)

• Bearing in mind that in a quantity like Λα′
µ, the first index refers to the row and the

second to the column, think carefully about how quantities are being combined. For
example, in the relationship

∆xα′
= Λα′

µ∆xµ , (5.39)

we see that we are going through the matrix elements row by row, combining the
element in column µ of the matrix with row µ of the column vector ∆xµ.

This is just right multiplication of a column vector onto a matrix. Translating (5.39)
into matrix form, we have

∆x0′

∆x1′

∆x2′

∆x3′

 =


γ −γβ 0 0

γ 0 0
1 0

−γβ
0
0

0
0 0 1




∆x0

∆x1

∆x2

∆x3

 =


γ (∆x0 − β∆x1)
γ (−β∆x0 +∆x1)

∆x2

∆x3

 . (5.40)
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Consider next the relationship
e⃗α′ = Λµ

α′ e⃗µ . (5.41)

In this case we are going through the matrix column by column, combining the element
in row µ with the µth column of the row vector e⃗µ. This translates into linear algebra
as left multiplication of the row vector onto the matrix:

(
e⃗0′ , e⃗1′ , e⃗2′ , e⃗3′

)
=
(
e⃗0 , e⃗1 , e⃗2 , e⃗3

)
γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1


=
(
γ (e⃗0 + βe⃗1) , γ (βe⃗0 + e⃗1) , e⃗2 , e⃗3 .

)
(5.42)

Many, many mistakes that 8.033 students make when approaching problems using
linear algebra arise because they translate quantities to column vectors that should be
row vectors, and do not recognize that an analysis requires “left multiplication” rather
than “right multiplication.”

To illustrate how the index notation cleans things up, let us step through both of these
calculations without introducing matrices. We just use the fact that the only non-zero
elements of the Λ matrices are Λ0′

0 = Λ1′
1 = γ, Λ1′

0 = Λ0′
1 = −γβ, Λ2′

2 = Λ3′
3 = 1; and

Λ0
0′ = Λ1

1′ = γ, Λ1
0′ = Λ0

1′ = γβ, Λ2
2′ = Λ3

3′ = 1:

∆xα′
= Λα′

µ∆xµ −→
(
∆x0 − β∆x1

)(
−β∆x0 +∆x1

)∆x0′ = Λ0′
0∆x0 + Λ0′

1∆x1 = γ

∆x1′ = Λ1′
0∆x0 + Λ1′

1∆x1 = γ

∆x2′ = Λ2′
2∆x2 = ∆x2

∆x3′ = Λ3′
3∆x3 = ∆x3 . (5.43)

e⃗α′ = Λµ
α′ e⃗µ −→ e⃗0′ = Λ0

0′ e⃗0 + Λ1
0′ e⃗1 = γ (e⃗0 + βe⃗1)

e⃗1′ = Λ0
1′ e⃗0 + Λ1

1′ e⃗1 = γ (βe⃗0 + e⃗1)

e⃗2′ = Λ2
2′ e⃗2 = e⃗2

e⃗3′ = Λ3
3′ e⃗3 = e⃗3 . (5.44)

Notice that the final results are exactly the same both ways, but the setup in index notation
is simpler. (In this case, the simplicity is in part because we were able to leave out elements
whose values we know to be zero.) It is worth developing “fluency” with this notation. Until
you are comfortable with this form of things, linear algebra and matrix format will work.
If you approach problems this way, be very careful how you translate from index format to
linear algebraic equations.
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5.8 An aside: Upstairs, downstairs; contravariant, covariant 

The use of index notation abounds for representing vectorial quantities (and, more generally, 
tensorial quantities — but hold that thought until we start discussing and defning tensors 
very soon). We will soon encounter quite a few other geometric objects whose components 
have indices in the “upstairs” position, like the displacement vector components discussed 
above. Objects with indices up, like ∆xµ, are often called contravariant vector components. 
This name comes from the fact that the magnitude of such components “contravaries” with 
the scale of the reference axes to which they are attached. For instance, if we change units 
from meters to centimeters, decreasing the scale of our reference axes, then the numerical 
value of the displacement vector’s components are increased by a factor of 100 — they 
contravary with the scale. 
There are other vector-like quantities we will defne soon which are more naturally ex-

pressed with indices in the “downstairs” position. An example is the gradient. In electricity 
and magnetism, you presumably learned about electrostatic felds being the gradient of a 
scalar potential. In the index notation that we are beginning to use, such a relationship is 
most naturally expressed by writing Ei = −∂ϕ/∂xi . Objects with indices down are often 
called covariant vector components. This is because as we adjust the scale of reference axes, 
the magnitude of these components “covaries” with the scale. Applying the example above 
to this situation, if we change units from meters to centimeters, the components of a gradient 
all decrease by a factor of 100. 
I mention this now because we will soon be encountering quite a few quantities with 

indices in both positions, and many of you are likely to encounter the terms “covariant” and 
“contravariant” in math classes or other physics classes. Complicating all this is that we will 
soon learn how to move an index from the up position to the down position and vice versa, 
and why this is useful and important for certain problems. Lowering the index of a vector 
produces what is known as its dual vector5 . We will get into these details very soon. Take 
these paragraphs as giving you a preview, as well as a heads up about how these quantities 
may be discussed elsewhere. 
For what it’s worth, I personally tend to just say “upstairs” and “downstairs” (a habit I 

picked up long ago from my Ph.D. supervisor). Some of the details of what’s going on with 
contravariant and covariant components are worth knowing about, but (especially for 8.033) 
we often will not need to get into these details. 

5Also known as a “1-form.” I like to call this a “dual vector” in a frst presentation because it emphasizes 
that this object belongs to a vector space, but has a particular close relationship, which will explore soon, with 
the “upstairs-indexed” quantities. However, the “1-form” language connects this to a set of mathematical 
objects known as “diferential forms” which are very powerful and useful. Many of you will likely encounter 
these terms in other coursework soon. 
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Scott A. Hughes Introduction to relativity and spacetime physics 

Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 

Lecture 6 
Kinematics in spacetime 

6.1 Transforming velocities 

With what we’ve done so far, we’ve started to develop a good understanding of length, time, 
and geometry in spacetime. This is a good start for us to begin understanding physics in 
special relativity, but it’s just a start. 
In this lecture, we start examining kinematics — the properties of moving bodies, and 

how these properties transform between diferent reference frames. We begin by looking at 
velocity. Consider frame T , tied to a train, and consider a person walking inside that train. 
This train is moving with velocity v = vex as seen by an observer who is at rest in the 
station frame S. The person who is walking inside the train is seen to walk with speed ux

T , 
also in the x direction, by an observer who is at rest in frame T . (Comment: we will try as 
much as possible to use the letter u to stand for speeds inside a particular frame; we will try 
to use v to describe the speeds and velocities that relate two diferent frames.) 

v

T

S
ux

T

What is the speed ux
S that observers in frame S measure? In Newtonian physics, we 

would just add the velocities in frame T to the velocity that frame T has relative to S. To 
get ux

S in a world in which all observers agree that light moves at speed c, we work this 
out using the Lorentz transformation. On the train, we know that in a time interval ∆tT 

observer T moves through a distance ∆xT = u 
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x
T∆tT . Both the time interval and the space 



interval are afected by the transformation: 

γ(∆xT + v∆tT )x ∆xS 
u = = S ∆tS γ(∆tT + v∆xT /c2) 

(∆xT /∆tT + v) 
= 

(1 + 
c
v 
2 
∆
∆ 
x
t 
T

T 
) 

uT
x + v 

= 
x . (6.1)

1 + uT v/c
2 

This formula has an interesting consequence: using it, we can prove that we can never add 
sub-light speeds to get a speed that exceeds the speed of light. You will work this out in 
detail on a problem set, but to see the general idea, imagine that ux

T = v = 0.9c. Then, 

x 0.9c + 0.9c 1.8c 
u = = = 0.9945c . (6.2)S 1 + (0.9c)(0.9c)/c2 1.81 

How do components of the velocity perpendicular to the frames’ relative motion trans-
form? Imagine that the person on the train has motion along the y direction as well, so that 
in ∆tT they move through ∆yT = uy

T ∆tT . Then, 

y ∆yS ∆yT 
u = = S ∆tS γ(∆tT + v∆xT /c2) 

yu 
= T

x . (6.3)
γ(1 + uT v/c

2) p
(Note that the factor γ = 1/ 1 − v2/c2 — it only depends on the relative speed v of the 
two frames, it does not involve the velocity u.) If the person on the train has velocity along 
the z direction, then it transforms like Eq. (6.3) as well, replacing uy with uz . 

6.2 Momentum I: Did we break physics??? 

A lesson of the previous section is that how velocities add is “weird” as compared to New-
tonian expectations. These expectations follow the logic of Galilean relativity, so it should 
not be too surprising that things change when we impose the rule that c is the same to 
all observers. However, our laws of classical mechanics have implicitly assumed Galilean 
relativity. What happens to important principles like conservation of momentum when we 
“update” our rules for how velocities add? 
Let us frst review how conservation of momentum works in Newtonian physics. Suppose 

that we have Ni bodies that come together in some fashion, interact, and then have Nf 

bodies in the fnal state. Conservation of momentum tells us that 

Ni NfX X 
initial initial fnal fnal m u = m u . (6.4)j j j j 

j=1 j=1 

As long as 
Ni NfX X 

initial fnal m = m , (6.5)j j 
j=1 j=1 
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collide and rebound elastically. We assume that it remains the case that p 
by examining this situation in the center of momentum frame, i.e. the frame 
momentum of the system is zero: 

Before

uinit
A

uinit
B

After

ufin
B

ufin
A

this relation holds in all Galilean reference frames. 
Let’s take a look at what happens when we examine this law in Lorentzian reference 

frames. Let’s consider something really simple: two particles, A and B, of identical mass 
that = mu, and 
begin in which 
the net 

Figure 1: Elastic collision of identical bodies in the center of momentum frame. 

init x y init x yThe bodies’ velocities are given by uA = u ex − u ey, uB = −u ex + u ey before the 
fn x y init x ycollision. Afterwards, we have uA = u ex + u ey, uB = −u ex − u ey. Because mA = mB, 

we can see that momentum is clearly conserved: It is zero both before and after the collision. 
Let’s next examine this from another frame of reference. Suppose we examine this col-

lision from a frame that moves with velocity v = −uxex with respect to the center of 
momentum frame. The horizontal motion of particle B is canceled out here; if we are in this 
frame, we are essentially jogging along with particle B. 
What are the velocity vectors in this frame? To fnd out, we use the relativistic velocity 

addition formulas we just worked out to get the components of these vectors. Let’s do the x 
components frst: 

x ux + ux 2ux 
′ 

uA = = , (6.6)
1 + (ux)2/c2 1 + (ux)2/c2 

ux − ux 
′ 

uB
x = = 0 . (6.7)

1 − (ux)2/c2 

Notice in this frame, the horizontal velocity components are not equal and opposite, and 
so the system must have some non-zero horizontal momentum component. This is not 
surprising: we’ve moved into a frame in which the entire system is moving in the +x direction, 
so we expect the system to have momentum along x. 
Next, look at the y components: p 

uy uy 1 − (ux)2/c2 

uy
A 

′ 
= − = − , (6.8)

γ(1 + (ux)2/c2) 1 + (ux)2/c2 

y y′ u u 
uB
y = = p . (6.9)

γ(1 − (ux)2/c2) 1 − (ux)2/c2 

The γ that we use here is the one corresponding to the velocity of this frame relative to thep 
center of momentum frame: v = −uxex , and so γ = 1/ 1 − (ux)2/c2 . 
Notice that the velocity components in the vertical direction are no longer equal and 

opposite. This means that they do not balance out, and so the system has net momentum 
in the vertical direction. In other words, under the hypothesis that momentum p = mu, we 
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this in mind, we re-examine the collision from the Lorentz frame in which 
horizontal motion: 

Before collision, frame in 
which B only moves vertically

uv,A
uv,B

uh

appear to have a problem: The system appears to have acquired momentum in the y direction 
by moving into a new frame that is moving in the −x direction with respect to the center of 
momentum frame. 
Our hypothesis that c is the same to all observers, which led to our new velocity addition 

rules, appears to have broken momentum. 

6.3 Momentum II: From Newtonian momentum to Einsteinian 
momentum 

This appears disturbing. However, we have already seen (and you examined on a pset) that 
the Lorentz transformations are approximately consistent with Galilean coordinate trans-
formations. Galilean relativity (and thus Newtonian physics) works fne when speeds are 
far smaller than c. Perhaps the root cause of this disturbing apparent breakdown is that 
Newtonian momentum (which respects Galilean relativity) is itself an approximation to a 
more “Lorentzian” quantity. 
Let us try the hypothesis that momentum is defned by 

p = α(u)mu . (6.10) 

The function α(u) is a function corrects the magnitude of momentum, and only depends on 
the magnitude of the body’s velocity u. 
With particle 

B has no 

To simplify some of the analysis which will follow later, we’ve introduced new labels for the 
velocity components of these bodies: uh is the horizontal velocity component of body A in 
this frame; uv,A is the vertical velocity component of A in this frame; and uv,B is the vertical 
velocity component of B in this frame. Comparing to our previous calculations given in 
Eqs. (6.6), (6.8), and (6.9), these velocity components according to the relativistic velocity 
addition formula are given by p

2ux uy 1 − (ux)2/c2 uy 

uh = , uv,A = − , uv,B = p . (6.11)
1 + (ux)2/c2 1 + (ux)2/c2 1 − (ux)2/c2 

These velocity components turn out to be nicely related to one another. Notice that � � 
1 − (ux)2/c2 

uv,A = −uv,B . (6.12)
1 + (ux)2/c2 
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The factor in parentheses in Eq. (6.12) turns out be related to uh in an interesting way. 
Calculate the value of γ for v = uh: � �−1/2

1 4(ux)2/c2 

γ(uh) = p = 1 − 
1 − (uh)2/c2 (1 + (ux)2/c2)2 � �−1/2
1 − 2(ux)2/c2 + (ux)4/c4 

= 
1 + 2(ux)2/c2 + (ux)4/c4 � �−1/2
(1 − (ux)2/c2)2 

= 
(1 + (ux)2/c2)2 

1 + (ux)2/c2 

= . (6.13)
1 − (ux)2/c2 

Modulo a reciprocal, this is exactly the parentheses factor in (6.12). This allows us to rewrite 
this equation as 

uv,A = −uv,B /γ(uh) . (6.14) 

Let’s take advantage of this to remake the fgure of the collision in this frame using only 
the velocity components uh and uv,B for our labels: 

If momentum is conserved, then we expect the situation after the collision to look as follows: 

The logic by which we have sketched this is that the horizontal components of the bodies’ 
motion cannot be afected by the collision, so body A continues moving to the right with 
speed uh, and body B continues to have no horizontal motion. The vertical motions reverse 
in direction. We leave open the possibility that the speeds associated with the vertical motion 
might be afected (hence the primes: uv,B 

′ might difer from uv,B ). 
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We now demand conservation of momentum according to our hypothesized new form: 
both components of p = α(u)mu must be the same before and after the collision. First look 
at the horizontal component, for which the only contribution comes from body A: �q � �q � 

α (uh)2 + (uv,B /γ(uh))2 muh = α (uh)2 + (u ′ /γ(uh))2 muh . (6.15)v,B 

The only way that this equation can hold independent of the function α(u) (whose nature 
we don’t yet know) is if u ′ = The speed associated with the vertical components’ v,B uv,B. 
of the bodies’ velocities must be the same before and after the collision. Those velocity 
components simply change direction. 
Require next that the vertical components of momentum be conserved: �q � 

α(uv,B)muv,B − α (uh)2 + (uv,B/γ(uh))2 muv,B/γ(uh) = �q � 

− α(uv,B )muv,B + α (uh)2 + (uv,B/γ(uh))2 muv,B/γ(uh) 

Moving similar looking factors to the same side of the equation, dividing by a common factor 
of muv,B , and multiplying by γ(uh), this becomes �q � 

α (uh)2 + (uv,B/γ(uh))2 = γ(uh)α(uv,B ) . (6.16) 

To simplify this, let us require that α(0) = 1. This requirement insures that this formula 
recovers the Newtonian limit, which we know is an extremely good approximation for small 
speeds. We then examine Eq. (6.16) in the limit uv,B → 0: 

α(uh) = γ(uh) . (6.17) 

The factor α(u) that we hypothesized must be included in the defnition of momentum works 
perfectly if it is the special relativistic γ factor. 
In summary, the momentum defned by 

p = γ(u)mu (6.18) 

is conserved in a universe that respects Lorentz covariance. 

6.4 Kinetic energy 

In Newtonian physics, the change in kinetic energy is the work done on a body: Integrating 
from some initial position xi to a fnal position xf , we have Z f ZZ f fdp d 

Kf − Ki = · dx = (mu) · u dt = m u · du 
dt dti i i 

1 � 
2 2 

� 
= m uf − ui . (6.19)
2 
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We now defne relativistic kinetic energy in exactly the same way, but replace the Newtonian 
formula for momentum with the version we just derived: Z f Z fdp d 

Kf − Ki = · dx = [γ(u)mu] · u dt 
dt dti i Z f 

" # 
u 

= m u · d p . (6.20) 
i 1 − u2/c2 

The fact that this second form of Kf − Ki is identical to the frst one is not obvious. It is 
not difcult however to demonstrate that the two lines of (6.20) are equivalent by using the 
chain rule to expand the two diferentials. 
The fnal integrand that we have derived can be manipulated further: " # " # 

2u u u · du 
u · d p = d p − p . (6.21) 

1 − u2/c2 1 − u2/c2 1 − u2/c2 

This is a very nice form: the frst term on the right-hand side of (6.21) is a perfect diferential; 
the second term on the right-hand side is simple to integrate up. Doing so, we fnd 

f2 Z f mu u · du 
Kf − Ki = p −m p

1 − u2/c2 
i i 1 − u2/c2 

2 pf f 
mu 

= p +mc 2 1 − u2/c2 . (6.22) 
1 − u2/c2 

i i 

For our fnal simplifcation, let’s take the initial velocity to be ui = 0, and defne uf ≡ u. 
Since the initial velocity is zero, the initial kinetic energy Ki = 0. We set Kf ≡ K and 
fnally obtain for the kinetic energy of the system 

mu2 p
K = p + mc 2 1 − u2/c2 − mc 2 

1 − u2/c2 

mu2 + mc2 − mu2 

= p − mc 2 

1 − u2/c2 

2mc 
= p − mc 2 

1 − u2/c2 

= [γ(u) − 1] mc 2 . (6.23) 

To interpret this quantity, we defne the body to have a total energy 

E = γ(u)mc 2 ; (6.24) 

then, E = K + mc2 , and we interpret mc2 as the body’s rest energy: energy which the 
body possesses even when it is not in motion. 
It’s fair to say that Eq. (6.24) with γ = 1 is the most famous physics equation in the 

world. It is really interesting to pause and refect on how it arose: we began by exploring 
the consequences of the hypothesis that light travels at speed c for all observers. This forced 
us to replace the Galilean transformation with the Lorentz transformation. This in turn 
mandated an adjustment to the defnition of momentum. The formula E = mc2 , which 
some would argue literally changed the world, thus arose fundamentally as a consequence of 
this deceptively simple hypothesis. 
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6.5 Aside: “Relativistic mass” and why we generally don’t use it 
anymore 

In some older texts, you will see the energy and momentum defned as follows: 

E = m(u)c 2 , p = m(u)u , (6.25) 

where they have defned m(u) = γ(u)m, the “relativistic mass” of the body whose “rest 
mass” is m. This defnition rarely appears in modern relativity texts. Instead, the only 
“mass” used to defne a body is its rest mass. The main reason for this is that m is an 
invariant — diferent observers assign a diferent energy to the body, depending on its speed 
u in their rest frame, but they all agree that the body’s mass is m (and its energy is mc2) 
in its own rest frame. As we will see in the next lecture, this invariant plays a particularly 
important rule in helping us to defne a 4-vector which will prove to be extremely useful in 
helping us to keep track of energy and momentum in relativistic physics. 
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Lecture 7 
4-momentum and 4-velocity 

7.1 Transforming energy and momentum between reference frames 

The requirement that all observers measure the speed of light to be c has led us to rather 
diferent formulations of energy and momentum: a body which has rest mass m (i.e., the 
mass that we measure it to have when it is at rest with respect to us) which we see to be 
moving with velocity u has an energy E and a momentum p given by 

E = γ(u)mc 2 , p = γ(u)mu . (7.1) 

These quantities respect conservation laws: a system’s total E and p are conserved as its 
constituents interact with one another. In the limit u/c ≪ 1, these formulas reduce to 

E = mc 2 +
1 
mu 2 + O(u 4/c2) , p = mu + O(u 3/c) . (7.2)
2 

 

This makes it clear that Newtonian momentum agrees with relativistic momentum for speeds 

 

much smaller than c. The energies likewise agree in this limit, provided we account for the 
body’s rest energy mc2 . In the vast majority of circumstances a body’s rest energy is bound 
up in the body, and cannot be “used” for anything in their interaction, so it can be ignored; 

 

we essentially measure all energies relative to mc2 rather than relative to zero. The relativistic 
quantities and the Newtonian quantities thus agree perfectly when u ≪ c. 
Suppose we measure a body to have energy EL and momentum pL in our laboratory. 

What energy ET and momentum pT will an observer moving past our lab in a train with 
velocity v = vex measure the body to have? To fgure this out, follow this recipe: 

1. Deduce the 3-velocity uL of the body in the lab from the values of EL and pL. 

2. Use the velocity addition formulas to compute the 3-velocity of uT of the body as 
measured by observers on the train. 

3. From uT , compute ET and pT . 

You will work through these steps on a problem set. The result you fnd is 
x x xET = γ(EL − vpL) , pT = γ(pL − vEL/c

2) , 
y y z z p = p p = p . (7.3)T L , T L 

Tweaking notation slightly, we rewrite this  
γ −γβ 0 0ET /c EL/c 

 
 

 
 

 
x x−γβ γ 0 0p pT L . (7.4)= y y0 0 1 0 ppT L 

pT
z 0 0 0 1 pL

z 

In other words, the relativistic formulations of energy and momentum form a set of quantities 
that transform under a Lorentz transformation. 
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7.2 An invariant for energy and momentum 

Recall that we found ∆s2 = −c2∆t2 +∆x2 +∆y2 +∆z2 is a Lorentz invariant: all Lorentz 
frames agree on the value of ∆s2 between two events. Can we do something similar with 
energy and momentum? 
Looking at how E and p behave under a Lorentz transformation, let’s think of energy 

as the “timelike” component of momentum (E/c actually — which hopefully makes sense 
since we need our quantities to have the right dimensions1). Let’s see what happens when 
we examine “negative time bit squared” plus “space bit squared”: 

E2 E2 

− + (p x)2 + (py)2 + (p z)2 = − + |p|2 . (7.5)
2 2c c 

Plug into this 
2 4m c 

E2 = γ2 2 4 m c = , (7.6)
1 − u2/c2 

2 2m u 
= γ2 2 2|p|2 m u = . (7.7)

1 − u2/c2 

Putting these together, we have � � 
E2 2 2 2m u2 − m c 2 2 1 − u2/c2 

− + |p|2 = = −m c 
c2 1 − u2/c2 1 − u2/c2 

= −m 2 c 2 . (7.8) 

Multiplying this by −c2 , 

2 2 4 E2 2 2 4E2 − |p|2 c = m c or = |p|2 c + m c . (7.9) 

In other words, although diferent Lorentz frames will measure E and p diferently, all frames 
agree that E2 and |p|2 are related by the expressions given in Eq. (7.9). 
Notice that if m = 0, then |p| = E/c: massless bodies carry non-zero momentum. This 

relationship corresponds perfectly to the energy and momentum carried by electromagnetic 
radiation (compare with the Poynting vector if you need a refresher in this concept). Recall 
that our analysis began by noting that Maxwell’s equations appear to “want” c to be the 
same for all observers. It is satisfying that when we make energy and momentum consistent 
with this concept, the result automatically respects the relationship between energy and 
momentum that electrodynamics teaches us for radiation. 

7.3 The 4-momentum 

By virtue of the way in which E/c and px,y,z transform, we can see that they behave exactly 
like the components of the displacement 4-vector. This tells us that we really should defne 
a 4-vector whose components all have the dimensions of momentum: 

3X 
µ⃗p⃗ = p eµ , (7.10) 

µ=0 

1Note that if we use units such that c = 1, energy and momentum (and mass, for that matter) all have 
the same dimensions. This is another beneft of this system of units. 
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with 
0 1 x 1 y 3 z p = E/c , p = p , p = p , p = p . (7.11) 

This p⃗ is then a geometric object: observers in all Lorentz frames use this 4-vector to 
describe the system’s energy and momentum, but break it up into components and unit 
vectors diferently. If the components and unit vectors according to O are pµ and e⃗µ, then 
an observer O ′ constructs p⃗ using 

pµ ′ = Λµ ′ 
αp α , e⃗µ ′ = Λ

α
µ ′ e⃗α (7.12) 

(switching to the Einstein summation convention). The matrix elements Λµ ′ 
α perform the 

Lorentz transformation of event labels from the frame of O to the frame of O ′ ; the matrix 
elements Λα

µ perform the inverse transformation. ′ 

The reason why this is useful for us is that conservation of energy and conservation of 
momentum are now combined into a single law: the conservation of 4-momentum. Suppose 
Ni bodies interact, resulting in Nf bodies afterwards. Then, 

Ni NfX X 
init fnal p⃗ = p⃗ , (7.13)j j 

j=1 j=1 

init fnalwhere p⃗ is the initial 4-momentum of particle j, and p⃗ is the fnal 4-momentum ofj j 

particle j. 

7.4 4-vectors in general; scalar products of 4-vectors 

Let’s pause a moment to refect on the logic by which we assembled the 4-momentum. We 
essentially followed the following recipe: 

1. We found that a grouping of 4 quantities plays a meaningful role in physics: p0 = E/c, 
1,2,3 x,y,z x,y,z p = p , with E and p now defned using the “relativistic” rules we derived in 
Lecture 6. 

2. We found that when we change reference frames, these 4 quantities are transformed 
to the new frame by the Lorentz transformation exactly as the components of the 
4-displacement are: pµ ′ = Λµ ′ 

αp
α . 

3. Since it behaves under the transformation law exactly like the 4-vector we discussed 
previously, we defne pµ as the components of a new 4-vector, p⃗, and use this 4-vector 
as a tool in our physics moving forward. 

We can do this for any set of 4 quantities that turns out to be meaningful for our analysis. 
In other words, 

If any set bµ with µ ∈ [0, 1, 2, 3] has the property that when we change reference 
frames their values are related by a Lorentz transformation, bµ ′ = Λµ ′ 

αb
α , then 

bµ represent the components of a 4-vector: b⃗ = bµe⃗µ. 

Once we have identifed these quantities as the components of a 4-vector, we can start 
identifying invariants. Whatever the vector ⃗b represents, we are guaranteed that all Lorentz 
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frames agree on the value of −(b0)2 +(b1)2 +(b2)2 +(b3)2 . In fact, it is not hard to show that 
we can defne a more general notion of an invariant. Suppose a⃗ = aµe⃗µ and ⃗b = bµe⃗µ. Then, 

⃗ 0b0 1b1 2b2 3b3a⃗ · b ≡ −a + a + a + a (7.14) 

⃗is a Lorentz invariant: all Lorentz frames agree on the value of a⃗ · b. This is simply proven 
by transforming the components of a⃗ and b⃗ to another frame and then showing that the 
right-hand side of (7.14) in the new frame is unchanged from its value in the original frame. 
Equation (7.14) defnes what we call the “scalar product” between two 4-vectors. We 

will now use the term “scalar” only to refer to a quantity whose value is invariant to Lorentz 
transformations. This a bit diferent from how you likely have thought of scalars previously. 
For example, in Newtonian mechanics a body’s energy E is often taken to be a scalar, since 
it is a quantity that does not have a direction associated with it. In relativity, E is not a 
scalar since its value changes according to the Lorentz frame in which we measure it. (To 
save some of your older intuition, note that we now think of a body’s energy as the timelike 
component of its 4-momentum, modulo factors of c. In relativity, E does have a direction 
associated with it — it’s a timelike component of a 4-vector.) 
A (rather obvious) corollary of the fact that the scalar product of two 4-vectors is a 

Lorentz invariant is that the scalar product of any 4-vector with itself is a Lorentz invariant. 
Two quantities we’ve recently examined can be rephrased using this defnition: 

∆x⃗ · ∆x⃗ = ∆s 2 , (7.15) 

p⃗ · p⃗ = −m 2 c 2 . (7.16) 

The resemblance to the invariant interval ∆s2 gives us a convention for describing 4-vectors. 
For any 4-vector a⃗, if 

a⃗ · ⃗a < 0 (7.17) 

then we say that a⃗ is timelike. This means that we can fnd a Lorentz frame in which only 
the time component of a⃗ is non-zero: a⃗ has no spatial components in that frame. If 

a⃗ · ⃗a > 0 (7.18) 

then we say that a⃗ is spacelike. There exists a2 Lorentz frame in which a⃗ has no component 
in the time direction; it points purely in a spatial direction. Finally, if 

a⃗ · ⃗a = 0 (7.19) 

then a⃗ is lightlike or null. In all Lorentz frames, a⃗ points along light cones. 
Notice that p⃗ is either timelike or lightlike, and is only lightlike for m = 0. 

7.5 4-velocity 

In Newtonian mechanics, velocity and momentum were related by a factor of the body’s 
mass. Let’s do the same thing using the 4-momentum, and defne the quantity that results 
as the 4-velocity: 

1 
u⃗ = p⃗ . (7.20) 

m 
2Actually, many such Lorentz frames: once we fnd one, any Lorentz frame that is related to the frst by 

a rotation will do the trick. 
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What does u⃗ mean? Let’s look at its components: 

p0 E 
u 0 = = = γ c , (7.21) 

m mc 
1 

u 1 = 
p 
= γ (u)x , (7.22) 

m 
2 p2 

= γ (u)yu = , (7.23) 
m 

u 3 = 
p3 

= γ (u)z . (7.24) 
m 

Note the notation used on the spatial components: (u)x means the x component of the 
3-vector u, and likewise for the y and z components. The spatial components of u⃗ thus look 
just like “normal” 3-velocity, but are multiplied by γ. How do we interpret the γ factor? 
Consider someone passing by with 3-velocity u. That person’s clocks run slow according 

to you: as an interval dτ passes on their clock, an interval dt passes on your clock, with 

dt = γ dτ . (7.25) 

If, for example, γ = 2, then we measure 2 seconds passing for every 1 second interval that 
they record. We defne the interval dτ as the proper time: it is an interval of time according 
to the clock of the observer (or object) who we say is moving. The word “proper” in this 
case comes from a meaning that denotes “belonging to oneself.” Hence an observer’s proper 
time is the time which that observer measures. 
Proper time is a useful quantity because it is a Lorentz invariant: all Lorentz frames agree 

that the observer in motion measures a time interval dτ . That won’t be the time interval 
we measure as observer O whizzes by us at 90% of the speed of light; it won’t be what our 
friend F measures as they whizz by at 90% of the speed of light in another direction; but we 
all agree that it is what O measures. It is a useful benchmark whose meaning all agree on. 
With this in mind, let’s re-examine the spatial components of the 4-velocity: 

dx dx 
u x = γ (u)x = γ = , (7.26)

dt dτ 
y dy dy 

u = γ (u)y = γ = , (7.27)
dt dτ 
dz dz z u = γ (u)z = γ = , (7.28)
dt dτ 

Let’s also look at the timelike component: 

t dt dt 
u = γ c = γ c = c . (7.29)

dt dτ 

Comparing with how we defned the displacement 4-vector, we see that 

dx⃗ 
u⃗ = . (7.30)

dτ 

The 4-velocity is the rate at which something moves through spacetime per unit proper time. 
It’s worth computing the invariant associated with the 4-velocity: 

2 21 m c 
u⃗ · ⃗u = 

2 
p⃗ · p⃗ = − 

2 
= −c 2 . (7.31) 

m m 
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The 4-velocity of a body which is at rest in some Lorentz frame has the same u⃗ · ⃗u as a body 
which is moving 0.99999999999c in that frame. 
Notice that u⃗ is a timelike 4-vector. Because of this, u⃗ does not really “work” for a 

“body” moving at the speed of light: γ diverges there. This is consistent with the fact that 
our original defnition starts with u⃗ ⃗= p/m, and the only “objects” we know of that travel 
at the speed of light have m = 0. 4-vectors are geometric objects, and we cannot make a 
timelike 4-vector into a lightlike one. 

7.6 4-velocity contrasted with 3-velocity 

We now have two important ways to characterize a moving body’s motion: 

• 3-velocity u = dx/dt describes motion through space per unit time. Both “space” 
and “time” are frame-dependent concepts, and so u depends on the frame in which it 
is measured. 

• 4-velocity u⃗ = dx⃗/dτ describes motion through spacetime per unit proper time. It 
is a frame-independent, geometric object; the same u⃗ is used by all observers. 

A major conceptual diference between these two quantities is how we regard them when 
observed in diferent Lorentz frames: 

• As a frame-independent geometric object, all observers agree on an object’s 4-velocity 
u⃗. They assign it diferent components, however, and use diferent unit vectors when 
expanding u⃗ into components: 

u⃗ = uµe⃗µ = u α ′ e⃗α ′ , (7.32) 

where 
α ′ = Λα ′ µu µu , e⃗α ′ = Λ

µ
α ′ e⃗µ . (7.33) 

• The 3-vector is actually diferent in the two frames. Given u, we fnd the components of 
u ′ which describe the body’s motion in a new frame by applying the velocity addition 
formulas: if the relative motion of the two frames is given by v = vex, then 

(u)x + v 
(u)x ′ = , (7.34)

1 + (u)x v/c2 

(u)y 

(u)y ′ = , (7.35)
γ(v)(1 + (u)x v/c2) 

(u)z 

(u)z ′ = . (7.36)
γ(v)(1 + (u)x v/c2) 

Both the 3-velocity and the 4-velocity are important and useful. The 3-velocity is what 
we measure in our own reference frame: we see a body move through a spatial displacement 
∆x in an interval of time that our clocks measure to be ∆t; we thus determine that the body 
has a 3-velocity u = ∆x/∆t. From this, we can construct the body’s 4-velocity. This gives 
us a geometric object that gives us an excellent tool for describing the body’s trajectory in 
spacetime. We will to be fuent with both 3- and 4-velocities, and at ease with translating 
between them. 
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Lecture 8 
Using 4-momentum 

8.1 Introduction; a note on notation 

In this lecture, we are going to examine how we use 4-momentum, seeing how it serves as a 
tool that combines the familiar notions of mass, momentum, and energy conservation into 
a single mathematical “device.” One of the goals of this examination will be to see how we 
can use invariants to write certain quantities in ways that make the analysis easy. 
Be aware that we are going overload a bit of notation, the dot product. When we write 

the dot product between two 4-vectors, that tells us to compute the invariant scalar product: 
⃗ 0b0 + a1b1 + a2b2 + a3b3a⃗ · b = −a . When we write the dot product between two 3-vectors, 

that’s the dot product you’ve learned in previous physics courses: a · b = axbx + ayby + azbz . 
This is arguably a bit sloppy, but our use will be unambiguous as long as we consistently 
use the dot product symbol only in these two circumstances exactly as defned here. 
Several of the examples used in this lecture are inspired by or taken from the textbook 

Introduction to Elementary Particles, by David J. Grifths (Chapter 3). 

8.2 The energy measured by a particular observer 

Suppose that body A moves through spacetime with 4-momentum p⃗A. Suppose that observer 
O has 4-velocity u⃗O; in our lab L we measure the components of u⃗O to be (ut x 

L,O, uL,O, uL,
y 
O, 

uL,
z 
O). What does O measure for the energy of body A? 
Perhaps the most straightforward way to do this would be as follows: 

1. Perform a Lorentz transformation to take us to the rest frame of O. In this frame, the 
t x zcomponents of u⃗O are given by (uO, uO,uO 

y ,uO) = (c, 0, 0, 0). 

2. Apply this Lorentz transformation to the components of p⃗A; call these components 
αpA;O. 

3. After applying the Lorentz transformation, the timelike component ptA;O is equal to 
the energy of body A in the rest frame of O, modulo a factor of c. In other words, the 
energy of body A as measured by O is 

= c p t . (8.1)EA;O A;O 

This way of doing things is straightforward, and in principle we could do this to determine 
the energy of body A for any observer. However, note that the fnal result can be written 

t t x x y y z zEA;O = pA;OuO − pA;OuO − p O − pA;Ou . (8.2)A;Ou O 

On initial glance, this may seem like a rather stupid way of rewriting Eq. (8.1): The term with 
the t components on the right-hand side of (8.2) is the same as what’s on the right-hand side 
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x,y,z of (8.1), but the other 3 terms we subtract of are all equal to zero since uO = 0. However, 
this rewriting makes it clear that Ea;O is just the scalar product of body A’s 4-momentum 
with observer O’s 4-velocity, modulo a minus sign: 

EA;O = −p⃗A · ⃗uO . (8.3) 

This is a particularly lovely way of writing this quantity because the scalar product is an 
invariant. As long as we know the components of both p⃗A and u⃗O in some frame of reference, 
we can use Eq. (8.3) to compute body A’s energy as measured by O without needing to 
perform the Lorentz transformation to the rest frame of O. 
In addition to being a very useful way of writing the energy that some specifed observer 

measures (we will fnd this form of the energy to be useful for several applications over 
the course of this semester), Eq. (8.3) serves as an exemplar of the power of writing things 
in terms of Lorentz invariants. Many times, it might be conceptually straightforward (but 
perhaps algebraically tedious) to fgure out a quantity in a particular frame. If you can take 
that result and reformulate it as a Lorentz invariant, you will have a result that is broadly 
applicable and often much easier to apply. 
Note: you might be confused about the fact that the “energy” defned by Eq. (8.3) is a 

Lorentz scalar. In the previous lecture, we quite specifcally used energy as an example of a 
quantity that is not a scalar in relativistic physics! Are we not contradicting ourselves? 
The issue here is that we are using the word “energy” for two diferent, albeit related, 

physical quantities: the timelike component of a body’s 4-momentum, and the property of 
a body as measured by some particular observer. The frst quantity we call “energy” is 
certainly not a Lorentz invariant — diferent frames assign diferent values to the timelike 
component of p⃗. The second such quantity is a Lorentz invariant because all IRFs agree that 
this is the energy measured by that observer. It is similar to the fact that the proper time 
experienced by some observer is a Lorentz invariant, even though “time” is certainly not 
Lorentz invariant. An observer’s proper time may not be the time that I measure, it may 
not be the time that you measure, but it is the time which that observer measures. We all 
agree on that. 
As a higher-level side issue, it’s worth noting that a lot of confusion about various concepts 

in physics can be traced back to the fact that the terms we use in human language to describe 
things often has some built-in ambiguity. The mathematical language that we use to describe 
physics does not. The philosophy of “shut up and calculate,” though a tad rude, is often a 
really way useful to get out of a confusing jam. 
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has mass m; we shoot them at each other, one with velocity v v
ex. They combine into a new lump of mass M . What is M? 

Before

v v

After
m m M

8.3 Collisions and decays 

8.3.1 A simple collision 

Let’s begin by looking at some situations in which we can use conservation of 4-momentum 
to deduce what is going on. Begin by imagining that we smash together two lumps of clay. 
Each lump = ex, the other 
with v = −v 

The 4-momentum of the two lumps before we shoot them together has components  

α . 
p = B,j 

 

γmc 
±γmv 
0 
0 

 , γ = 1/
p
1 − v2/c2 . (8.4) 

.
The symbol “=” we have introduced here means “the components on the left-hand side are 
given by the column vector on the right-hand side.” Put j = R to label the lump moving to 
the right (for which we choose the + sign), and j = L for the lump moving to the left (for 
which we choose the − sign). 
After the collision, we have  

α . p = A 

 

Mc 
0 
0 
0 

 . (8.5) 

The fnal lump is at rest in the frame we are using, so γ = 1 afterwards, and there are no 
non-zero spatial components to p⃗A. Enforcing p⃗B,R + p⃗B,L = p⃗A tells us 

M = 2γ(v)m . (8.6) 

The Newtonian expectation of course is that mass is simply conserved: M = 2m in Newto-
nian physics. In relativity, we see that M > 2m. Indeed, if v is large, the amount beyond 
the Newtonian expectation can be signifcant. For instance, if v = 3c/5, then M = 2.5m — 
the rest mass has increased by 25% in this case. 
Where has that “extra” rest mass come from? This is E = mc2 in action: kinetic energy 

has been converted into rest mass. When we collide two lumps at high speed, the remnant of 
the collision will be hotter than if we combine them at low speed. That kinetic energy gets 
incorporated into the random, thermal motion of the molecules that constitute the lumps. 
In essence, this tells us that a body’s rest mass is higher when it is hot than when it is cold. 

8.3.2 A simple decay 

The previous example is somewhat contrived. However, it is the time reverse of processes 
that happens all the time: the decay of bodies with mass MB into products whose total mass 
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into two bodies of mass m, which then recoil in opposite directions 

Before

vv

After
mmM

MA is less than the starting mass. Let’s consider such a decay process: A body of mass 
M decays with speed v. 
What is v? 

Conserving 4-momentum leads us to exactly the same equation as before: 

M = 2γ(v)m . (8.7) 

Now, we take M and m as knowns, and solve for v: � 
2m 

s �2 

v = c 1 − . (8.8)
M 

Notice that if m = M/2, v = 0: all of the original rest energy turned into rest energy in 
the new bodies. If m < M/2, then some of that rest energy has become kinetic energy. (If 
m > M/2, then we’ve got nonsense! Check your measurements.) 

8.3.3 A not-quite-so-simple decay 

Although the above decay example is illustrative, it is also somewhat contrived. A more 
realistic example is decay into two unequal mass bodies. In fact, quite a few important 
examples involve decay into products with m = 0. Here’s a fairly simple example: the decay 
of a charged pion into a muon and a massless neutrino1: 

π− → µ − + ν̄ . (8.9) 

This equation means that the (negatively charged) pion decays into a (negatively charged) 
muon and an antineutrino. This equation guarantees that charge, spin, and a quantity called 
“lepton number” are also conserved. If the details of this interest you, you should investigate 
future coursework in nuclear and particle physics. Our focus here is solely on the issue of 
4-momentum conservation. We take the pion that starts this process to be at rest in our 
laboratory, so its 4-momentum components in the lab are given by  

α . p = π 

 

mπc 
0 
0 
0 

 . (8.10) 

1We now know that the neutrino has a non-zero mass, so the analysis I am presenting here is not 
quite right. However, the mass is so small that we have not yet actually measured it (although we have 
“upper bounds” on how big it can be). You should treat the idea of a massless neutrino as a very useful 
approximation. Hopefully we (“we” meaning the scientifc community at large) will be able to refne these 
analyses with a mass estimate before too long. 
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The neutrino cannot be at rest: as a zero-mass particle2 it must have non-zero 3-momentum. 
Let’s defne the neutrino’s momentum as along the positive x axis:  

Eν /c 

α . p = ν 

 
Eν /c 
0 
0 

 . (8.11) 

This form of pαν guarantees that p⃗ν · ⃗pν = 0, the correct value of this invariant for a massless 
particle. The fnal quantity we need is the 4-momentum of the muon3 . A little thought tells 
us that it must have the form  

γ(v)mmuonc 

α . 
p = muon 

 
 . (8.12) 

−γ(v)mmuonv 
0 
0 

This means the muon, with rest mass mmuon, moves in the −x direction with speed v. 
Let’s now enforce conservation of 4-momentum and determine (a) the energy of the 

neutrino, and (b) the speed v with which the pion recoils. We require both components of 
4-momentum to balance: 

p⃗π = p⃗muon + p⃗ν 

t component: mπc = Eν /c + γ(v)mmuonc 

x component: 0 = Eν /c − γ(v)mmuonv . (8.13) 

The x component equation allows us to eliminate Eν from the t component equation. Doing 
so, we have 

mπc = γ(v)mmuon(v + c) . (8.14) 

Square both sides of this and divide by c2: � ��� 
(v + c)2 c + v2 2 2 (8.15)m = m = m .π muon muon c2 − v2 c − v 

Solving this for v, we fnd � � 
m2 − m2 

π muon (8.16)v = c . 
mπ 

2 + mmuon 
2 

From this, it’s a straightforward exercise to return to the x component equation and solve 
for Eν . The result is � �

2 − m21 mπ muon 2Eν (8.17)= c . 
2 mπ 

2Again, ignoring current wisdom that neutrinos actually have a very small mass. 
3Note that there’s potential for confusion here: we’ve written out the word “muon” rather than used the 

conventional symbol µ in order to avoid confusing µ with a downstairs index. The Greek alphabet gets a 
tad overused from time to time in physics. 
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8.3.4 A not-quite-so-simple decay, revisited 

The calculation we just did is the most straightforward way to take conservation of 4-
momentum and grind out the quantities of interest. You should be aware, though, that 
we can exploit the properties of 4-vectors to expedite our grinding of this algebra. Let’s 
start with our initial statement of conservation of 4-momentum: 

p⃗π = p⃗muon + p⃗ν . (8.18) 

Let’s move the neutrino’s momentum to the left-hand side, then construct the invariant 
scalar product of each side with itself: 

(p⃗π − p⃗ν ) · (p⃗π − p⃗ν ) = p⃗muon · p⃗muon (8.19) 

which expands to 
p⃗π · p⃗π − 2p⃗π · p⃗ν + p⃗ν · p⃗ν = p⃗muon · p⃗muon . (8.20) 

These various scalar products appearing in this equation take extremely simple forms: 

p⃗π · p⃗π = −mπ 
2 c 2 

2 2p⃗muon · p⃗muon = −m cmuon 

⃗ · ⃗ = 0pν pν 
0 0 1 1⃗ · ⃗ = −p = −(mπc)(Eν /c) + 0 = −mπEν (8.21)pπ pν ν + p .πp πpν 

Putting all these together, we have 

m 2 − 2mπEν /c
2 = m 2 (8.22)π muon 

or � 
2 2 � 

1 m − mπ muon 2Eν = c . (8.23)
2 mπ 

This is exactly the result for the neutrino energy we derived before. 
Let’s carry the analysis a few more steps in order to see a few more useful tricks. The 

neutrino’s 3-momentum has magnitude Eν /c, and is in the +x direction. From this we know 
that the muon’s 3-momentum has magnitude 

|pmuon| = Eν /c , (8.24) 

and is in the −x direction. Given a body’s 3-momentum and mass, we can use the 4-
momentum invariant to compute its energy: 

2 2 4E2 |2 
muon = |pmuon c + mmuonc . (8.25) 

However, we also know that for any body 

E = γ(v)mc 2 , p = γ(v)mv , (8.26) 

where v is that body’s 3-velocity. This tells us that if we know a body’s relativistic energy 
and relativistic momentum, we can construct its 3-velocity: 

2pc 
v = . (8.27)

E 
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a particle means the antiparticle.) In the lab frame, here’s the situation: 

Before

v
p p

p
p

p

p̄

After

Plugging in the quantities we just found for describing pion decay, let’s check the recoil 
velocity of the muon: 

|pmuon|c2 

|v| ≡ v = 
Emuon 

Eν c 
= p

E2 2 c4 
ν + mmuon � 
2 2 � 

m − mπ muon = c . (8.28) 
m2 

π + m2 
muon 

On the last line, I plugged in our result for Eν , and ground through a bit of algebra. 
Taking advantage of the invariant scalar product often ofers a quick route to isolating 

and fnding quantities of interest in your problem. It’s not a “Get Out of Algebra Free” 
card, but it often signifcantly simplifes a step or three of your analysis. 

8.3.5 The center of momentum (COM) frame 

Some problems can be greatly simplifed by changing the reference frame in which we do the 
calculation. A frame that often turns out to be useful is the center of momentum, or COM, 
frame: the frame in which the total 3-momentum of the system is zero. As it happens, this 
has been the case in all the examples we’ve examined so far. This is because it just happened 
that these examples considered problems in which the system had no net 3-momentum in 
the “lab” frame in which we formulated the analysis. That is not always the case. 
A classic example is a collision onto a stationary target. An important example (which 

I have taken from the textbook by Grifths) is the collision of a high-speed proton with a 
proton which is at rest in the lab frame. One of the early experiments used this set-up to 
produce antiprotons, the antimatter version of protons: 

p + p → p + p + p + p̄  . (8.29) 

(Overbar on 

Figure 1: Proton incident on a stationary proton target; lab frame. 

Our interest is to compute the threshold energy the incoming proton must have in order for 
the reaction (8.29) to occur. In the lab frame, this is hard to fgure out, largely because all 
of the reaction products must zoom to the right in order for momentum to be conserved. 
But, there exists some frame in which the incident proton moves to the right (slower than 
in the lab frame) and the target proton moves to the left at exactly the same speed as 
the incident proton. The system has zero 3-momentum in that frame; by conservation, the 
reaction products will have total 3-momentum summing to zero as well: 
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Figure 2: Proton incident on a proton target; center of momentum frame. 

The “threshold” incident energy is the minimum energy necessary in order for the reaction 
(8.29) to proceed. With a little thought, the meaning of this energy in the COM frame should 
be clear: it’s the energy at which the reaction products are produced with no kinetic energy. 
We produce only rest mass, not “wasting” any of the energy into the particles’ motion (at 
least in this frame; they will certainly be in motion in the lab frame, since the system has 
net momentum in that frame). 
Conservation of 4-momentum tells us that this system is governed by 

p⃗inc + p⃗target = p⃗1 + p⃗2 + p⃗3 + p⃗anti . (8.30) 

It is really easy to write down the components of the left-hand side in the lab frame:  
Einc/c mc 

α . 
p = inc,lab 

 
 

α . 
, p = target,lab 

 
 . (8.31)

px 0 
00 

0 0 

It is also really easy to write down the components of quantities on the right-hand side at 
threshold in the COM frame:  

α α α α . 
p = p = p = p = 1,COM 2,COM 3,COM anti,COM 

 

mc 
0 
0 
0 

 . (8.32) 

In these expressions, m is the proton mass, which is identical to the mass of the antiproton. 
(Note that in the lab frame, the 3-momentum component px can be rewritten using Einc and 
m. Hold that thought for a moment.) 
The difculty we now face is that if we try to enforce Eq. (8.30) with what we’ve got so 

far, we’re in trouble: the left-hand side and the right-hand side are expressed in diferent 
frames. The 4-momenta will not equate until we put them in the same frame. However, the 
invariants we can construct from them must equate no matter what frame we use to write 
down the various p⃗s. So, instead of examining Eq. (8.30), examine 

(p⃗inc + p⃗target) · (p⃗inc + p⃗target) = (p⃗1 + p⃗2 + p⃗3 + p⃗anti) · (p⃗1 + p⃗2 + p⃗3 + p⃗anti) , (8.33) 

We evaluate the invariant on the left-hand side by using the components we’ve written down 
in the lab frame: 

x)2(p⃗inc + p⃗target) · (p⃗inc + p⃗target) = −(Einc/c + mc)2 + (p . (8.34) 
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played a large role in making it clear that light has a particle-like 
“photon.” 

Before
γ q

q
After

mq γ

mq

We evaluate the invariant on the right-hand side by using the components we’ve written 
down in the COM frame: 

(p⃗1 + p⃗2 + p⃗3 + p⃗anti) · (p⃗1 + p⃗2 + p⃗3 + p⃗anti) = −(4mc)2 . (8.35) 

Equate these two expressions, use E2 = |p|2c2 + m2c4 to eliminate the lab frame px , solve 
for Einc. The result is 

Einc = 7mc 2 . (8.36) 

This means that this reaction will proceed if the incident proton’s kinetic energy (Einc is its 
total energy, which includes rest energy mc2) is 6 times the proton’s rest energy. 

8.4 Scattering 

A special case of a collision are scattering interactions: particle A comes in, interacts with 
particle B, and both then emerge from the interaction with new 4-momenta. Or, there 
could be numerous particles A1, A2, ... which interact with numerous particles B1, B2, ... 
This is exactly the situation we examined when we considered how to refne the defnition of 
momentum to insure that momentum was still conserved after learning how to add velocities 
properly. In all cases, we are simply governed by the rule that the total 4-momentum before 
must equal the total 4-momentum after. 
One example of a scattering interaction is particularly interesting: light interacting with 

a charge q of mass mq. (The value of the charge will play no role in the calculation we 
are about to do, but light does not interact with non-charged bodies.) Experiments frst 
performed by Arthur Compton in 1923 showed that in such interactions, the interaction of 
light with the charged body behaved just like inelastic collisions between particles. Such 
experiments nature, which 
we call the 

 

Figure 3: Compton scattering of of a charge q of mass mq. 

Suppose that the incident photon (denoted γ) comes down the x axis, but that the scattered 
photon makes an angle θ to the x axis. Then the situation afterwards introduces momentum 
along a new axis: the total momentum before they scatter is 

Eγ /c + mqc 
Eγ /c 
0 
0 

 ; (8.37) 
 

 

α . 

the total momentum after scattering is 

p = B 

 
Eγ 
′ /c + Eq/c 

xpq + Eγ 
′ cos θ/c α . p = A 

 
 , (8.38)− Eγ 

′y 
q sin θ/c p 

0 
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where Eγ 
′ is the photon energy after scattering. 

To make progress, we use the fact that the energy of a photon is simply related to its 
frequency or wavelength via 

Eγ = hν = hc/λ (8.39) 

where h is Planck’s constant: 
h = 6.626 × 10−34J sec . (8.40) 

Enforcing p⃗A = p⃗B and making judicious use of our invariants, a few lines of algebra yields 
the Compton scattering law: 

λ ′ = λ + 
h 
(1 − cos θ) . (8.41) 

mqc 

Some of the light’s energy and momentum is transferred to the charged mass; the light is 
less energetic (longer wavelength) as a consequence. We will step you through this analysis 
on a problem set (some of you may have already seen this in quantum mechanics class). 
Note that the quantity h/mqc has the dimensions of length; it is sometimes called the 

“Compton wavelength” of the mass mq. 

8.5 Doppler efect and aberration 

The invariance of the speed of light to all observers has been the central organizing principle 
of almost everything we’ve done since Lecture 3. But this raises an interesting question: if 
two diferent frames both see a beam of light moving with speed c, what about that beam 
appears diferent to the two observers? 
Let’s make this concrete by examining a beam of light as seen by two observers: our 

station-frame observer S, and an observer T riding through the station on a train with 
velocity v = vex. Let’s say that the station-frame observer reports the beam to have energy 
E = hν, and that it is moving in the (x, y) plane, making an angle θ with the x axis. This 
means that the station-frame observer measures the beam to have 4-momentum components  

hν/c 

α . p = S 

 
 . (8.42) 

hν cos θ/c 
hν sin θ/c 

0 

What components does the observer on the train report? As usual, we apply the Lorentz 
′ µ ′ ′ 

transformation: pT = Λ
µ

αpS
α , where Λµ

α is the matrix which takes events from frame S to 
frame T . The result is  

hν ′ /cγhν/c(1 − v cos θ/c) 
 = 

 
 . (8.43) 

′ cos θ ′ /cγhν/c(cos θ − v/c) 
hν sin θ/c 

hν′ µ . 
p = 

hν ′ sin θ ′ /cT 

0 0 

The result is that, according to the train observer, the beam of light has a diferent energy 
hν ′ and travels at a diferent angle θ ′ . (It’s a straightforward exercise to equate the two 
ways I have written the components pT

µ ′ to work out ν ′ and θ ′ .) The shift of the light’s 
energy is the Doppler efect, the same basic physics by which we hear the frequency of a 
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siren change pitch as an emergency vehicle drives past us at high speed. The change in angle 
is aberration. You explored the phenomenon of light’s trajectory changing angle according 
to diferent observers on a recent problem set; such an analysis can be done quite elegantly 
using 4-momentum. 
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Scott A. Hughes Introduction to relativity and spacetime physics 

Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 

Lecture 9 
Some more math: The metric tensor, 1-forms 
aka dual vectors, tensors more generally 

9.1 The scalar product revisited 

Similar to Lecture 5, this lecture again largely focuses on mathematical issues. We have 
introduced you to 4-vectors, and have shown how they can be used to organize a Lorentz 
covariant presentation of some of the laws of physics. In this lecture, we expand the “vocab-
ulary” of mathematical objects that we use to describe quantities in relativistic physics. 
We begin by revisiting the the scalar product between two 4-vectors, 

⃗ 0b0 1b1 2b2 3b3a⃗ · b = −a + a + a + a . (9.1) 

⃗It is not difcult to show that ⃗a·b is invariant. Indeed, “scalar product” refers to the fact that 
a “scalar” in relativistic physics is a quantity that is invariant across Lorentz frames, a more 
specialized and specifc meaning than you have likely encountered in previous coursework. 
As written, there is nothing wrong with Eq. (9.1). We used this very form to help 

understand invariants associated with relativistic energy and momentum. However, from a 
certain perspective Eq. (9.1) can be regarded as “distasteful.” It’s necessary to write the 
whole expression out; there’s no nice shorthand that lets you write this expression in index 
notation if we follow this form. 
To correct for these shortcomings, we introduce a new mathematical object called the 

metric. The metric is a tensor, a mathematical object that we defne more completely below. 
For now, you can regard it is an object with two indices that is represented in a particular 
Lorentz frame by a matrix. The metric has components ηαβ given by  

−1 0 0 0 
0 1 0 0 

 
.

ηαβ (9.2)= . 
0 0 1 0 
0 0 0 1 

.
=” to stand for “the object on the left-handAs in the previous lecture, we use the symbol “ 

XX 

side has the components on the right-hand side.” Using the metric, you should be able to 
convince yourself quite easily that Eq. (9.1) is equivalent to 

3 3 

⃗ αbβ αbβa⃗ · b = ηαβ a = ηαβ a . (9.3) 
α=0 β=0 

The second form, using the Einstein summation convention, is how the invariant scalar 
product is most commonly written out. 
Let’s see what the invariance of the scalar product tells us about how the components of 

the metric transform between reference frames. Suppose that observer O measures ⃗a and ⃗b to 
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have components aα and bβ , and they use ηαβ for metric components. Observer O ′ measures 
µ ′these vectors to have components a 
′ 
and bν ′ , and they use ηµ for metric components. ′ ν 

The components of the vectors are related in the usual way by the Lorentz transformation 
matrix: 

a α = Λα
µ ′ a

µ ′ (9.4) 

bβ = Λβ
ν ′ b

ν ′ . (9.5) 

How do we compute the metric components used by O ′ ? We fgure this out by enforcing 
invariance: 

⃗ αbβa⃗ · b = ηαβa� �� � 
′ µΛα 

′ a Λβ
ν ′ b

ν ′ = ηαβ µ � � 
µ bν ′ = ηαβ Λ

α
µ ′ Λ

β
ν ′ a 

′ 
. (9.6) 

This quantity is an invariant provided we transform the components of the metric via the 
rule 

ηµ ′ ν ′ = ηαβ Λ
α
µ ′ Λ

β
ν ′ . (9.7) 

Notice that this is basically just the “line up the indices” rule that we discussed when 
we introduced index notation. CAUTION: if you want to do this analysis using matrix 
multiplication techniques that you learned in linear algebra, you must be very careful — it 
is quite easy to go awry. See my comment in the fnal section of these lecture notes. 
I’ve gone through the calculation of how the metric transforms with some care because 

I want to make clear the principle behind how we transform tensor components. In a few 
pages, we are going to apply the ideas discussed here to tensors in general. As with 4-vectors, 
the behavior of quantities under transformation is central to our defnition of what a tensor 
is. With that said, it must be noted that for the metric the fnal result is so simple that all 
the calculation presented above surely will feel like distressing overkill: ηαβ is represented by 
the matrix   

−1 0 0 0  0 1 0 0  (9.8) 0 0 1 0 
0 0 0 1 

in all Lorentz frames. This can be proved by computing Eq. (9.7). 
One last detail: you might be wondering what happened, in Eq. (9.3), with the unit 

vectors which go into the vectors a⃗ and b⃗. After all, if a⃗ = aαe⃗α and b⃗ = bβ e⃗β , shouldn’t it 
also be the case that � �

⃗ αbβa⃗ · b = a (e⃗α · ⃗eβ ) (9.9) 

is exactly equivalent to the form presented in (9.3)? 
The answer is certainly yes. Comparing Eqs. (9.3) and (9.9) shows us that for these 

forms to be equivalent, then we must have 

e⃗α · ⃗eβ = ηαβ . (9.10) 

This, at last, allows us to see how the geometric objects e⃗α are, in fact, unit vectors: the 
scalar product of any two unit vectors is zero if α ̸= β; the scalar product is 1 when α = β 
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and correspond to one of the spatial directions; and the scalar product is −1 when α = β = t. 
The negative scalar product is what we expect for timelike vectors, so e⃗t · e⃗t = −1 should 
make sense, although it looks starkly diferent from the “modulus squared” you have seen 
with unit vectors in previous classes. 
As discussed above, ηαβ is represented by the matrix (9.8) in all reference frames. This 

means that when we change frames, and then build the unit vectors in the new frame, 

′e⃗µ ′ = Λ
α
µ e⃗α , (9.11) 

′ ′ ′ ′we must have e⃗t ′ · ⃗et ′ = −1, e⃗x · ⃗ex = 1, e⃗x · ⃗ez = 0, etc. You will test out this expectation 
on an upcoming problem set. 
We wrap up our discussion of the metric with a few comments: 

• Writing out that matrix over and over is tedious and tiring. As shorthand, we will 
often write diag(−1, 1, 1, 1) rather than the full 4 × 4 matrix. This notation means 
“the matrix which has −1, 1, 1, 1 on the diagonal, and has zero everywhere else.” 

• For reasons that will be clearer in the next section, it is useful to defne an inverse 
metric: we defne ηαβ by the rule that 

ηαβηβγ = δαγ . (9.12) 

Recall that δαγ is known as the Kronecker delta. It equals 1 if α = γ, and equals 0 
.

otherwise. Equivalently, we can say δαγ = diag(1, 1, 1, 1); equivalently, we can say that 
the Kronecker delta is represented by the elements of the identity matrix. The matrix 
representation of the components ηαβ is exactly the same as the matrix representation 
of the components ηαβ — both are given by diag(−1, 1, 1, 1). 

• The metric is not always going to be as simple as diag(−1, 1, 1, 1). The metric becomes 
more complicated when we start using diferent coordinate systems; and, it becomes 
signifcantly more complicated when we move from special relativity to general relativ-
ity. In these cases, the components of the metric become functions of the coordinates. 
We will denote the metric by gαβ when it becomes necessary for us to make it more 
complicated; we will always use ηαβ for the metric that is represented by the matrix 
diag(−1, 1, 1, 1). This is the form that we use in special relativity with Cartesian spa-
tial coordinates. (It is worth noting that such coordinates are often called inertial 
coordinates: an observer at constant Cartesian spatial coordinate moves with constant 
velocity in all Lorentz frames.) 

• Finally, the word “metric” comes from a root that means to measure. This is because 
by using the metric we can write the invariant interval ds2 = ηαβdxα dxβ — the metric 
is the mathematical object which introduces a notion of measurable distance between 
two events, one located at xα , the other at xα + dxα . This may seem fairly trivial given 
what we have discussed so far, but it becomes substantially less trivial when we move 
into more complicated geometries. In those cases, we will write ds2 = gαβ dx

α dxβ . 
The behavior of gαβ is very important for understanding the distance between two 
coordinate points in these more complicated cases. 
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9.2 Lowering and raising indices 

When we compute a⃗ · ⃗b = ηαβaαbβ , we say that we are contracting the metric with a⃗ and b⃗ 
on the indices α and β. What do we get if we contract the metric with a single vector, on 
only one index? In other words, what is ηαβaα? 
As is the way in mathematics, when we encounter a construction like this, we use it to 

defne something new. In this case, we defne a quantity with an index in the “downstairs” 
position: 

aβ ≡ ηαβ a α . (9.13) 

For reasons that are hopefully obvious, this operation is called lowering the index. The 
components in the “downstairs” position are sometimes called dual to the components with 
index “upstairs”; the geometric object we make using the downstairs-indexed components 
is (as noted at the end of Lecture 5) known as a “dual vector” or as a “1-form.” Neither 
of these names will be important for the purposes of 8.033, though I may occasionally use 
these terms. 
In special relativity using inertial coordinates, lowering the index fips the sign of the zero 

0 1 2 3component: a0 = −a , but a1 = a , a2 = a , a3 = a . Lowering the index gives us another 
way to construct the inner product: 

a⃗ · b⃗ = aαb
α = a αbα . (9.14) 

If the metric lowers an index, then it is hopefully not too surprising that the inverse metric 
raises it: � � 

ηαβ µ µ β aα = ηαβ (ηαµa
µ) = ηαβηαµ a = δβµa = a . (9.15) 

This is why the inverse metric was introduced — it gives us a tool to reverse the lowering 
operation which the metric performs. 
How do the components aα transform between reference frames? You can probably 

guess based on the “line up the indices” rule, but to be sure, let’s carefully compute how 
components in the frame of O ′ are related to components in the frame of O: 

β ′ aα ′ = ηα ′ β ′ a � � 
Λβ ′ σ = (Λµ

α ′ Λ
ν
β ′ ηµν ) σa � � 

σ = Λµ
α ′ Λ

ν
β ′ Λ

β ′ ηµν aσ 

σ = Λµ
α ′ δ

ν 
σηµν a 

= Λµ ν 
α ′ ηµν a 

= Λµ
α ′ aµ . (9.16) 

On the frst line, we write the lowering operation with all components expressed in the frame 
of O ′ . On the second line, we introduce the Lorentz transformation matrices that express 
those O ′ -frame quantities in terms of O-frame quantities. On the third line, we rearrange the 
terms slightly, and then sum over the index β ′ . This yields the Kronecker delta by combining 
the second and third Lorentz transformation matrices. To go to the ffth line, we sum over 
the index σ, which (thanks to the properties of the Kronecker delta) changes the aσ to aν . 
The result of this tells us to lower the index on aν . The result we get at the end of all this 
shows us that to transform “downstairs” components, we indeed just “line up the indices.” 
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As mentioned in a previous lecture, “upstairs” components are often called contravariant, 
and “downstairs” ones are called covariant. We now see that the metric and inverse metric 
are the tools we use to fip between the two forms. This holds up in general, including when 
the metric becomes more complicated than diag(−1, 1, 1, 1). Because the metric (and its 
inverse) let us raise or lower indices as needed for our calculation, the diference between the 
“upstairs” and “downstairs” position is not really that important for us. This is one of the 
reasons I like using the terms “upstairs” and “downstairs” — these terms emphasizes that 
the index position is not terribly important, and in fact can be modifed with ease. 
The 4-vectors we have discussed so far (spacetime displacement, 4-momentum, 4-velocity) 

are most “naturally” presented with their indices up. This is largely because they descend 
from the spacetime displacement vector, ∆x⃗ = ∆xαe⃗α, in which the physical quantity we 
care about is the set of coordinate displacements ∆xα . There are some quantities which 
are most “naturally” expressed using indices down. The prototypical example of this is the 
spacetime gradient. Suppose that ϕ(x⃗) is a scalar feld — that is, it is a feld whose value 
at the event located x⃗ away from the origin is the same to all inertial observers. Then we 
defne its gradient by 

∂ϕ 
Aα = ≡ ∂αϕ . (9.17)

∂xα 

µ α = ΛµOn a problem set, you will show that if x 
′ 
= Λµ ′ 

αx , then Aα ′ α ′ Aµ — under Lorentz 
transformations, the gradient behaves like a “downstairs” index quantity. 
The metric lets us defne a variation on the gradient. Let us defne 

xα = ηαµx
µ . (9.18) 

The components of this “downstairs” variant of xµ are identical, except for the time-like 
piece, which picks up a minus sign: 

0 1,2,3 x0 = −x = −ct ; x1,2,3 = x . (9.19) 

We defne our variant of the gradient using derivatives with respect to xα: 

∂ϕ 
Aα ≡ ∂αϕ .= (9.20)

∂xα 

It’s not hard to show that this transforms like an “upstairs” index quantity, hence our 
association of it with Aα . 
One of the places where this is really useful is that we can combine and contract the 

two notions of gradient to produce a combination of second derivatives that is a Lorentz 
invariant operator. Let’s look at what happens when we act both notions of gradient with 
the indices contracted onto scalar feld ϕ: 

1 ∂2ϕ ∂2ϕ ∂2ϕ ∂2ϕ 
∂α∂αϕ = − + + + ≡ □ϕ . (9.21) 

c2 ∂t2 ∂x2 ∂y2 ∂z2 

You may recognize this combination of derivatives as exactly what we have for quantities 
that obey a wave equation. Indeed, the combination ∂α∂α, often denoted with the “box” 
symbol □, is called the wave operator. Notice that it has no free indices. 
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9.3 Tensors 

The metric is an example of a family of mathematical objects called tensors which are used 
in many places in physics. They are particularly important in relativity, but show up in 
many other felds, particularly when one studies the properties of matter or matter fow over 
an extended region (e.g., in fuid dynamics, or the elastodynamical properties of materials). 
Tensors are geometric objects whose components are represented by quantities with in-

dices on them. The metric tensor is the frst example we have seen of a tensor with two 
indices, but this generalizes — tensors can have an arbitrary number1 of indices. Their 
defning characteristic is the transformation law: a quantity is a tensor if it transforms with 
a transformation matrix “correcting” each of its indices. For example, suppose physics tells 
us that we care about a quantity with 4 indices, one in the up position and three down: 
Rµ

αβγ . This quantity is a tensor if it transforms between reference frames with the rule 

Rµ ′ ′ 
Λα = Rµ

α ′ Λ
β 

α ′ β ′ γ ′ αβγ Λ
µ

µ β ′ Λ
γ
γ ′ . (9.22) 

The number of indices used for a tensor’s components (and hence the number of transfor-
mation matrices used to transform it) tells us the tensor’s rank. The example (9.22) is a 
rank-4 tensor. The metric is a rank-2 tensor. Vectors are rank-1 tensors; they transform 
using one transformation matrix. Scalars — Lorentz invariants — are often considered to be 
rank-0 tensors; they transform with no transformation matrices, since they are the same in 
all frames. The wave operator we defned in the previous section acts like a scalar — more 
properly, a “scalar operator,” because it defnes a combination of derivatives that operate in 
the same way in all frames. 
In 8.033, we will work almost entirely with tensors of rank 0, 1, and 2. (We will briefy 

discuss higher rank tensors when we move from special relativity to general relativity, but 
the discussion will be almost entirely qualitative.) Rank-2 tensors are sufciently important 
that they are worth some detailed discussion. Many rank-2 tensors can be regarded as a 
quantity that, in essence, points in two directions at once. For example, in a few lectures 
we will discuss a quantity called the “stress-energy tensor” which describes the fux of 4-
momentum. Components T αβ of this tensor describe the fux of 4-momentum component pα 

βin the x direction. 
In general, rank-2 tensors in spacetime have 16 components — 4 for each index. How-

ever, many rank-2 tensors have symmetry properties that allows us to relate some of the 
components to each other: 

Sβα • A tensor Sαβ is symmetric if it has the property that Sαβ = . This reduces the 
number of independent components from 16 to 10: the four components on the diag-
onal, plus half of the 12 of-diagonal components. The stress-energy tensor mentioned 
above has this property; so does the metric, even in the general form gαβ. 

= −Aβα • A tensor Aαβ is antisymmetric if it has the property that Aαβ . This reduces 
the number of independent components from 16 to 6. The four components on the 

−Aβα diagonal must be zero (this is the only solution to Aαβ = if α = β), and only 
half of the 12 of-diagonal components are unique. We will soon fnd an antisymmetric 
tensor that allows us to describe electric and magnetic felds in a covariant formulation. 

1In my research, I use a tensor with 4 indices more or less daily, and have done work that involves tensors 
with 5 and 6 indices. 
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9.4 Aside: Using matrix multiplication to combine tensors and 
matrices 

Once we start working with rank-2 tensors, there is a class of mistakes that 8.033 instructors 
tend to encounter from students who use their knowledge of linear algebra to work through 
equations that involve products of tensors. Let me emphasize very strongly that using 
standard linear algebra tools can be done to correctly reduce equations of the sort that we 
will develop. However, doing so requires that you be careful to think how to combine the 
diferent tensors. 
Suppose you need to construct a tensor Aαβ which is given by combining three tensors. 

For instance, suppose that 
Aαβ = Bµν D

αµF βν . (9.23) 

By far the most common mistake we see is that people write this as the following (wrong!) 
equation: 

AWRONG = B · D · F , (9.24) 

where  
A00 A01 A02 A03 B00 B01 B02 B03 

AWRONG = 
 
A10 A11 A12 A13 

A20 A21 A22 A23 

 , B = 
 
B10 B11 B12 B13 

B20 B21 B22 B23 

 , (9.25) 

A30 A31 A32 A33 B30 B31 B32 B33WRONG 

with D and F defned similarly. 
Why is this wrong? When we represent a rank-2 tensor by a matrix, the frst index 

corresponds to the row, the second index to the column. We need to make sure that when 
we contract on indices, we are correctly linking up rows and columns of the diferent objects. 
With this in mind, let’s carefully examine Eq. (9.23). To produce Aαβ , we frst contract 

Bµν on its frst index with the second index of Dαµ. In matrix form, this means we select 
column ν of B, we select row α of D, and we combine: 

Bµν D
αµ 7→ D · B . (9.26) 

We thus see a big error in Eq. (9.24): the order of multiplying the matrices D and B has 
been reversed. Matrix multiplication does not commute, so this is a highly nontrivial error. 
We also need to contract the second index of Bµν with the second index of F βν . In other 

words, when we put things in matrix form, we select row µ of B and combine it with row 
β of F. In the language of matrix multiplication, this means we are multiplying B with the 
transpose of F. The correct translation of Eq. (9.23) into matrix form is thus 

A = D · B · FT , (9.27) 

where the T superscript denotes matrix transpose. We see that the wrong response is wrong 
in two ways: it puts the matrices in the wrong order, and it uses F rather than its transpose 
FT . In some cases, failing to use the transpose may be harmless because the underlying 
matrix is symmetric. If so, the matrix and its transpose are identical, and you’ve gotten 
lucky! You cannot count on such luck working out for you in general. Indeed, if the matrix 
is in fact antisymmetric, by not taking the transpose you’ll wind up with a minus sign that 
could drive you somewhat mad. 
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Carefully following the logic described here to combine rank-2 tensors via matrix mul-
tiplication will work. However, it must be emphasized that simply working with the index 
format always just works. You don’t need to do any of this careful vetting of which index is 
combining with which, and writing out the matrices accordingly. 
It must also be emphasized that this way of mapping index equations into linear algebra 

becomes more or less impossible to use once we move beyond rank-2 tensors. For instance, 
when I originally drafted these notes, a large portion of my working thoughts were consumed 
by a research paper with a (then) graduate student2 that is largely concerned with fnding 
solutions to the equation 

Dpµ 1 αSβγ = − Rµ
αβγ u . (9.28)

dτ 2 
This equation tells us how a body’s momentum changes as it moves through spacetime 
if the body’s 4-velocity has components uα , and the body is itself spinning (the tensor 
components Sβγ describe its spin in relativistic language). The operator D/dτ is a special 
kind of derivative taken with respect to proper time along that body’s worldline through 
spacetime, and the tensor components Rµ

αβγ describe the action of gravitational tides in 
general relativity. There is really no way we can put an equation like this into a form 
that is matrix-like. Instead, we just run through the indices and combine everything by 
straightforward multiplication and summation of the quantities written out index by index. 
Using computer algebra tools, this isn’t so bad, as long as everything is set up and defned 
carefully. 

2https://arxiv.org/abs/2201.13334 
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8.033 Fall 2024 

Lecture 10 
Describing matter in bulk 

10.1 A box full of dust 

In our discussion so far, we have discussed how to analyze the kinematics of particles — 
pointlike entities with velocity and mass, momentum and energy. The focus on particles 
is an important step to making our laws of physics comport with the principle of Lorentz 
covariance. However, a lot of the matter that we study in physics isn’t in a form that we 
study particle by particle, but instead is distributed in bulk over some volume. Various 
aspects of the properties of this bulk matter vary according to the reference frame in which 
it is observed. In today’s lecture, we will introduce tools that are used to characterize bulk 
matter, and will examine what properties of the characterization change as we change frames. 
Begin by considering a box full of dust. “Dust” is how we describe matter that doesn’t 

interact with itself — it doesn’t exert pressure or do anything interesting other than take up 
space. Think of it as a pile of particles with mass, but no other interesting property1 . 
We begin with the simplest way to characterize this matter: we take the box to be at 

rest with respect to us, and we count the number of dust particles it contains. We fnd that 
the box contains N particles, and that the box has a volume of V . Then, we say that the 
dust has a number density 

n0 = N/V . (10.1) 

The number n0 characterizes perhaps the most important characteristic of the dust, given 
what we know about it so far. (The reason for the “0” subscript will be made clear in a 
moment.) Note the dimensions of n0: number per unit volume, or number per length cubed. 
Now take the box full of dust to be, as we observe it, in motion. What is diferent from 

the rest frame view? What is the same? 
The total number of dust particles must be the same — simply making the box move 

cannot create or destroy any of the dust. So the number of particles N is independent of the 
frame in which we measure it. But, one of the linear dimensions of the box is contracted by 
a factor γ. This reduces the volume of the box by a factor γ according to our measurements, 
which in turn means that the number density must increase by a factor γ: 

n = γN/V = γn0 . (10.2) 

We will use n to stand for the number density that we measure in our frame of reference. 
This reduces to n0 if our frame of reference happens to be the dust’s own rest frame. 
When we observe the dust to move, it acquires one other property: some volumes which 

were empty of dust at time t will contain dust a time t + ∆t later; other volumes that 

1Such “dust” doesn’t really exist — any dust that we encounter in reality is more interesting than the 
dust we use in this lecture. Our dust is an idealization that we use to formulate the framework that we are 
working in, and serves as a useful starting point. Once we’ve developed a framework for this more-or-less 
fctional idealization, we can add more features and properties, pushing it toward something realistic. 
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Suppose length 
the box is moving in the x direction, and we can write v vex. At time t 0, 
of the box is at x 0, and the front of the box is at x L. The cross section of 
has area A (so that V AL). 

x = 0 x = L

Cross sectional area A

Box moves with velocity v = vex

contained dust will lose it. This is because the dust is now fowing: there is a fux of dust. 
that we measure the volume2 to have L. Let’s orient our coordinate axes so 

that = = the 
back = = the 
box = 

Figure 1: Box as described in the text, at time t = 0. 

At time t = ∆t, the volume from x = 0 to x = v∆t has been emptied of dust; the volume 
from x = L to x = L + v∆t has flled up with dust. The box is gaining nAv∆t dust particles 
at the front end, and losing nAv∆t dust particles at the back end. Dividing by A∆t, we the 
rate at which dust is entering one end per unit cross section area is 

dN 
= nv . (10.3)

dA dt 

The same rate is leaving the box at the back end. 
Equation (10.3) defnes a fux of particle number into and out of the box. Let’s make 

this a bit more general: we defne the x component of the number fux 3-vector by 

n x = nv = γn0v . (10.4) 

You should be able to convince yourself that there was no reason to restrict ourselves to dust 
moving in the x direction, and we can defne a general number fux 3-vector as 

n = nv = γn0v . (10.5) 

The number fux 3-vector n tells us the number of dust particles per unit area that crosses 
into (or out of) a region per unit time. 

2Bear in mind that this means L is not the rest frame length of the box 
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Let’s think about the fow of dust into or out of a region a little more carefully. Imagine 
that dust is fowing through our frame of reference, and that at each point in space it has a 
number density n and a number fux 3-vector n. Imagine that both of these quantities can 
vary as a function of position and time: the fow of dust may bend and twist as it fows, 
with the amount in the fow rising and falling with time. 

Volume V

Surface S

Figure 2: Dust with number fux 3-vector n fows into and out of a volume V which is 
bounded by a surface S. 

Imagine that this “river” of dust fows into a volume V which is bounded by a surface 
S. In a time ∆t, the change in the number of dust particles in the volume is given by I 

∆N = −∆t n · dA Z S 

= [n(t +∆t) − n(t)] dV . (10.6) 
V 

Let’s deconstruct Eq. (10.6). On the frst line, we have introduced and are using the outward 
directed area element dA. This is a diferential of area to which we assign a direction: It 
points in the out direction, normal (orthogonal) to the surface. The minus sign is because 
the area element is outward pointing: if n · dA < 0, then dust is fowing into the volume 
and ∆N is positive; vice versa if n · dA > 0. 
To write down the second line, note that ∆N is the change in total number contained by 

the volume. We get this total number by integrating the number density over the volume 
V ; its change is given by subtracting the amount that was there at time t from the amount 
that is there a time ∆t later. 
Next, divide both sides by ∆t. We can take ∆t inside the integral, yielding Z I 

[n(t +∆t) − n(t)] 
dV = − n · dA . (10.7)

∆tV S 
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Taking the limit ∆t → 0, Z I 
∂n 

dV = − n · dA . (10.8)
∂t V S 

For the next step, we invoke the divergence theorem: for any 3-vector F defned over a region 
V that has a closed surface S, I Z 

F · dA = (∇ · F) dV . (10.9) 
S V 

Applying the divergence theorem on the right-hand side of Eq. (10.8) and then moving it to 
the left, we have Z � � 

∂n 
+ ∇ · n dV = 0 . (10.10)

∂t V 

This equation must hold no matter what V we use. The only way for that to be the case is 
if the term in square brackets in Eq. (10.10) vanishes. This means that the number density 
n and the number fux n are related by the continuity equation 

∂n 
+ ∇ · n = 0 , (10.11)

∂t 

or, expanding out the components in the divergence term, 

∂n ∂nx ∂ny ∂nz 

+ + + = 0 . (10.12)
∂t ∂x ∂y ∂z 

Everything we have done can be organized into a particularly tidy package using 4-vectors. 
First, note that Eqs. (10.2) and (10.5) have almost exactly the form of the components of 
a 4-vector: we treat (10.2) as the timelike component, and then (10.5) defnes the spatial 
components. The only reason this doesn’t quite work is that (10.2) has the wrong dimensions: 
it is number per unit volume, whereas the components in (10.5) have the dimensions number 
per unit area per unit time. 
This is easily fxed: just multiply (10.2) by the speed of light c. Doing so, we defne the 

number fux 4-vector N⃗ , whose components are 

(N0, N1, N2, N3) = (nc, nv 1 , nv 2 , nv 3) 

= (γn0c, γn0v 1, γn0v 2, γn0v 3) . (10.13) 

Notice that this is nothing more than 

N⃗ = n0u⃗ , (10.14) 

where u⃗ is the 4-velocity with which we observe the dust to be moving. Let’s look at the 
invariant we can build out of N⃗ : 

2 2 2⃗ ⃗N · N = n0u⃗ · ⃗u = −n0c . (10.15) 

This tells us that the number fux 4-vector is timelike. Taking the scalar product of N⃗ with 
itself yields the number density of the dust in its own rest frame, times −c2 . 
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The 4-vector N⃗ also allows us to write the continuity equation in a particularly tidy way. 
Recalling that x0 = ct, we see that Eq. (10.12) can be written 

∂Nα 

= 0 , (10.16)
∂xα 

or 
∂αN

α = 0 . (10.17) 

Notice that there are no free indices left over: we sum over α, with one in the upstairs 
position and one downstairs, yielding a Lorentz invariant quantity (in the case, the number 
0 — certainly a quantity that all Lorentz observers agree on). By setting everything up using 
4-vectors, we have a covariant formulation of the continuity equation. If we have measured 
the 4-components of N⃗ in the frame of O, and would like to know how they will appear in the 
frame of O ′ , we simply apply a Lorentz transformation: Nµ ′ = Λµ ′ 

αN
α . This quantity will 

obey the continuity equation provided we take derivatives using the coordinates xµ ′ which 
are used by O ′ : they will fnd ∂µ ′ N

µ ′ = 0. 

10.2 A box full of charge 

This discussion of number continuity may have reminded you of a calculation that you did in 
electricity and magnetism. Suppose each grain of dust carries an electric charge q. Then, our 
calculation proceeds essentially exactly as before, but we can now look at the charge density 
associated with a volume, and we can think about a charge fux 3-vector, better known as 
the current density. Let’s quickly see what this looks like. 
If the number density of the dust in some frame is n, and if each dust grain carries a 

charge q, then the charge density ρq is given by 

ρq = nq . (10.18) 

(We will use ρ for something diferent in a moment, hence the q subscript to denote charge 
density.) If these dust grains have a number fux 3-vector n, then the fow of the dust carries 
a current density 

J = qn = ρqv . (10.19) 

Going through the derivation of number continuity again, but now including a charge q on 
each dust grain, yields the continuity equation for electric charge: 

∂ρq 
+ ∇ · J = 0 . (10.20)

∂t 

We can build a 4-vector out of this by defning its “zeroth” component using the charge 
density and the speed of light. We thus defne J⃗  with components 

(J0, J1, J2, J3) = (ρqc, J
1, J2, J3) . (10.21) 

With this formulation, we can write the equation of charge continuity as 

∂αJ
α = 0 . (10.22) 

We will return to this 4-vector shortly when we examine how to write the equations of 
electrodynamics in a way that makes their Lorentz covariance clear. 
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10.3 A box full of dust, revisited 

Finally, let’s give each dust grain a rest mass m. We could defne a rest mass density 
ρm = Nm/V . However, we know that as we change frames, the most interesting quantities 
which describe a massive object are its energy γmc2 and its momentum p = γmv. So 
let’s instead defne the rest frame’s energy density ρ0 = Nmc2/V . How does this quantity 
transform when we change frames? 
Again, we know that we cannot create or destroy any dust grains, so N is the same in all 

frames. We also know that the length of the box along the relative motion of the frames is 
contracted by γ, so V → V/γ. However, in this case, we also know that the energy of each 
dust grain is boosted by γ: the grain only had rest energy in the original rest frame, but it 
has both rest energy and kinetic energy in a frame moving with v relative to the rest frame. 
The energy density in this frame is given by 

ρ = N(γmc2)/(V/γ) = γ2ρ0 . (10.23) 

The fact that two powers of γ enter into this transformation law is interesting and im-
portant. When we carefully studied number density and charge density, we realized that 
these quantities were actually components of a 4-vector. If they had been Lorentz scalars, 
then they would have been invariants; the transformation would have involved no factors 
of γ. The number of dust grains in a box, or the total charge in a box, both fall into this 
category. When there is one factor of γ, that tells us that that we have stumbled onto a 
transformation law that involves one factor of the Lorentz transformation matrix Λµ ′ 

α, and 
so the quantity we are looking at is a component of a rank-1 tensor — i.e., a 4-vector. 
This factor of γ2 tells us that the quantity we are examining is associated with a trans-

formation law that involves two factors of the Lorentz transformation matrix. The quantity 
we are studying must a component of a rank-2 tensor — a quantity with two associated 
indices. Let us defne 

Nm 
T αβ α β = u u or (10.24)

V 
= p αNβ . (10.25) 

This quantity is known as the stress-energy tensor. The 00 or tt component describes energy 
density in some reference frame. To understand the other components, note the interpreta-

T αβ αtion that Eq. (10.25) suggests: describes the fux of 4-momentum p in the direction 
of xβ . (Via Eq. (10.24), we see that T αβ = T βα , so we can equally well call this the fux 
of 4-momentum pβ in the direction of xα.) What do the other components mean? Let’s go 
through these tensor looking at a couple of important groupings of components for this dust 
stress energy: 

• T 00 2= γ2n0mc : As already discussed, this is energy density. Think of it as the density 
of p0 fowing in the direction of x0 — the fux of energy density through time. 

• T 0i = γ2n0mcvi: This is energy fux: the fow of the density of p0 in the xi direction. If 
you look carefully at the units, you’ll see that this quantity is of a by factor with the 
units of velocity. More correctly, the energy fux is T 0ic. The root issue here is that 
4-momentum component p0 is E/c, so we need to correct with a factor of c. Correction 
factors like this don’t change the essential physics. 
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• T i0 = γ2n0mcvi: This is momentum density. Think of this as the density of momentum 
pi fowing through time. Again, examining units, you’ll see it’s a bit of. More correctly, 
the momentum density is T i0/c; the root issue here is that x0 is c times t. (Needing to 
account for factors like this is one reason why many people use units in which c = 1. 
Keeping track of factors of c can become tiresome.) Notice that T i0 = T 0i — using the 
relativistic defnitions of energy and momentum, energy fux and momentum density 
are the same thing, modulo factors of c. 

• T ij i j= γ2n0mv v : This is momentum fux: the fow of momentum pi in the xj direction. 

10.4 The stress-energy tensor more generally 

Dust is a useful tool for introducing the stress-energy tensor and wrapping our heads around 
what the components of this tensor mean to a particular observer. However, dust is a 
somewhat limited class of matter. The stress-energy tensor is much broader than this. We 
conclude today’s lecture by discussing the meaning of the stress-energy tensor as it is used 
to describe matter in general and, as we’ll briefy discuss later, felds. 
One often characterizes the stress-energy tensor by going into a frame of reference in which 

there is no bulk fow of material. For examine, if it is a fuid, this is the frame in which 
the fuid is a rest; such a frame is called “comoving” in this case. Note that a distribution 
of material might fow at diferent speeds in diferent places or at diferent times; think of 
this as how we characterize one small “element” of the material. In this frame, the diferent 
components take on exactly the meaning that we discussed for the components of the dust 
stress-energy tensor: 

• T 00 represents the energy density of the material. 

• T 0i represents (modulo a factor of c) the energy fux of the material. Note that if no 
matter is actually moving, there still might be a fow of energy — the material might 
be conducting heat, or there may be radiation fowing in some direction. 

• T i0 represents (modulo a factor of c) the momentum density of the material. Again, 
even if no matter is actually moving there can still be a density of momentum. Indeed, 
there must be momentum density if there is any fux of energy. 

• T ij represents the momentum fux. This 3 × 3 spatial tensor is important in its own 
right, and is known as the stress tensor. The on-diagonal and of-diagonal elements of 
the stress tensor deserve comment: 

, T yy – The on-diagonal elements (T xx , T zz) tell us about the fow of momentum 
component pi in the xi direction. These components of the stress tensor tell us 
about the force (per unit area) the material exerts in the direction of its fow. 
When the material is a fuid, these components of the tensor describe pressure. 

, T xz , T yz – The of-diagonal elements (T xy , plus symmetries) tell us about “non-
normal” fows of momentum. In fuids, these terms are related to a property 
called its viscosity; it leads to forces along (i.e., parallel to) an interface, rather 
than normal to the interface (the way pressure operates). 
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An example of a material which is used in many analyses is a perfect fuid. It is a fuid 
for which there exists a frame of reference in which its stress-energy tensor has components 
T αβ = diag(ρ, P, P, P ), where ρ is the fuid’s energy density, and P is its pressure. 
The “perfect” in “perfect fuid” means that it represents a kind of Platonic ideal: there 

is no energy or momentum fow in a perfect fuid’s rest frame (meaning that there is no heat 
conduction, or other mechanism to transport energy), and it has no viscosity. No viscosity 
means that if you were to dip your hand into it, none of the fuid would stick to you when 
you pulled your hand out. As such, the physics of perfect fuids has been mocked as the 
physics of “dry water.” 
The meaning of stress energy as a fux of 4-momentum allows us to derive a continuity 

equation for it. Let’s reconsider Fig. 2, but rather than thinking about the fow of dust, think 
about the fow of 4-momentum. We then largely repeat our derivation of number continuity, 
but replace quantities related to number density with quantities related to 4-momentum 
density. In particular, let’s replace the number density n with the 4-momentum density T α0 , 
and replace the number fux ni = nvi with the 4-momentum fux T αi . 
The total amount of 4-momentum in V is given by integrating T α0 over this volume: Z 

[p α(t)]V =
1 

T α0(t) dV . (10.26) 
c V 

The factor of 1/c accounts for the fact that T 00 is energy density, but p0 is E/c, plus for the 
fact that T i0 has such a factor built into its defnition. The change in the 4-momentum in 
V over an interval of time ∆t is thus given by Z 

1 � � 
∆p α = T α0(t +∆t) − T α0(t) dV 

c ZV 

∂T α0 

= ∆t dV . (10.27) 
V ∂x0 

We can also account for the change by computing the fux of 4-momentum through the 
surface S bounding this volume during the time interval ∆t: I 

α T αidAi∆p = −∆t . (10.28) 
S 

The minus sign is again because the area element dA (which has components dAi) points 
outward from the volume. The divergence theorem can be used here just like it can be 
used in other circumstances with which you are familiar. Just think of T αi as four diferent 
3-vectors, one for each value of α: I Z 

∂T αi 
T αidAi = dV . (10.29) 

S V ∂xi 

Putting together our two formulations of ∆pα yields Z � 
∂T α0 � 

∂T αi 
∆t 

V ∂x0 
+ 

∂xi 
dV = 0 . (10.30) 

This gives a continuity equation for the stress-energy tensor: 

∂β T αβ = 0 . (10.31) 

This equation expresses both conservation of energy and conservation of momentum for the 
material whose stress-energy tensor is T αβ . 
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A covariant formulation of electromagnetics (part I) 

11.1 Electric and magnetic felds and forces: Background 

Our pivot from Galileo’s relativity to Einstein’s relativity began by considering electrody-
namics. Let’s write out again the critical equations which govern electrodynamics — the 
Maxwell equations which connect the the felds to their sources, and the Lorentz force law 
which shows how these felds act on charges: 

∇ · E = ρ/ϵ0 , ∇ · B = 0 , (11.1) 
∂B ∂E ∇× E = − , ∇× B = µ0J + µ0ϵ0 ; (11.2)
∂t ∂t 

F = q (E + v × B) . (11.3) 

It should be emphasized very strongly that these equations are fully compatible with special 
relativity. Indeed, all of the modifcations to various physical concepts that Einstein’s rela-
tivity requires were introduced because it became clear that important aspects of Newtonian 
mechanics were not compatible with electrodynamics. Electrodynamics is one of the most 
successfully and accurate theories of nature we have developed. Once it has been updated 
to account for the fact that our universe is quantum mechanical in nature (a topic for a 
diferent course!), we end up with a version of electrodynamics that is perhaps humanity’s 
most precisely-tested description of nature. 
That said, Eqs. (11.1), (11.2), and (11.3) are not written in a way that makes it clear 

they are compatible with Lorentz covariance. The felds and the force are written using 
3-vectors, which depend upon us choosing a particular observer’s “space” coordinates; the 
feld equations are expressed using a particular observer’s time and space derivatives. These 
equations are formulated for one particular reference frame, and it is not obvious how they 
will transform to another reference frame. The goal of the next two lectures is to think how 
to organize the structures expressed in Eqs. (11.1), (11.2), and (11.3) in a way that clearly 
shows electrodynamics is a Lorentz covariant theory. 

11.2 How to organize the felds 

11.2.1 General considerations 

So far, when we’ve translated a physical quantity into Lorentz covariant language, we have 
found a way of taking quantities which are 3-vectors and mapping them into 4-vectors. 
Examples so far are displacement (add ct as the “zeroth” component), the 4-velocity (change 
d/dt to d/dτ so that we use a clock whose meaning is invariant to describe time derivatives; 
add c dt/dτ = γc as the zeroth component), and the 4-momentum (add energy as the zeroth 
component, dividing by c to make sure the dimensions are sensible). Can we do this with 
the electric and magnetic felds? 
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magnetic and electric felds in another; and vice versa. The classic example of this is 
charge moving in a magnetic feld. Consider a charge moving parallel to a current-carrying 
wire, as illustrated in Fig. 1: 

Wire carries current I

Charge q moves with velocity v = vex

Separation r

We have several problems here. First, we know that E and B felds must transform into 
one another when we change frames: what is pure magnetic feld in one frame is a mixture 
of a 

Figure 1: A charge q moving parallel to a wire carrying a current I. 

For concreteness, let’s defne ex as pointing to the right, ey as pointing into the page, and ez 

as pointing up. Then, in what we will call the “lab” frame L, we have a charge q that moves 
to the right. The charge is a distance r from a wire that carries a current fowing to the left. 
As we learned in 8.02/8.022, this wire generates a magnetic feld that circulates around the 
wire. At the location of the charge, this feld takes the value 

µ0I 
B = ey . (11.4)

2πr 

The wire is neutral, so the charge q does not feel any electric force — it only feels a magnetic 
force, whose value is 

µ0qIv 
F = qv × B = ez . (11.5)

2πr 
This force points “up” in the fgure — the charge is repelled from the wire. 
Let’s now change frames, and think about what must happen. First, we require q to 

be the same in all reference frames. If changing frames changed the value of charge, the 
elementary charge would vary for moving charges. Imagine the efect this would cause for a 
system in which there are members whose charges are equal and opposite, but are moving at 
diferent relative speeds. A system which is neutral when its members “sit still” might have 
net charge when they are in motion! In addition to feeling absurd, the fact is that we have 
no experimental evidence for anything like this whatsoever. Observations and measurements 
indicate that a body’s charge is unchanged no matter how fast we observe it to move. 
So, let’s jump into a reference frame that moves with v = vex — i.e., the frame C in 

which the charge is at rest. In this frame there can be no magnetic force. The magnetic 
force is proportional to the charge’s speed. If the speed is zero, the magnetic force is zero. 
However, a repulsive force in one frame of reference is not consistent with no force in another. 
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The details of how the force behaves in this frame might difer1 (perhaps its magnitude will 
be diferent), but there still must be an overall repulsive force. If there is no magnetic force, 
then there must instead be an electric force. 
This means there must be an electric feld in the charge’s rest frame, even though there 

was no such feld in the lab frame. Something that we measured to be pure magnetic feld 
transforms to a mixture of electric and magnetic feld. Whatever “entity” we will use to 
describe electric and magnetic felds in special relativity must be able to transform magnetic 
felds into electric felds (and vice versa). 

11.2.2 A covariant representation of the force and felds 

Our root issue is essentially one of simple counting. We have had success ftting important 
physical quantities into 4-vectors so far, but it just isn’t going to work for the electric and 
magnetic feld. They have 6 components, and we cannot ft these 6 pieces of information 
into the 4 components of a 4-vector. We need something bigger. 
A simple example of a bigger object is a 2nd-rank tensor, which has 16 components. 

That’s too many; but, we can reduce the number of free components by imposing symmetry. 
If we use a symmetric tensor, then it has 10 free components — still too many. But an 
antisymmetric 2nd-rank tensor has 6 free components — exactly what we need. 
So let’s think how we can ft the 6 components (Ex , Ey, Ez), (Bx , By, Bz) into an 

antisymmetric 2nd-rank tensor which we will call F αβ . To guide us, let’s deduce how the 
Lorentz force law, F = q(E + v × B), can be written in a fully covariant manner. 
First, we “upgrade” the force. We start with F = dp/dt. Clearly, we will want to take 

the 3-momentum p over to the 4-momentum, whose components are pα . We also need to 
upgrade the time derivative with one that uses a notion of time that all frames are happy to 
use as a point of reference. Just as we did in defning the 4-velocity, let’s replace d/dt with 
d/dτ , where τ is the proper time measured by the body which is experiencing the force. 
What about the right-hand side, q(E + v × B)? This a quantity that is linear in q, 

linear in the felds, and — if we think about this carefully — linear in the components of the 
velocity. “Wait,” I imagine you protesting, “the B term is linear in components of velocity, 
but what about the E term?” Note that E and B have diferent dimensions: the dimensions 
of E are force over charge, but the dimensions of B are force over speed times charge. When 
we assemble these quantities into a single tensor, we’ll need to account for the diference in 
dimensions. We often do this by throwing in factors of the speed of light. This suggests that 
we think about the Lorentz force law as � � � � 

E 
F = q c + v × B . (11.6) 

c 

Bearing in mind that the components of uα are given approximately by (c, vx, vy, vz) for a 
body that is not moving very fast relative to us, this suggests that in the Lorentz force law, 
the electric feld is being multiplied by the timelike component of the 4-momentum. 
Putting all this together, we want the covariant formulation of the Lorentz force to be 

dpα 

= qF αβ uβ . (11.7)
dτ 

1In a few lectures we will look carefully at forces and accelerations in special relativity; we briefy introduce 
a handful of important issues a little later in this lecture. 
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� 

Let’s now fgure out how to “fll up” the tensor F αβ so that this is consistent with the Lorentz 
force law that we learned about in 8.02/8.022 by going through the spatial components, 
α = 1, 2, 3, one by one. (We’ll come back to the α = 0 component later.) First look at 
α = 1, or α = x: 

dpx 

dτ 

� 
F 10 u0 + F 12 u2 + F 13 = q u3 . (11.8) 

There is no F 11 term because of this tensor’s antisymmetry — all diagonal elements are zero. 
Let’s further use the fact that u0 = −u0 = −γc, u2 = γ(dy/dt), and u3 = γ(dz/dt): �� 

dpx dy dz 
+ F 12 + F 13−cF 10 = γq . (11.9)

dτ dt dt 

Next, divide by sides by γ and use the fact that an interval of time dt measured by clocks 
in this frame is γdτ : �� 

dpx dy dz 
+ F 12 + F 13−cF 10 = q . (11.10)

dt dt dt 

Compare this to the x component of the Lorentz force law: �� 
dpx dy dz 

Ex + Bz − By= q . (11.11)
dt dt dt 

This allows us to read of 

F 10 F 12 F 13 = −Ex/c , = Bz , = −By . (11.12) 

Repeating this exercise for the y and z force components and noting that the tensor is 
antisymmetric allows us to fll it in entirely:  

0 Ex/c Ey/c Ez/c 
 . (11.13) 

−Ex/c 0 Bz −By 

−Ey/c −Bz 0 Bx 

−Ez/c By −Bx 0 

F αβ . = 

This tensor is often called the Faraday tensor. It replaces the 3-vectors which describe electric 
and magnetic felds according to some particular observer’s reference frame with a geometric 
object whose components can be readily translated to any reference frame; and, it connects 
to 4-vectors whose components can likewise be readily translated to any reference frame. 

11.3 A brief aside on forces and accelerations 

In this lecture, we’ve been talking about a specifc force without yet having discussed forces in 
special relativity in broader terms. We will discuss forces, accelerations, and the properties 
of accelerated observers in more detail in an upcoming lecture. Certain aspects of this 
discussion are needed now, so we pause in our discussion of electric and magnetic felds for 
a brief digression to talk about forces and accelerations. 
As we have discussed, a body of mass m moving with 4-velocity u⃗ has a 4-momentum 

p⃗ = mu⃗. As you have seen in our discussion above, this momentum changes if the body is 
acted on by a force or, more properly, a 4-force: 

dp⃗
F⃗ = . (11.14)

dτ 
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If the body’s mass cannot change, then this leads to the body having a 4-acceleration: 

1 du⃗⃗a⃗ = F = . (11.15) 
m dτ 

When we discuss 3-velocities u and 3-accelerations a, these quantities can have largely any 
value that we want them to have: the value of u is essentially an initial condition to our 
analysis, and the value of a is only constrained by the mechanism providing the force F. 

Not so for the 4-velocity and the 4-acceleration: there is a very interesting and 
important constraint which these two quantities must always satisfy. To see where this comes 
from, begin with the invariant that we can construct from u⃗: 

u⃗ · ⃗u = −c 2 . (11.16) 

Take d/dτ of both sides of this equation: 

a⃗ · ⃗u + ⃗u · ⃗a = 0 , (11.17) 

or 
a⃗ · ⃗u = 0 . (11.18) 

The 4-velocity and the 4-acceleration are always “orthogonal” in spacetime. This important 
constraint has important implications for the nature of any 4-force that you may compute 
— if at the end of your analysis, you fnd that F⃗ · u⃗ ≠ 0, you have made a mistake or have 
overlooked something important. 

11.4 Some details of the electromagnetic 4-force 

With the above discussion in mind, let’s examine the electromagnetic 4-force that we have 
worked out. Is it the case that F⃗ · u⃗ = 0? The answer is yes, and we can show this using a 
little bit of “index gymnastics”: 

F⃗ · ⃗u = qF αβ uβ uα (11.19) 

= −qF βα uβuα (11.20) 

= −qF βα uαuβ (11.21) 

= −qF αβ uβuα . (11.22) 

Let’s step through these lines of analysis carefully. On the frst line, we have have contracted 
the defnition of the electromagnetic 4-force, Eq. (11.7), with the 4-velocity in order to make 
the inner product. On the second line, we have used the fact that the Faraday tensor is 
antisymmetric to swap the order of the indices on the tensor, introducing a minus sign. On 
the third line, we have used the fact that uαuβ is symmetric to swap the order of their 
indices. On the fnal line, we have used the fact that α and β are “dummy” indices — they 
are being summed over, so it doesn’t matter how we label them. We can in fact change α 
for β and β for α, as long as we do this consistently throughout the expression. 
Now compare the frst line with the fourth line. Their right-hand sides are identical ... 

except for a minus sign. This is thus an expression of the form x = −x, whose only solution 
is x = 0. We conclude that 

F⃗ · ⃗u = 0 , (11.23) 

So our 4-force indeed is spacetime orthogonal with the 4-velocity — as it should be. 
Two remarks on this calculation: 
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• This is our frst encounter with a trick that gets used a lot: whenever you contract all 
free indices of a totally antisymmetric mathematical object, like F αβ , against a totally 
symmetric mathematical object, like uαuβ , the result is zero. 

If this makes you nervous and you want to be totally confdent in the result, you can 
always go through an exercise like the one that I did above. The key point is that 
by combining symmetric with antisymmetric, we add up terms that are equal and 
opposite. If you expand out the Einstein summation that I did above, you fnd that 

F 10u1u0 + F 01u0u1, F 23u2u3 + F 32you can combine terms in pairs: u3u2, etc. The 
members of each pair will always be equal in magnitude and opposite in sign. 

• When a force law is set up properly, it generally works out “automatically” that we fnd 
F⃗ ·u⃗ = 0, in much the way that it did for this electromagnetic 4-force. Finding F⃗ ·u⃗ = 0 
does not guarantee that your force law is correct, but not fnding this guarantees that 
your force law is wrong. 

Before moving on to other aspects of the covariant formulation of electric and magnetic 
felds, let’s clean up one last detail. We saw in our calculation above that the α = 1, 2, and 3 
components of the 4-force correspond perfectly to the x, y, and z components of the Lorentz 
force. What is the α = 0 component? Let’s write this out: 

dp0 � � 
F 01 u1 + F 02 u2 + F 03 = qF 0β uβ = q u3

dτ 
γq 

= (Ex(u)x + Ey(u)y + Ez(u)z) 
c 
γq 

= E · u . (11.24) 
c 

Using the fact that p0 = E/c, where E with no indices and no boldface means the energy2 

of the charged body, and using dt = γdτ , this becomes 

dE 
= qE · u . (11.25)

dt 

This expression tells us about the rate at which work is done on the charge by the electric 
feld. If you need a reminder of where this comes from, remember that the diferential of 
work done in moving through a 3-displacement dr in an E feld is 

dW = F · dr = qE · dr . (11.26) 

If the charge does this in a time dt, then 

dW dr 
dt 

= qE · 
dt 

, (11.27) 

in agreement with Eq. (11.25). 

2The letter “E” is doing double duty here, standing for both energy and electric feld. Sometimes people 
use U for energy in circumstances like this, in order to reduce the likelihood of any confusion. 
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11.5 Transforming electric and magnetic felds 

By ftting the electric and magnetic felds into a rank-2 tensor, it becomes simple to deduce 
how these felds transform when we change frames. Let observer O measure felds described 
by the tensor F αβ ; let O ′ in a diferent inertial frame measure felds described by the tensor 

′ ν ′ F µ . These are related by converting using Lorentz transformation matrices: 
′ ′ ′′ ν = F αβ ΛµF µ αΛ

ν
β . (11.28) 

Let’s work through this using the Lorentz transformation matrix  
γ −γβ 0 0 

Λµ ′ 
α = 

 
−γβ γ 0 0 
0 0 1 0 
0 0 0 1 

 . (11.29) 

In other words, we take O ′ to be moving with v = vex relative to O. Let’s use this calculate 
how the components of the Faraday tensor translate between frames. Start by working 
through the transformation for the (0 ′ 1 ′ ) component: 

� 
= Λ0 ′ 

1F 01 + Λ0 ′ 

F 01 = γ2 − γ2β2 
� 

01F= . (11.30) 

On the frst line, we expanded the transformation rule to write out all the non-zero terms 
that contribute to F 0 ′ 1 ′ . This amounts to all the lambda matrix elements that have 0 ′ on 
the frst index, and all the matrix elements that have 1 ′ on the frst index. A total of 4 such 
elements exist: Λ0 ′ 

0 = γ, Λ0 ′ 
1 = −γβ, Λ1 ′ 

0 = −γβ, and Λ1 ′ 
1 = γ; all the others ones with 0 ′ 

in the frst position are zero. We then used antisymmetry, and then used the fact thatp 

F 0 ′ 1 ′ 
0Λ

1 ′ 
1Λ

1 ′ 
0F 10 

or 1 ′ 

γ = 1/ 1 − β2 to clean this expression up. Translating back into electric and magnetic feld 
components, this tells us 

Ex ′ = Ex . (11.31) 

Move on to the (0 ′ 2 ′ ) component: 

F 0 ′ 2 ′ = Λ0 ′ 
0Λ

2 ′ 
1Λ

2 ′ 
2F 12 

2F 02 + Λ0 ′ 

= γF 02 − γβF 12 . (11.32) 

We cannot simplify this any further, so we now translate back into electric and magnetic 
feld components: 

Ey ′ = γ(Ey − vBz) . (11.33) 

Next the (0 ′ 3 ′ ) component: 

F 0 ′ 3 ′ 
3F 13 = Λ0 ′ 

0Λ
3 ′ 
3F 03 + Λ0 ′ 

1Λ
3 ′ 

= γF 03 − γβF 13 . (11.34) 

This becomes 
Ez ′ = γ(Ez + vBy) . (11.35) 

Doing a similar exercise for the components of the Faraday tensor which map to the 
magnetic felds, we fnd 

′ ′ ′ 
Bx = Bx , By = γ(By + vEz/c2) , Bz = γ(Bz − vEy/c2) . (11.36) 
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By repeating this analysis for frames moving with v = vey and v = vez, it’s not too 
difcult to work out the general rule for transforming between frames. For completely general 
v, we have 

= E∥ , = γ (E⊥ + v × B⊥) ; (11.37)E ′∥ E ′⊥ � � 
B ′∥ = B∥ , B ′⊥ = γ B⊥ − v × E⊥/c

2 . (11.38) 

Here, E∥ denotes the component of E that is parallel v. Let ev ≡ v/v denote the unit vector 
along the velocity vector; then, E∥ = (E ·ev)ev. The other component, E⊥ = E−E∥, denotes 
the part of E that is orthogonal to v. The magnetic feld vectors B∥ and B⊥ are defned 
likewise. 
When I frst was presented with the transformation laws (11.37) and (11.38), I was 

utterly bafed. Though I understood the derivation (which I learned from Purcell’s E&M 
textbook), the rule we fnd for transforming these felds looks nothing like any of the Lorentz 
transformation rules I learned for other quantities! It was only after learning about tensors, 
understanding that E and B were best thought of us components of a rank-2 antisymmetric 
tensor, and spending some time developing fuency with operations like Eq. (11.28) that I 
started to become comfortable with these rules. 
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Lecture 12 
A covariant formulation of electromagnetics (part II) 

12.1 The feld equations 

In the previous lecture, we showed that the Lorentz force law written using 3-vectors, 

F = q (E + v × B) , (12.1) 

is exactly equivalent to the 4-force law 

dpα 

= qF αβ uβ , (12.2)
dτ 

provided that the Faraday tensor components are related to the electric and magnetic feld 
components according to  

0 Ex/c Ey/c Ez/c 
 . (12.3) 

−Ex/c 0 Bz −By 

−Ey/c −Bz 0 Bx 

−Ez/c By −Bx 0 

F αβ . = 

More specifcally, we found that the spatial components of dpα/dτ correspond exactly to the 
3-force F = q(E + v × B), and that the 0 or timelike component tells us about the work that 
is done on a charge by the electric feld. 

In this lecture, we are going to turn to a study of the feld equations: how do we make 
the set of Maxwell equations, 

∇ · E = ρ/ϵ0 , ∇ · B = 0 , (12.4) 
∂B ∂E ∇× E = − , ∇× B = µ0J + µ0ϵ0 , (12.5)
∂t ∂t 

ft into this framework? 
The frst thing we want to do is massage these equations a little bit. Notice that half of 

the Maxwell equations involve sources, either ρ or J; the other half only involve the felds 
themselves. Let’s reorganize the equations to emphasize this structure: 

∂E ∇ · E = ρ/ϵ0 , ∇× B − µ0ϵ0 = µ0J ; (12.6)
∂t 

∂B ∇ · B = 0 , ∇× E + = 0 . (12.7)
∂t 

We have put all terms that involve the felds onto the left-hand side of these equations, and 
set them so that the right-hand side is either “source” (ρ or J) or zero. Notice that there are 
four sourced equations (one divergence of E, three components of the curl of B), and four 
source-free equations (one divergence of B, three components of the curl of E). 
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12.1.1 Half of the Maxwell equations 

Let’s start by just taking derivatives of the Faraday tensor. By contracting a derivative on 
one of the indices, we’ll generate four diferent terms, one for each value of the remaining 
free index: 

∂F αβ 

= ∂β F αβ . (12.8)
∂xβ 

(Why contract on the second index? Strictly speaking, it doesn’t matter much — because 
F αβ is antisymmetric, we’d just get a minus sign if we contracted on the frst one.) 

Let’s go into a Lorentz frame and see what ∂β F αβ looks like as α goes over its free range: � � � � � � 
Ex Ey Ez 

α = 0 : ∂β F 0β = + + 
∂ ∂ ∂ 
∂x c ∂y c ∂z c 
1 

= ∇ · E . (12.9) 
c 

In other words, up to a factor of 1/c, the α = 0 component of ∂βF αβ looks just like the 
divergence of E, and so produces the left-hand side of one of the sourced Maxwell equations. 

Let’s look at the other values of α: � � 
1 ∂ ∂Bz ∂By 

α = 1 : ∂β F 1β = − 
Ex 

+ − 
c ∂t c ∂y ∂z 
1 ∂Ex 

= − + (∇× B)x 
2c ∂t 

∂Ex 

= −µ0ϵ0 + (∇× B)x . (12.10)
∂t 

√ 
(We’ve used the fact that c = 1/ µ0ϵ0 here.) This analysis shows that the α = 1 component 
of ∂β F αβ produces the left-hand side of another one of the source Maxwell equations. It’s 
not too hard to show that the α = 2 and α = 3 components produce the remaining two 
left-hand sides: 

α = 2 : ∂βF 2β = −µ0ϵ0 
∂Ey 

+ (∇× B)y , (12.11)
∂t 

α = 3 : ∂βF 3β = −µ0ϵ0 
∂Ez 

+ (∇× B)z . (12.12)
∂t 

To get the right-hand side of the sourced Maxwell equations, recall a few lectures ago 
that we defned the 4-vector J⃗  whose time-like component J t = cρ, but whose space-like 
components are the “normal” 3-vector current density. Comparison of Eq. (12.6) with Eqs. 
(12.10) – (12.12) suggest that the form we want is 

∂β F αβ = µ0J
α . (12.13) 

It’s pretty clear that this form works perfectly for α = 1, 2, 3. Does it also work for α = 0? 
Let’s check: using Eq. (12.9), 

∂β F 0β = µ0J
0 becomes 

1 ∇ · E = µ0cρ . (12.14) 
c 
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√ 
Multiplying both sides by c and using c = 1/ µ0ϵ0, this becomes 

∇ · E = ρ/ϵ0 . (12.15) 

So it works! We’ve found that half of the Maxwell equations — the half that have source 
terms, either charge density ρ or current density J — are equivalent to the equation 

∂β F αβ = µ0J
α . (12.16) 

12.1.2 The other half of the Maxwell equations 

What about the other half of the Maxwell equations — how do we get the ones that don’t 
have a source? There’s no way to get those equations just by taking derivatives of F αβ . 
Diferentiating this quantity can only duplicate the derivatives we have already worked out 
to get the sourced Maxwell equations. We need a diferent way of organizing the felds. 

The way we get there is by thinking about how to organize the electric and magnetic 
felds into an antisymmetric tensor. Let’s look at our re-organization of Maxwell’s equations 
into “sourced” and “source-free” versions, Eqs. (12.6) and (12.7). Notice that the left-hand 
sides of these equations are identical provided we “swap” E and B in the following way: 

E/c → B , B → −E/c . (12.17) 

Taking the left-hand side of the “sourced” Maxwell equations and swapping the felds ac-
cording to Eq. (12.17) yields the left-hand side of the “source-free” Maxwell equations. 

Inspired by this observation, suppose we take F αβ and apply this feld swap:  

F αβ (E/c → B , B → −E/c) = 
 

Bx By Bz 

−Bx 0 −Ez/c Ey/c 
0 

−By Ez/c 0 −Ex/c 
−Bz −Ey/c Ex/c 0 

 ≡ Gαβ . (12.18) 

This quantity is known as the dual1 Faraday tensor. It has the same symmetries as the 
Faraday tensor; and, if you apply the rule E/c → B, B → −E/c to the rules for Lorentz 
transforming the felds, you fnd that they are unchanged. [You can test this by applying 
the rule to Eqs. (11.37) and (11.38) from Lecture 11]. The dual Faraday tensor does not2 , 
however, give us a force law. 

If we diferentiate Gαβ , we get feld derivatives that difer from those that come from 

1You might fnd the way that we derived this dual tensor to be somewhat schematic. There is in fact 
a more rigorous way of doing this which takes advantage of a 4-index version of the Levi-Civita symbol 
you used on problem set 3: by appropriately combining F αβ with ϵαβγδ (an object which generalizes ϵijk 

to spacetime) and the metric ηαβ , we can build the tensor Gαβ . For the purpose of 8.033, the schematic 
approach is good enough. 

2Interestingly, this tensor would be involved in a force law if there were magnetic charges as well as electric 
charges. Perhaps something to explore on a problem set... 
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diferentiating F αβ . Let’s go through a few examples of ∂β G
αβ : 

∂Bx ∂By ∂Bz 

α = 0 : ∂β G
0β = + + 

∂x ∂y ∂z 
= ∇ · B ; (12.19) 

1 ∂Bx 1 ∂Ez 1 ∂Ey 

α = 1 : ∂β G
1β = − − + 

c ∂t c ∂y c ∂z � � 
1 ∂Bx 

= − + (∇× E)x . (12.20) 
c ∂t 

The α = 2 and α = 3 components duplicate the y and z components of the curl E part of 
Eq. (12.7). Putting this all together, we see that 

∂βG
αβ = 0 (12.21) 

is exactly what we need to write the source-free Maxwell equations in a covariant way. 
To summarize: our original presentation of the Maxwell equations, Eqs. (12.4) and (12.5) 

are not wrong, but are formulated in such a way that they use information specifc to some 
particular Lorentz frame. The felds E and B are particular to that observer, as is the charge 
density ρ and current density J, as is the notion of space and time they use to take their 
derivatives. These equations are exactly equivalent to the covariant formulation 

∂β F αβ ∂β G
αβ = µ0J

α , = 0 . (12.22) 

For our present purpose, Eq. (12.22) is preferred to Eqs. (12.4) and (12.5) because it shows 
us how to write these equations in a way that is formulated for a diferent Lorentz observer. 
If the coordinates xα ′ are used by O ′ , then we know that their formulation of Maxwell’s 
equations looks like 

∂β ′ F α ′ β ′ = µ0J
α ′ , ∂β ′ G

α ′ β ′ = 0 . (12.23) 

We can get all the “prime frame” quantities by just appropriate correcting things using the 
Lambda matrices, with all the quantities connected using the “line up the indices” rule. 

12.2 Automatic conservation of source 

In our discussion of conservation laws, we noted that the equation of charge continuity, 

∂ρ 
= −∇ · J , (12.24)

∂t 
has a covariant formulation 

∂αJ
α = 0 . (12.25) 

Let’s revisit this in the context of our covariant formulation of Maxwell equations: taking a 
derivative of ∂βF αβ = µ0J

α , we have 

∂α∂β F αβ = µ0∂αJ
α . (12.26) 

The right-hand side of this is zero by virtue of charge continuity. What about the left-hand 
side? Let’s look at it carefully: 

∂α∂βF αβ = −∂α∂β F βα (Antisymmetry of F αβ ) 

= −∂β ∂αF βα (Symmetry of ∂α∂β) 

= −∂α∂β F αβ (Relabeling of dummy indices) (12.27) 
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Comparing the frst line with the last we see we again have a situation where the quantity 
in question is equal to the negative of itself; this is another example of the situation of a 
symmetric object (in this case, the pair of derivatives ∂α∂β) contracted onto an antisymmetric 
one (F αβ ). We must have 

∂α∂βF αβ = 0 . (12.28) 

This little calculation reveals a very important point: theories of physics in which some 
source yields a feld typically are governed by a set of feld equations whose heuristic structure 
is of the form 

(Derivatives)(Fields) = (Source) . (12.29) 

Sources are never unconstrained; they arise from physical matter, and so respect conservation 
laws. We can write those conservation laws in the form 

(Other derivatives)(Source) = 0 . (12.30) 

For this to hold up, we really need to have the mathematical structure which holds our felds 
respect the rule that 

(Other derivatives)(Derivatives)(Fields) = 0 . (12.31) 

Although we didn’t explicitly set out to make our Faraday tensor ft into this framework, it 
turns out that it does. This becomes an important point to bear in mind as we think about 
other kinds of interactions that we might want to ft into a relativistic framework. 

12.3 Field invariants 

Lorentz transformation act on free indices. Any quantity with no free indices is thus invariant 
under Lorentz transformations; this is why the scalar product between two 4-vectors, aµbµ, 
always yields a Lorentz invariant. 

Can we make invariants out of tensors? Certainly! — we just have to combine things, 
using the metric to lower (or raise) indices, such that there are no free indices for the Lorentz 
transformation matrix to afect. 

Perhaps the simplest one we can construct is called the trace. In linear algebra, the trace 
of a matrix is the sum of its diagonal entries. When we are dealing with tensors, we make 
this a little more formal: we sum over the indices with one upstairs, and one downstairs. 
Let’s look at this for the Faraday tensor: 

F µµ = F αµηµα . (12.32) 

This is a quantity whose values all Lorentz frames agree on. Unfortunately, in this case, it 
doesn’t turn out to be very interesting: using the Faraday tensor F αβ we’ve listed above and 
combining with ηµα = diag(−1, 1, 1, 1), we get 

F µµ = 0 + 0 + 0 + 0 = 0 . (12.33) 

The number zero is indeed a Lorentz invariant, but we don’t learn anything useful from 
doing this analysis. (We get the exact same result if we evaluate Gµ

µ.) 
We can make others Lorentz invariants by combining the Faraday tensor with itself. Let’s 

look at 
F αβFαβ = F αβF µν ηαµηβν . (12.34) 
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With a little bit of efort, you should be able to show that the Faraday tensor with all indices 
in the downstairs position is represented by the matrix  

0 −Ex/c −Ey/c −Ez/c 
.

Fαβ 

 
Ex/c 0 Bz −By 

Ey/c −Bz 0 Bx 

Ez/c By −Bx 0 

 ; (12.35)= 

i.e., both row 0 and column 0 are multiplied by negative 1 versus F αβ ; cf. Eq. (12.3). (You 
did a very similar kind of manipulation on problem 8 of problem set #5. As part of that 
analysis, you found that the “00” component of the tensor is multiplied by −1 twice, leaving 
it unchanged. In this case, you are multiplying zero by −1 twice, so this is a particularly 
uninteresting application of this rule.) 

Using Eq. (12.35), it is straightforward to show that 

(Bx)2 + (By)2 + (Bz)2 − (Ex/c)2 − (Ey/c)2 − (Ez/c)2 � �� 
F αβ Fαβ = 2 � 

= 2 B · B − E · E/c2 . (12.36) 

In other words, the quantity |B|2 − |E|2/c2 is the same to all Lorentz observers. This could 
in principle be deduced by careful study of the Lorentz transformed felds that we derived in 
the previous lecture, but it follows very simply and easily from the fact that F αβFαβ must 
be a Lorentz invariant. 

There are two other Lorentz invariants we can form from the feld tensors. One of them, 
Gαβ Gαβ, is identical to F αβ Fαβ except for the overall sign, so it yields no new information. 
But the other one is more interesting: 

F αβ Gαβ = 4 (BxEx/c + ByEy/c + BzEz/c) 

= 4B · E . (12.37) 

All observers agree on the 3-dimensional dot product of E and B. Again, this could have 
been deduced directly from the felds, but doing with the feld tensors is far simpler and 
more straightforward. 

12.4 Potentials and gauge freedom 
(CAUTION: somewhat advanced material) 

[Note: I will occasionally discuss material that is a bit more advanced than, strictly speak-
ing, we intend for 8.033. When I do this, I will use a “CAUTION” fag as I’ve written in 
this section heading. Students who wish to do so can skip over these sections. Some of this 
material is likely to ft in better after you have taken additional coursework. For example, 
this present section is probably best for students who either discussed gauge freedom in their 
1st-year E&M class (which doesn’t happen for all students), or who have taken 8.07.] 

12.4.1 A covariant formulation of electromagnetic potentials 

We began our discussion of a covariant formulation of electrodynamics by noting that we 
cannot “ft” the 6 functions which describe electric and magnetic felds into a 4-vector. A 
few of you may have wondered: what about the potentials? In freshman electricity and 
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magnetism, we learn that electric felds can be written as the gradient of a scalar potential, 
and the magnetic feld as the curl of a vector potential; in more advanced presentations, we 
learn that the electric feld in situations with time-varying magnetic felds has a contribution 
from the time-derivative of the vector potential: 

∂A 
E = −∇ϕ − , B = ∇× A . (12.38)

∂t 

One scalar potential, 3 components of vector potential ... this looks tailor-made to ft into 
a 4-vector! The potentials ϕ and A have diferent dimensions, so to make this work we 
again need to introduce a factor of c. Doing so, we defne the 4-potential A⃗ = Aµe⃗µ, whose 
components are given by   

ϕ/c 
Ax 

Ay 

Az 

 
.

Aµ = . (12.39) 

We know that F αβ is antisymmetric, and the felds are built by taking derivatives of the 
potentials. So let’s make an antisymmetric combination of derivatives of felds: 

Xαβ = ∂αAβ − ∂βAα . (12.40) 

Notice that we are using the “upstairs” partial derivative, ∂α = ∂/∂xα. We do this so that 
we can create tensor components whose indices are all raised, guaranteeing that they have 
the correct antisymmetry. Recall from Lecture 9 that xα ≡ ηαβxβ , and so the components 
of ∂α are nearly identical to those of ∂α. The critical diference is that the zero component 
has the opposite sign: ∂0 = −∂0 = −(1/c)∂/∂t. 

, X11 , X22 , X33Let’s go through some of the components of Xαβ . We can skip X00 — 
the form of Eq. (12.40) guarantees that they are zero. Let’s move across row 0: 

X01 = ∂0A1 − ∂1A0 

1 ∂Ax 1 ∂ϕ 
= − − 

c ∂t c ∂x 
= Ex/c . (12.41) 

= F 01 = F 02Comparing with Eq. (12.3), we see that X01 . We likewise quickly fnd that X02 , 
= F 03and X03 . 

Let’s move across row 1. We can skip X10 — it will be −X01 , quickly showing that 
X10 = F 10 . Moving to the frst component that is new, 

X12 = ∂1A2 − ∂2A1 

∂Ay ∂Ax 

= − 
∂x ∂y 

= (∇× A)z 

= Bz . (12.42) 

F 12Comparing with Eq. (12.3), we see that X12 = . By a similar set of calculations, we 
F 13 F 23quickly show that X13 = , and that X23 = . Thanks to the antisymmetry, we are 

done, and conclude that 
F αβ = ∂αAβ − ∂βAα . (12.43) 
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12.4.2 Gauge freedom 

One of the things we learn in electrodynamics classes is that we have some freedom to adjust 
the form of the potentials, as long as these adjustments have no impact on the felds; after 
all, it is the felds that exert forces and that are directly measurable. In a particular Lorentz 
frame, the form that this takes is that we imagine there exists some scalar function λ, which 
we will call the “gauge generator.” It is not difcult to show that if we adjust the potentials 
as follows, 

∂λ 
ϕnew = ϕold − , Anew = Aold + ∇λ , (12.44)

∂t 
then the felds E and B are unchanged. We prove this by simply computing the felds using 
ϕnew and Anew rather than ϕold and Aold: 

∂Anew
E ′ = −∇ϕnew − 

∂t 
∂λ ∂Aold ∂ 

= −∇ϕold + ∇ − − ∇λ 
∂t ∂t ∂t 

∂Aold 
= −∇ϕold − 

∂t 
= E ; (12.45) 

B ′ = ∇× Anew 

= ∇× Aold + ∇×∇λ 

= ∇× Aold 

= B . (12.46) 

In the proof for E, we used the fact that partial derivatives commute to see that 

∂λ ∂ ∇ − ∇λ = 0 ; (12.47)
∂t ∂t 

for B, we used the fact that the curl of the gradient of any scalar function is zero. 
The way we bring gauge freedom into the covariant framework is quite simple: we set 

Aα = Aα 
new old + ∂αλ . (12.48) 

With this, it is simple to see that the Faraday tensor is unchanged: 

F αβ = ∂αAβ − ∂βAα 
new new new 

= ∂αAβ + ∂α∂β λ − ∂βAα − ∂β ∂αλold old 

= ∂αAβ − ∂β Aα 
old old 

= F αβ 
old . (12.49) 

12.4.3 An example application of gauge freedom 

If you’ve never encountered gauge transformations before, you might wonder why we might 
want to change from one gauge to another. If both gauges give the same felds, and the felds 
are things that ultimately act on charges and currents, then who cares? What good comes 
from messing around with this detail? 
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To see an example of why this can quite useful, let’s look at the sourced Maxwell equation, 
but written in terms of the potential: 

∂βF αβ = ∂β∂
αAβ − ∂β∂

βAα = µ0J
α . (12.50) 

Because partial derivatives commute, we can swap the order of the derivatives in the frst 
term involving the potential. And, we recognize the combination of derivatives in the second 
term as the invariant wave operator. The sourced Maxwell equation can thus be rewritten � � 

□Aα − ∂α ∂β A
β = −µ0J

α . (12.51) 

Equations of the form 
□ (Function) = (Source) (12.52) 

are particularly “lovely” in physics — powerful computational techniques make it possible 
to solve such equations. Unfortunately, the form we’ve got, (12.51) is not quite in that form: 
it’s skewed a bit by the “extra” term ∂α(∂β A

β). If we could get rid of that extra term, the 
equation relating Aα to Jα would be solvable using these powerful techniques. 

Gauge freedom to the rescue. Suppose we change gauge, putting 

Aβ = Aβ + ∂β λ . (12.53)new old 

The term which makes Eq. (12.51) not quite “lovely” for us then involves 

∂β A
β = ∂βA

β − ∂β ∂
βλ = ∂β A

β − □λ . (12.54)new old old 

If we choose our gauge generator such that 

□λ = ∂β A
β (12.55)old , 

then the ofending term vanishes: we then have 

∂β A
β = ∂β A

β − □λ = 0 . (12.56)new old 

We can in fact always fnd a gauge generator λ which satisfes Eq. (12.55) — those powerful 
techniques guarantee that equations of the form (12.52) always have a solution. Because of 
this, we can just assume that we have done this analysis, and jump straight to using the 
potential in this new gauge. The sourced Maxwell equation then becomes (dropping the 
“new” subscript) 

□Aα = −µ0J
α . (12.57) 

When the potential satisfes Eq. (12.56), we say that it is in Lorenz3 gauge. This gauge is 
particularly useful for studies of electromagnetic radiation, since the equation governing the 
potential is nothing more than a wave equation with a source. Other gauges exist, and can 
be really useful in particular reference frames. Such gauges tend not to be “nice” in covariant 
formulation, though, since they are designed to work only in some frame. 

3Note: not Lorentz! Ludvig Lorenz developed this gauge; Hendrik Lorentz frst developed the Lorentz 
transformation. Generations of physicists (including your lecturer) learned this wrong, but most recent 
electrodynamics textbooks have been working to correct this error. See J. D. Jackson and L. B. Okun, 
Reviews of Modern Physics 73, 663 (2001). 
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Scott A. Hughes Introduction to relativity and spacetime physics 

Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 

Lecture 13 
Accelerations and forces 

13.1 An apparent paradox 

Consider a pair of twins. Twin A stays on Earth. Twin B travels on a rocket ship to Alpha 
Centauri, 4 light years away, moving at 99% of the speed of light. Twin B then turns around 
and comes back. When they get together, which one is older? 
The essence of the apparent paradox is that, according to special relativity, no inertial 

observer is preferred: 

• Twin A says that B is in motion. Therefore, B’s clock runs slow, and B is younger. 

• Twin B says that A is in motion. Therefore, A’s clock runs slow, and A is younger. 

When the twins reunite, they can’t both be right — one of them has unambiguously aged 
more than the other. Who has used the wrong logic? 
Twin B has used the wrong logic, because they forgot that they are not an iner-

tial observer. Twin B accelerates (3 times: once from Earth to start the trip, once at 
Alpha Centauri to turn around and come back, and once upon returning to Earth). This 
acceleration breaks the symmetry between the twins. 
Does this mean that Twin B is older or younger? To answer this, we need to think about 

accelerated motion. 

13.2 4-acceleration; the Momentarily Comoving Reference Frame 
(MCRF) 

We begin by quickly re-examining the notion of 4-acceleration, which was briefy introduced 
in our discussion of the Lorentz force. We defne the 4-acceleration by 

du⃗ 
a⃗ = , (13.1)

dτ 

i.e., the rate of change of 4-velocity per unit proper time. As discussed in that earlier lecture, 
its invariant scalar product with u⃗ is zero, which follows from u⃗ · ⃗u = −c2: 

d 
(u⃗ · ⃗u) = a⃗ · ⃗u + ⃗u · ⃗a = 2a⃗ · ⃗u = 0 . (13.2)

dτ 

This is in sharp contrast to the 3-acceleration a, since physics imposes no constraints on the 
value of a · u (here using the “old-fashioned” dot product between two 3-vectors). 
To wrap our heads around the physics of acceleration, let’s introduce a particular special 

reference frame: the MCRF, or Momentarily Comoving Reference Frame. The MCRF is 
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a Lorentz frame that, at least for one moment, has the same velocity as the accelerating 
observer. An accelerating observer is at rest in the MCRF for one moment. 
In the MCRF, the following properties describe the motion of the accelerating observer: 

t x,y,z u = c , u = 0 , (13.3)MCRF MCRF 

dτ = dtMCRF . (13.4) 

These properties tell us that  
0 

aµ 
MCRF 

. 
= 

 
dux /dtMCRF 

duy 
MCRF/dt 

 . (13.5) 

duz /dtMCRF 

This form guarantees that ⃗a·u⃗ = 0: if you evaluate that scalar product using the components 
defned in the MCRF, you can see quite clearly that it holds. But, the scalar product is an 
invariant — if it is true in one frame, then it is true in all frames. 
The MCRF thus helps us to understand what 4-acceleration means. Suppose some ob-

server has a 4-acceleration a⃗, and that we fnd a⃗ · a⃗ = a2 . (Note that a⃗ must be spacelike1 in 
order for a⃗ · ⃗u = 0.) Then a represents the magnitude of the acceleration that is experienced 
by the accelerating observer in the MCRF. It is the acceleration that this observer feels in 
their own rest frame. 

13.3 A uniformly accelerated observer 

Let’s imagine an observer who starts at rest with respect to us, but who experiences uniform 
acceleration with magnitude g = 10m/sec2 . Let this acceleration be in the x direction. 
“Uniform” means that the observer feels this acceleration at all times, so that a⃗ · ⃗a = g2 

at all times. The acceleration in the MCRF is always the same — even though the MCRF 
itself is continually changing as the observer accelerates. Can we compute the 4-velocity at 
later times? 
We have two initial conditions: u⃗(τ = 0) = ce⃗t and a⃗(τ = 0) = ge⃗x. We also have three 

constraints: 

u⃗ · ⃗u = −c 2 at all times , (13.6) 

u⃗ · ⃗a = 0 at all times , (13.7) 

a⃗ · ⃗a = g 2 at all times . (13.8) 

Let’s write out these constraint equations, using the fact that aµ = duµ/dτ : 

x)2−(u t)2 + (u = −c 2 , (13.9) 

dut dux 

−u t + u x = 0 , (13.10) �dτ 2 
dτ�2� � 

dut dux 
2− + = g . (13.11)

dτ dτ 

1To be lightlike, we must have a⃗ · ⃗a = 0. That’s only true if a = 0, an uninteresting limit. 
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Staring at these equations a bit and thinking about some functions we know suggests that 
hyperbolic functions might be useful here. Let’s try 

u t = c cosh (Aτ) , u x = c sinh (Aτ) . (13.12) 

It’s not hard to see that this form guarantees Eqs. (13.6) and (13.7) will work. Enforcing 
Eq. (13.8) gives us the constant A: 

dut dux 

= cA sinh (Aτ) , = cA cosh (Aτ) ; (13.13)
dτ dτ 

so � �2 � �2
dut dux � � 

22A2− + = c − sinh2 (Aτ) + cosh2 (Aτ) = g (13.14)
dτ dτ 

which tells us that 
g

A = . (13.15) 
c 

Our complete solution for the uniformly accelerated observer is thus 

u⃗ = c cosh (gτ/c) ⃗et + c sinh (gτ/c) ⃗ex , (13.16) 

a⃗ = g sinh (gτ/c) ⃗et + g cosh (gτ/c) ⃗ex , (13.17) 

where τ is the proper time experienced by this observer since their trip started. 
Let’s use this solution to explore what happens when someone is uniformly accelerated. 

Two questions are at the top of our list: 

1. After traveling for time T as measured by the accelerating observer (i.e., for a total 
experienced proper time τ = T ), how far has the observer traveled? 

2. After traveling for time T as measured by the accelerating observer, how much time 
has elapsed “back home”? 

Both questions are answered by integrating the 4-velocity. Let’s look at how far they’ve 
traveled frst: Z T 

∆x = u xdτ 
0Z T � �gτ 

= c sinh dτ 
c0� � � � 

c2 gT 
= cosh − 1 . (13.18) 

g c 

Using the fact that c2/g = 0.96940 light years, and (g/c) = 1.0316 year−1 , we can make a 
table of distance versus time experienced by the accelerating observer: 

• ∆x(T = 1 year) = 0.56318 light year 

• ∆x(T = 2 years) = 2.9071 light years 

• ∆x(T = 5 years) = 83.268 light years 

• ∆x(T = 10 years) = 14,638 light years 
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How much time back in the original frame elapses while doing this? Z T 

∆t = (u t/c)dτ Z0 
T � �gτ 

= cosh dτ 
c0 � � 

c gT 
= sinh . (13.19) 

g c 

The equivalent table for time elapsed reads 

• ∆t(T = 1 year) = 1.1870 years 

• ∆t(T = 2 years) = 3.7533 years 

• ∆t(T = 5 years) = 84.232 years 

• ∆t(T = 10 years) = 14,639 years 

As seen back in the original frame, the accelerated observer is getting closer and close to the 
speed of light, and so is experiencing enormous time dilation. Their 10 year interval is over 
14,600 years in the original frame — their moving clock is running very slowly compared to 
a clock in the original frame. 

13.4 Forces 

We encountered forces briefy in our discussion of electromagnetic efects. In this section, we 
return to this discussion, and put a few details on a more solid footing. 
Two general conceptual frameworks are used: 

⃗1. We can defne a 4-force, F⃗ = dp⃗/dτ . In terms of this, we have a⃗ = F/m. In principle, 
⃗this is the way you might imagine we want to do things, since F is a spacetime 4-

⃗vector. It is straightforward for us to transform the components of F to diferent 
reference frames, so this would seem to be the ideal quantity for bringing forces into a 
relativistic discussion. 

2. We can use the usual 3-force, F = dp/dt. This is fne, as long as we recognize that p 
and t are the momentum and time as measured in a particular frame, and that we must 
be careful when we transform them between frames. Changing frames will transform 
F in a way that is rather more complicated than a simple Lorentz transformation since 
quantities in both the numerator and the denominator of the force’s defnition are 
afected by this change of representation. 

This being a relativity class, you might think we have a preference for the 4-force formulation. 
However, the 3-force is in fact quite useful and important. This is because we always perform 
our measurements in some particular frame, using the time and space coordinates of that 
frame, and pinning down the momentum and energy in that frame. So it is quite useful for 
us to understand how 3-forces transform between frames as well as 4-forces. Ideally, we’d 
like to know how to fip back and forth between the two descriptions, as both are important 
and useful. 
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Let’s go back to our train and station frames. Imagine that a body has a 3-velocity u 
as measured in a station, and so has 3-momentum pS = γ(u)mu and energy ES = γ(u)mc2 

according to the station-frame observers. A train moves through a station with velocity 
v = vex. If force FS acts on the body in the station, what is the force FT that acts on the 
body according to measurements on the train? 
When in doubt, go back to the Lorentz transformation. We know that F = dp/dt, so 

let’s examine the key quantities appearing here and how they transform between frames. 
Start with the x component: 

(FT )
x dpT

x γ (dpS
x − vdES /c

2) 
= = 

dtT γ (dtS − v dxS /c2) 
(FS )

x − (v/c2)(dES /dtS ) 
= . (13.20)

1 − v(u)x/c2 

Notice we have to a little careful with notation, since the letter “F” is used for both the 
4-force and the 3-force and the letter “u” is used for 3-velocity in some frame and 4-velocity. 
The convention we are using is that F i represents the ith component of the 4-force, but 
(F)i represents the ith component of the 3-force; ui and (u)i have analogous meanings for 
4-velocity and 3-velocity components, respectively. 
We can simplify Eq. (13.20) a bit more. We know that E2 = p2c2 + m2c4 for the body. 

Evaluating everything in the station frame and taking derivatives with respect to station 
time, we have 

dES dp
ES = pS · c 2 

dtS dtS 

dES dp
γmc2 = γmu · c 2 

dtS dtS 

dES−→ = FS · u . (13.21)
dtS 

So, we fnd that the x component of the force transforms as 

(FS)
x − (v/c2)F · u 

(FT )
x = . (13.22)

1 − v(u)x/c2 

You may notice a resemblance to the velocity addition formula! Indeed, working out the 
other two components, we fnd 

(FS )
y,z 

(FT )
y,z = . (13.23)

γ(1 − v(u)x/c2) 

Although we have spent some time (and ink/chalk) developing how the 3-force transforms 
between frames of reference, it should be emphasized that the 4-force is also used quite a lot. 
The 4-force fts more naturally into a “spacetime” language; the 3-force is more naturally 
suited to the “space” plus “time” language adapted to a particular observer. Some forces may 
be very naturally expressed using the 4-force, but we then may need the 3-vector components 
in order to assess what some observer will measure in their lab. It is important to develop 
fuency translating back and forth between these diferent notions of the force. 
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So, how do we relate these two notions of force? The analysis is somewhat similar to 
how we relate 4-velocity components to 3-velocity components. Let’s consider the spatial 
components frst: 

dpi 
F i = . (13.24)

dτ 
The interval dτ is as measured on the clock of the body which experiences this force. It 
is related to time as seen in that frame by dτ = dt/γ(u), where u is the magnitude of the 
body’s 3-velocity in that frame. This means 

dpi 
F i = γ(u) = γ(u)(F)i . (13.25)

dt 

Next consider the timelike component: � � 
dp0 d E γ(u) dE 

F 0 = = γ(u) = . (13.26)
dτ dt c c dt 

We already showed that dE/dt = F · u. Putting this all together, we have a “glossary” that 
lets us switch back and forth between the 4-vector and 3-vector notions of force: 

γ(u)
F 0 = F · u , (13.27) 

c 
F i = γ(u)(F)i . (13.28) 
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Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 

Lecture 14 
Prelude to gravity: More on the uniformly accelerated observer 

14.1 The trajectory of an accelerated observer 

In this lecture, as a prelude to discussing certain aspects of gravity, we will look at how 
things appear to observers who are accelerating. A word of caution: some of the calculations 
we do here are a touch tricky. Certain details require us to develop things beyond the level 
that is part of the normal core of 8.033; those details are developed toward the end of this 
set of lecture notes. Do not worry if you cannot follow every calculational detail in this 
set of notes. We emphasize the core important pieces of this analysis where appropriate, 
and lay out why they are important for where we are going next. A few of the sections 
we present below are signifcantly more complicated than what you are expected to follow; 
those sections can be skipped, though interested students who wish to discuss them further 
are welcome to do so. 
We begin by examining the trajectory of a single observer who feels a constant accel-

eration g = gex in their own momentarily comoving rest frame (MCRF). In the previous 
lecture, we found that such an observer has a 4-velocity whose components are 

dt 
c = u t = c cosh(gτ/c) , (14.1)
dτ 
dx 
= u x = c sinh(gτ/c) . (14.2)

dτ 

(To simplify the analysis which follows, which is fairly dense, we take the observer to be 
at rest in the y and z directions.) Integrating up these solutions, we fnd the ct and x 
coordinates describing a uniformly accelerated observer, parameterized by that observer’s 
own proper time: 

2c 
ct = ct0 + sinh(gτ/c) , (14.3) 

g 
2c 

x = x0 + (cosh(gτ/c) − 1) . (14.4) 
g 

We’ve chosen constants of integration so that t = t0 and x = x0 at τ = 0. The blue curve in 
Figure 1 shows what this motion looks like, choosing x0 = c2/g and t0 = 0. 
At any moment as the accelerating observer moves along their worldline, we can fnd 

their 3-velocity: it is entirely in the x direction, and has magnitude 

v x = c u x/ut = c tanh(gτ/c) . (14.5) 

(Notice that the accelerating observer’s rapidity, which you used on problem sets 2 and 3, 
increases linearly as a function of that observer’s proper time.) Knowing this vx lets us work 
out the Lorentz transformation that takes us from inertial coordinates (ct, x) that are at 
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original rest frame. 

τ = 0.25 c/g
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τ = 0.75 c/g
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¯

¯

¯

rest with respect to the observer’s initial condition to the coordinates (ct,̄ x̄) corresponding 
to their MCRF. Figure 1 shows the motion of the accelerating observer according to an 
inertial observer who is initially at rest with respect to the accelerating observer, along with 
several examples of constant t̄  surfaces in the (ct, x) coordinates for this observer’s MCRF 
at diferent moments along their worldline. At τ = 0, the constant t̄  surface in the MCRF 
coincides with the t = 0 surface in the inertial coordinates. As proper time grows along 
the worldline, these surfaces grow steeper as the observer moves faster with respect to their 

Figure 1: Worldline of an accelerating observer that starts at x = c2/g (red curve), and 
three examples of the constant t̄  coordinates of that observer’s MCRF at diferent moments 
along the worldline. The MCRF time t̄  coincides with the observer’s proper time τ where it 
crosses the worldline. Notice both axes are in units of c2/g. 

14.2 Comparing the worldlines of two accelerated observers: 
Breakdown of clock synchronization 

Now imagine that there are two accelerated observers. Both are at rest with respect to 
the “unbarred” frame at t = 0, and both feel constant acceleration g. One (which will call 
the “trailing” observer) begins at x0 = c2/g; the other (the “leading” observer) begins at 
x0 = c2/g + L. Let the time as measured on the trailing observer’s clock be t̄; let the time 
as measured on the leading observer’s clock be t̄. These times will also be used to describe 
time in the MCRFs along the accelerating observers’ worldlines. 
The clocks on these observers start out in agreement, and coincide with the initial inertial 

¯ ¯frame: when t = 0, t = t = 0. However, it is not hard to see that as the two observers 
move along their worldlines, their clocks quickly fall out of agreement. Figure 2 illustrates 
the situation: once they begin moving, each observer’s constant time surface tips over, 
in accordance with the Lorentz transformation that takes us from the inertial frame into 
their MCRF. However, they each tip about a diferent “pivot point,” anchored to their own 
worldline. For a given value of proper time along the worldlines, the constant time t̄  surface 
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¯

¯

¯

¯

¯
¯

used by the leading observer (whose worldline is illustrated by the orange curve in Fig. 2) 
always appears in the past of the constant time t̄ surface used by the trailing observer (whose 
worldline is illustrated by the red curve). 
This means that, when the leading observer measures time t̄ = 0.5 c/g (for example), this 

is simultaneous with the trailing clock reading some value t̄  < 0.5 c/g. The trailing observer 
agrees with this assessment: when they measure t̄ = 0.5 c/g, this is simultaneous with the 
leading clock reading some value t̄  > 0.5 c/g. Both observers agree that the leading clock 
runs faster than the trailing clock. 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
x (units of c^2/g)

0.2

0.4

0.6

0.8

1.0

ct (units of c^2/g)

¯̄t = 0.5 c/g

t̄ = 0.5 c/g

Figure 2: Worldline of two accelerating observers. Both feel acceleration g, and both are 
initially at rest in the coordinates (ct, x). The trailing observer (red curve) uses the time 
coordinate t̄; the leading observer (orange curve) uses the time coordinate t̄. We show two 
surfaces of constant time according to the MCRF of the two observers. The green line 

¯shows the t = 0.5 c/g surface; this corresponds to the MCRF of the trailing (red) when 
τtrailing = 0.5 c/g. The blue line shows the t̄ = 0.5 c/g surface; it corresponds to the MCRF of 
the leading (orange) worldline when τleading = 0.5 c/g. The constant t̄  surface intersects the 
red worldline at t ≃ 0.521 c/g; the constant t̄  surface intersects the orange worldline at the 
same value of t. (The dashed gray line is a constant at t = 0.521 c/g.) These surfaces tell us 
that the leading clock (i.e., the clock of the observer at larger x) runs fast compared to 
the trailing clock. Surfaces of constant t̄  are consistently in the past of surface of constant t̄, 
meaning that a particular value of t̄  has already happened by the time t̄  reaches that value. 
Both observers agree that the trailing clock is slower than the leading clock. 

By borrowing some results from the discussion below of “Rindler coordinates,” we can 
compute the precise amount by which the leading clock runs ahead of the trailing clock, 
at least when the speeds of the two accelerated observers in the inertial coordinate frame 
is small compared to light. Let us write down the worldlines of the trailing and leading 
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observers as seen in the inertial coordinate system: 

2 2c c 
ctT = t/c) , = t/c) ;sinh(g ̄  xT cosh(g ̄  (14.6) 

g g 
2 2c c 

ctL = t/c) , = t/c) + L .sinh(g ̄  xL cosh(g ̄  (14.7) 
g g 

Let us also write down how one represents a single slice of t̄  = constant in the MCRF of the 
trailing observer: 

ctMCRF,T = x tanh(g ̄  (14.8)t/c) . 

This relationship is worked out in the detailed discussion and derivation of Rindler coordi-
nates, which is developed in the more advanced material presented below. 
The question we’d like to answer is: What is the value of t̄ when the time on the constant t̄  

slice crosses the worldline of the leading observer — in other words, what is t̄ when ctMCRF,T = 
ctL? Plugging in the various defnitions yields the equation we must solve: 

ctMCRF,T = ctL , (14.9) 
x=xL 

which means � �
2 2c c 
cosh(g ̄  tanh(g ̄  sinh(g ̄  (14.10)t/c) + L t/c) = t/c) 

g g 
or � � 

gL 
cosh(gt/c¯ ) + tanh(g ̄  t/c) .t/c) = sinh(g ̄  (14.11) 

c2 

We now need to solve Eq. (14.11) for t̄  as a function of t̄. Remarkably, this isn’t so hard to 
do, as long as a certain approximation holds. Begin by putting all of the terms that depend 
on t̄  on the left-hand side, and all of the terms that depend on t̄  on the right: 

sinh(g ̄t/c)
tanh(g ̄t/c) = 

cosh(g ̄t/c) + gL/c2 � � 
gL ≃ tanh(g ̄ 1 − (14.12)t/c) . 

c2 cosh(g ̄t/c) 

The approximation introduced here is accurate as long as gL/c2 ≪ cosh(g ̄t/c); recalling that 
c2/g is roughly 1 light-year for an acceleration g = 9.8m/s 2 , this is clearly reasonable as long 
as L is anything much smaller than a light year.. Taking the arc-hyperbolic tangent of both 
sides, and using the result1 

arctanh [tanh(x)(1 − ϵ)] ≃ x − cosh(x) sinh(x)ϵ , (14.13) 

we fnd 
gL 

g ̄  t/c − t/c) .t/c = g ̄  sinh(g ̄  (14.14) 
c2 

For general values of t̄, this isn’t too easy to work with. However, if we confne ourselves to 
g ̄t/c ≪ 1, then this simplifes very nicely: using sinh(x) ≃ x for x ≪ 1, Eq. (14.14) becomes � � 

gL 
t̄ = t̄ 1 − . (14.15) 

c2 

1Figuring out things like this is a good use for tools like Mathematica. 
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¯

¯

The leading clock ticks at a faster rate than the trailing clock: 

t̄− t̄  gL 
= 

2 
. (14.16)

t̄ c 

Remember this nice, clean result! We will soon see a similar form when examining a diferent 
quantity, and rediscover this result in another context in a few lectures. 

14.3 Light measured by the two accelerated observers 

A related calculation compares the properties of light as measured by the two observers. 
This is particularly important because light plays such a critical role in relativity, since we 
often exploit the fact that its speed is c in all reference frames. Let’s imagine that a beam 
of light travels in the +x direction. It frst intersects the trailing observer’s worldline, then 
continues and later intersects the leading observer’s worldline. The question we want to 
know is: What is the energy that the two observers measure for this light? 
We will do all of these calculations in the inertial frame, which provides a convenient 

“stage” for us to formulate the quantities that we need for this analysis. We will also use the 
fact that, given something with 4-momentum p⃗, an observer whose 4-velocity is u⃗ measures 
it to have energy E = −p⃗ · ⃗u. 
Begin by writing the components of the light’s 4-momentum in the inertial frame as 

p t = hν/c , p x = hν/c . (14.17) 

(The y and z components of the light’s 4-momentum are zero.) Let us say that this light 
crosses the worldline of the trailing observer when that observer’s clock reads t̄  

beam. Their 
4-velocity at that time has components in the inertial frame 

u tT = c cosh(gt̄  
beam/c) , u x = c sinh(gt̄  

beam/c) . (14.18) 

The energy that the trailing observer measures for the light is then given by 

ET = −p⃗ · ⃗uT (14.19) 

= hν cosh(gt̄  
beam/c) − hν sinh(gt̄  

beam/c) (14.20) 

= hν cosh(gt̄  
beam/c) (1 − tanh(gt̄  

beam/c)) . (14.21) 

This can be simplifed a bit more using a few hyperbolic function identities: 

1 1 
cosh(x) = q = q . 

sech2(x) 1 − tanh2(x) 
(14.22) 

Using this, we see that the energy measured by the trailing observer is s 
1 − tanh(g ̄tbeam/c)

ET = hν . 
1 + tanh(g ̄tbeam/c) 

(14.23) 

Notice that this is exactly the Doppler shift that one expects for an observer who is moving 
away from a light source with 3-speed v = c tanh(gt̄  

beam/c). 
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The light continues to move in the +x direction, and crosses the worldline of the leading 
observer when their clock reads t̄  

beam. By a similar calculation, the energy that the leading 
observer measures is s 

1 − tanh(gt̄  
beam/c)

EL = hν , (14.24)
1 + tanh(gt̄  

beam/c) 

which is likewise just the Doppler-shifted energy for a speed v = c tanh(gt̄  
beam/c). 

We’d like to compare ET to EL. To do so, we must relate the time t̄  
beam at which the light 

beam crosses the leading observer’s worldline to the time t̄  
beam at which the beam crosses the 

trailing observer’s worldline. We do this by using our results describing time in the inertial 
frame to the times along the worldline. 
The inertial-frame time at which the light crosses the trailing observer’s worldline is 

c 
tT = sinh(gt̄  

beam/c) ; (14.25) 
g 

the inertial-frame time at which it crosses the leading observer’s worldline is 

c 
tL = sinh(gt̄  

beam/c) . (14.26) 
g 

However, we also know that, in the inertial frame, the light moves a distance of L in going 
from the trailing observer to the leading observer, plus the additional distance that the 
leading observer covers while the light is in transit: Z tLL dx 

tL = tT + + dt 
c dttZT 

tL 

= tT + + c t/c) dt . 
L 

tanh(g ̄  (14.27) 
c tT 

The integral on the last line accounts for the distance that the leading observer moves as the 
light is in transit. As written, it is not a very nice integral: we do the integral with respect 
to the inertial-frame time, but the function we are integrating is parameterized using time t̄  
along that observer’s worldline. So we, need to convert: using Eq. (14.3) (with t0 = 0, and 
with τ = t̄), we have 

c
t̄ = arcsinh(gt/c) , (14.28) 

g 

and the argument of the integral becomes 

tanh(g ̄t/c) = tanh(arcsinh(gt/c)) 

(gt/c) 
= p . (14.29) 

1 + (gt/c)2 

It’s kind of miraculous that this result cleans up so nicely. We can now easily do the integral 
and relate tL to tT : �p p �L c 

tL = tT + + 1 + (gtL/c)2 − 1 + (gtT /c)2 . (14.30) 
c g 

We now have all the information we need, in principle, to see how the energy of the light 
changes as it goes from the trailing observer to the leading one: 

115 



¯

¯

¯
¯

¯

1. Solve Eq. (14.30) to fnd tL as a function of tT . 

2. Using this solution plus Eqs. (14.24) and (14.26), compute the energy measured by the 
leading observer as a function of tT . 

3. Using Eq. (14.25) and (14.23), compute the energy measured by the trailing observer 
as a function of tT . 

Unfortunately, this “recipe” involves a multitude of hyperbolic functions and does not 
yield a nice closed form answer. To get something tractable, let’s assume that gt/c, g ̄t/c, 
and g ̄t/c are all much smaller than 1, and use the limiting forms 

cosh(x) ≃ 1 , sinh(x) ≃ x , tanh(x) ≃ x when x ≪ 1 . (14.31) 

Doing so, we fnd 
L 

tL ≃ tT + , (14.32) 
c 

tT ≃ t̄  
beam , tL ≃ t̄  

beam , (14.33) s 
1 − (gt̄  

beam)/c
ET ≃ hν ≃ hν (1 − gt̄  

beam/c) , (14.34)
1 + (gt̄  

beam)/c s 
1 − (gt̄  

beam)/c � � 
EL ≃ hν ≃ hν 1 − gt̄  

beam/c . (14.35)
1 + (gt̄  

beam)/c 

Putting all these together, we see that � � 
gL 

∆E ≡ ET − EL ≃ hν 
2 

. (14.36) 
c 

The light’s energy as measured by the leading observer is lower than the energy measured by 
the trailing observer, by a fractional amount that precisely matches the rate at which their 
clock ticks faster than the trailing observer’s clock. 

14.4 Wrapup: Key things to take away 

The calculations that went into the above discussion were somewhat dense, so this is a good 
point to pause and assess the key lessons that we should take away from it. In particular, 
we want to emphasize aspects of what is observed by a pair of observers who share the same 
acceleration g, but are spatially separated by a distance L. 

• Even if the observers start out with their clocks perfectly synchronized, they will fall 
out of synchrony as time passes, with the leading clock running fast by a factor gL/c2 . 

• If light is exchanged between the two observers, they will disagree on its energy. The 
leading observer measures it to have a lower energy (i.e., they see the light as being 
somewhat redder), by a factor gL/c2 . 

As our analysis showed, the numerical factor gL/c2 that emerges from these analyses is an 
approximate one, but works well as long as g(time)/c is small for all the versions of “time” 
under consideration. Bear in mind that c/g ≃ 1 year if g = 10m/s 2; this gives a sense of the 
time and lengthscales involved before these approximations start to break down. 
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14.5 Rindler coordinates 
(CAUTION: somewhat advanced material) 

Parts of the discussion in the preceding few sections rely on more advanced material which 
we present here. We recommend that you read these notes, but you should not be worried 
if you do not follow every detail of this discussion. The nature of the Rindler coordinates, 
Eqs. (14.37)–(14.40), and the subsection labeled “Features of the Rindler representation” 
are particularly worth your attention. 
In almost all of our discussion so far, we have used coordinates (t, x, y, z) or (ct, x, y, z) 

that are particularly well suited for describing inertial observers. Indeed, such coordinates 
are often called inertial coordinates: they are ones for which there exists some set of observers 
who sit at constant (x, y, z). In such a frame, the observers are only “moving” in time. There 
are also many observers who move with constant velocity. The worldlines of the constant 
velocity observers are lines in these coordinates, taking the form x = x0 + vxt, and similarly 
for their motion in y and z. 
Even when we discussed accelerating observers, we presented their motion as seen by some 

inertial observer who sees the accelerating observer zoom past. You might wonder — how 
does the accelerating observer describe spacetime? Do we learn anything useful by developing 
coordinates that are “adapted” to the reference frame of the acelerating observer? To do 
this, one could imagine performing Lorentz transformations that fip between a particular 
inertial frame (e.g., the frame used to draw the time axes in Fig. 1) and the accelerating 
observer’s MCRF. However, the relative velocity of the MCRF and any given inertial observer 
is continually changing. The Lorentz transformations that enact this“fipping back and forth” 
thus must continually evolve, which limits their usefulness for us. 
A coordinate system which nicely describes an accelerating observer in fact can be written 

down. These coordinates (named Rindler coordinates, in honor of Wolfgang Rindler who 
did much to explore their properties and applications) are described and explored in this 
section. The following section derives Rindler coordinates; that section should be considered 
even more advanced than this one. Students should feel free to ignore it altogether. 
Let us choose the initial condition of the accelerated observer’s trajectory so that t0 = 0 

and x0 = c2/g in Eqs. (14.3) and (14.4). Then, as we derive in detail in the following 
section, the accelerated observer uses coordinates (ct,̄ x,¯ y,̄ z̄) to describe spacetime. These 
new coordinates are related to the original “inertial” coordinates (ct, x, y, z) according to 

ct = ¯ t/c) ,x sinh(g ̄  (14.37) 

x = ¯ t/c) ,x cosh(g ̄  (14.38) 

y = ȳ  , (14.39) 

z = z̄  . (14.40) 

In the barred coordinate system, the accelerated observer is at constant spatial coordinate 
(x̄, y,̄ z̄) = (c2/g, 0, 0); the barred time coordinate t̄  is exactly the same as the proper time 
τ that this observer measures. Notice that this solution agrees with Eqs. (14.3) and (14.4) 
when x̄ = c2/g. Equations (14.37)–(14.40) defne the Rindler coordinates. (Notice also that 
Eq. (14.37) is what we used to defne the constant time surfaces of the MCRF as shown in 
Fig. 1 and in the associated discussion.) 
Figure 3 illustrates how the (ct,̄ x̄) coordinates used by an accelerating observer appear 

in the reference frame of an unaccelerated observer. The red curve illustrates the worldline 
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of the observer who starts at x = x̄ = c2/g. The green lines represent surfaces of constant t̄; 
the blue hyperbolic curves represent trajectories of constant x̄. Those trajectories are chosen 

¯by requiring that x̄ = x when t = t = 0, and by demanding that the unit vector along x̄ 
be spacetime orthogonal to the unit vector along t̄. Notice that each constant x̄ coordinate 
can itself be regarded as an accelerated observer; as we discuss in the next section, it can be 
shown that the observer at constant x̄ feels an acceleration a = (c2/x̄)ex. 
We also include in this fgure the trajectory of a light ray that is emitted from the origin; 

we discuss some interesting features of this coordinate system’s behavior with respect to this 
light ray below. 

t̄ = 0.1 c/g
t̄ = 0.3 c/g
t̄ = 0.5 c/g
t̄ = 0.7 c/g
t̄ = 0.9 c/g
t̄ = 1.1 c/g
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Figure 3: An illustration of Rindler coordinates. The red curve is the worldline of an 
accelerating observer who starts at x = c2/g and experiences constant acceleration g. The 
green lines are surface of constant t̄, which coincides at that observer’s location with their 
own proper time; the blue curves are trajectories of constant x̄, chosen to coincide with the 

¯unaccelerated frame’s x when t = t = 0. A heavy black line ct = x illustrates a light ray 
that is emitted from the origin and moves to the right. Notice both axes are in units of c2/g. 

14.5.1 Features of the Rindler representation 

There are two features of the Rindler representation to which we would like to particularly 
call your attention. 

• A new form for the metric: By now, we know very well that 

ds2 = −c 2dt2 + dx2 + dy2 + dz2 ≡ ηαβdx
α dxβ . (14.41) 

The invariance of this interval is what led us to the metric used in inertial coordinates, 
ηαβ = diag(−1, 1, 1, 1). 
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Let’s look at this in our new coordinates. Considering Eqs. (14.37)–(14.38), we see 

gx̄ 
c dt = (dx̄) sinh(g ̄ (c d¯ t/c) , (14.42)t/c) + t) cosh(g ̄  

2c 
gx̄ 

dx = (dx̄) cosh(g ̄  
2 
(c d¯ t/c) , (14.43)t/c) + t) sinh(g ̄  

c 

plus dy = dȳ, dz = dz̄. This tells us that h � � i2gx̄ 
ds2 = − x) sinh(g ̄  

2 
(c d¯ t/c)(d¯ t/c) + t) cosh(g ̄  

ch � � i2gx̄ 2 2+ (d¯ t/c) + t) sinh(g ̄ + d¯ + dz̄x) cosh(g ̄ (c d¯ t/c) y
2c� �2gx̄ 2 2 2 2 = − c 2dt̄ + dx̄ + dȳ + dz̄  . (14.44) 

c2 

(We used cosh2(g ̄ (g ̄  = 1.) Notice that the metric is not a constant int/c) − sinh2 t/c) 
this representation. Because we reserve the symbol ηαβ for diag(−1, 1, 1, 1), we now 
use gαβ to denote the metric. In particular, we now have � �. 

gαβ = diag x/c2)2 , 1, 1, 1 (14.45)−(g¯ 

for the metric of spacetime in Rindler coordinates. 

It’s worth emphasizing that we are still doing special relativity; we have only changed 
coordinates. If you’ve been reading ahead or poking at references, you may have seen 
that in general relativity we get metrics in which the components are functions, and so 
you might worry that we’ve somehow “broken” special relativity. We haven’t: in some 
coordinate systems, the components of the metric are functions and yet the metric still 
describes special relativity. This is an example of such a system. 

• A “horizon”: Notice in Fig. 3 that we have included a light ray that starts at the 
origin and travels in the +x direction. On an upcoming problem set, you will compare 
the motion of the accelerated observer to the motion of this light ray, and show that 
the light ray never crosses this observer’s trajectory. The light ray asymptotically 
approaches the accelerated observer’s trajectory as t̄  → ∞, but they never cross. In 
fact, the light ray never crosses any of the constant x̄ trajectories. 

Because information can travel no faster than light, this means that there is a region of 
spacetime that cannot communicate with the accelerated observer. No signal sent by an 
observer to the “left” of that light ray can reach the accelerated observer. We say that 
there is a horizon separating the events which can communicate with the accelerated 
observer from those events which cannot so communicate. 

We will come back to the notion of horizons later in this course. Take this as a preview 
of some of the interesting features that we will begin to fnd as we start investigating 
certain spacetimes. 
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14.6 Derivation of Rindler coordinates 
(CAUTION: advanced material) 

The discussion in this section is signifcantly more advanced than is expected for 8.033 
students. It is included in order to provide a complete explanation of where the Rindler 
coordinates come from, as well as for the beneft of any students who are interested in diving 
somewhat deeper into this material; it will not be discussed in detail during lecture. 
We now defne coordinates ct̄, x̄ which the accelerating observer uses to describe space-

time. (Since the acceleration is along x, we simply put ȳ = y and z̄ = z and are then done 
with those two coordinates.) We take the accelerating observer’s coordinates to be t = 0, 
x = c2/g when τ = 0, and we use the symbols T , X to defne the accelerating observer’s tra-
jectory as measured by the observer who is at rest with respect to the accelerating observer 
at τ = 0. The motion of this observer is thus 

2 2c c 
cT (τ) = sinh(gτ/c) , X(τ) = cosh(gτ/c) . (14.46) 

g g 

For the accelerated observer, their own proper time τ makes a natural clock. Given this, it 
is natural that the accelerated observer chooses the time coordinate to be t̄ = τ along their 
own worldline. 
Can we use this coordinate t̄  away from the observer’s worldline? In other words, can 

the accelerating observer use t̄  to label events elsewhere in spacetime, away from their own 
worldline? Yes, by the following procedure: 

• First defne unit vectors that point along the directions t̄  and x̄. Making such a unit 
vector for t̄  is not hard: in the accelerating observer’s MCRF, their 4-velocity has 
components uα . 

= (c, 0, 0, 0). A natural choice for e⃗t̄ is thus parallel to this observer’s 
4-velocity, so we put 

1 
e⃗t̄ = u⃗ = cosh(g ̄  et + sinh(g ̄t/c)⃗ t/c)e⃗x . (14.47) 

c 

We then defne e⃗x̄ by requiring that it be orthogonal to e⃗ (and also that it have not̄ 

components along ȳ  and z̄): 

= sinh(gt/c¯ )e⃗t + cosh(g ̄t/c)⃗e⃗x̄ (14.48)ex . 

• With e⃗ defned, now consider a “surface” of constant t̄ (i.e., a set of events in which all x̄ 

the time coordinates t̄  are the same). Such a surface must lie on a line that is parallel 
e⃗x̄ 

t 
x̄ 

, meaning that it is a line whose slope m is given by 

e 
e 
= tanh(g ̄  (14.49)t/c) .m = 

x 
x̄ 

We further require that this line intersect the worldline of the accelerating observer: 
The line must have the slope m defned by Eq. (14.49), and pass through the point 
[cT (t̄), X(t̄)]. With a little algebra we see that this line is given by 

ct = x tanh(g ̄  (14.50)t/c) . 
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We’ve now learned how to draw surfaces of constant t̄  in the inertial (ct, x) coordinate 
frame. How do we draw a surface of constant x̄? Such a surface must lie parallel to the 

¯timelike vector e⃗t̄  given in Eq. (14.47). This vector is continually changing in slope as t 
changes; in the inertial frame, it has slope 

dx 
= c tanh(g ̄  (14.51)t/c) . 

dt 

We have already deduced that t and t̄  are related by Eq. (14.50). Combining these results, 
we see that 

dx t 
= c 2 . (14.52)

dt x 
We integrate this up, applying an initial condition that the coordinates of the accelerated 
observer match those of the inertial frame at t = t̄ = 0: Z x Z t 

x dx = c 2 t dt (14.53) 
x̄ 0 

or 
x 2 − x̄2 = c 2t2 . (14.54) 

This tells us that surfaces of constant x̄ are given by hyperbolae in the (ct, x) plane which 
satisfy 

x̄2 = x 2 − (ct)2 . (14.55) 

We’d like to massage Eqs. (14.50) and (14.55) a bit more to really isolate how (ct,̄ x̄) appear 
in the inertial frame. Notice that Eq. (14.55) is solved by any pair of functions of the form 

x = x̄ cosh(α) , ct = x̄ sinh(α) . (14.56) 

Applying this to Eq. (14.50), we see that we must have α = g ̄  We thus at last have thet/c. 
complete mapping of the accelerated observer’s reference frame into the inertial coordinate 
system: 

ct = ¯ t/c) , x = ¯ t/c) , y = ¯ z = ¯ (14.57)x sinh(g ̄  x cosh(g ̄  y , z . 

One fnal detail: it was noted earlier in these notes that an observer at constant x̄ is itself 
an accelerated observer. This is hopefully intuitively obvious from the shape of the constant 
x̄ surfaces in Fig. 3 (if they were not accelerated, they would not curve). What acceleration 
does this observer feel? This is most easily calculated by computing the 3-acceleration of 
this observer at t = t̄  = 0. Because at this moment all of the constant x̄ observers happen 
to be momentarily at rest, all of these observers have 4-velocity with components (c, 0, 0, 0) 

x xand 4-acceleration (0, a , 0, 0) in this frame, where a = d2x/dt2 at t = 0. 
Let’s compute this: 

x d2x 
a = 

dt2 
t=t̄=0" #� �−2

d2x dt 
= 

dt̄2 dt̄  
t=t̄=0�� 

2 ��� �−2g g x̄ 
= 

2 
¯ t/c) t/c)x cosh(g ̄  cosh(g ̄  

c c c t=t̄=0 
2c 

= . (14.58) 
x̄ 
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So the observer at x̄ = c2/g feels an acceleration of precisely g; those at larger x̄ feels less 
acceleration, and those at smaller x̄ feel more (with the acceleration diverging as x̄ → 0). 
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Lecture 15 
Introduction to gravity 

15.1 The road ahead 

In this set of lecture notes, we are going to begin to examine how to incorporate gravity into 
relativity. We will be concerned with two major questions: 

• First, how is gravity “made,” broadly speaking? In other words, given some body that 
generates a gravitational feld in Newtonian physics, how do we describe that body’s 
gravity using relativistic physics? 

• Second, how do we describe a body’s motion under the infuence of gravity? How does 
what we think of as the “gravitational force” act in relativistic physics? 

You might imagine that, given all we have done so far, addressing these points shouldn’t 
be too difcult. After all, we reformulated both electric and magnetic forces and felds into 
nicely covariant relativistic language. How much harder can this be for gravity? 
As we’ll begin to see in the next section of these notes, gravity introduces complications 

that make describing it substantially more difcult. Indeed, going through all the details in 
great rigor is far beyond the scope of 8.033. We will content ourselves in this class with a 
more descriptive analysis, seeing how it is that the tricks we’ve learned so far don’t work for 
gravity. We will then examine a high-level synopsis of how we proceed to answer the frst of 
the two questions above. Going beyond that high-level synopsis takes roughly half the term 
of 8.962. Students who wish to pursue this subject further are encouraged to look into the 
course 8.228 (ofered during IAP), and perhaps to consider taking 8.962 at some point down 
the road. 
Once we have this high-level synopsis of how gravity arises, it isn’t beyond 8.033 to 

describe how that gravity acts on a body. Exploring how relativistic gravity acts and how it 
difers from Newtonian gravity will be a big part of what we do in the last few weeks of this 
term. To get there, we frst need to establish some important principles. 

15.2 The principle of maximum aging 

Imagine that two bodies travel from event A, located at x = 0, t = 0 to event B located at 
x = 1 lightsecond, t = 4 seconds. One body moves there at constant velocity v = 0.25c ex; 
we’ll call this the “direct” path. The other body moves frst to event C, located at x = 0, 
t = 2 seconds. It then moves of to event C at half the speed of light1 . We illustrate this 
situation in Fig. 1. 

1In reality, the body must accelerate for some interval to reach this speed. For this initial discussion, we 
idealize the interval over which the acceleration occurs to be so short that it is nearly instantaneous. 
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Figure 1: Two paths from event A to event B. The “direct” path goes from A to B at 
constant velocity; the indirect path goes from A to B via the event C. Note that diferent 
scales are used for the x and t axes. 

Question: On which path does the body age more, the direct one or the indirect one? 
We’ve already discussed a similar situation when talked about the twin paradox, but just 
to remind ourselves how this works let’s step through the analysis. We are going to use the 
fact that along any timelike trajectory, 

∆s 2 = −c 2∆t2 +∆x 2 +∆y 2 +∆z 2 = −c 2∆τ 2 . (15.1) 

The last equality follows from the fact that ∆τ is the time experienced in the body’s own 
rest frame; in that frame, ∆x = ∆y = ∆z = 0, since the body is at rest in its rest frame. 
Let’s use this to compute how much ∆τ the bodies experience along these two trajectories. 
First, consider the direct trajectory: � �1/2 

∆τ = (∆t)2 − (∆x)2/c2 � �1/2 
= 16 sec2 − 1 sec2 

√ 
= 15 seconds . (15.2) 

√ 
The body ages a total of 15 ≃ 3.87 seconds on the direct trajectory. 
Next, the indirect trajectory. We break this up into two pieces: 

∆τA→C = 2 seconds . (15.3) 

� �1/2 
∆τC→B = 4 sec2 − 1 sec2 

√ 
= 3 seconds . (15.4) 
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Without too much efort, we can fnd other trajectories in which the aging is less much 
less, if we design the trajectory well. Consider, for example, the trajectory shown in Fig. 2: 

x (light seconds)

t (seconds)

1 20

0

1

2

3

4

A

B

√ 

with the direct trajectory aging of 3.87 seconds, we see that the body ages more on the 
unaccelerated trajectory. 

— 

So on the indirect trajectory, the body ages a total of 2 + 3 ≃ 3.73 seconds. Comparing 

Figure 2: Yet another path from event A to event B. On this path, the body zig zags back 
and forth at nearly light speed until it fnally reaches event B. 

The path here zips back and forth at nearly light speed. As such, the body accumulates 
nearly zero proper time along each leg, and so it does not age at all in moving from event A 
to event B. Consistent with how we resolved the twin paradox, we can see that acceleration 
reduces the aging which a body experiences as it moves through spacetime. 
We will soon briefy discuss a topic called the calculus of variations. Some of you may have 

already learned about this — it is the key technique which underlies Lagrangian mechanics, 
for example. Using the calculus of variations, we can meaningfully pose the following ques-
tion: “Given the infnite number of timelike trajectories in spacetime which connect events 
A and B, along which one does the body age the most? In other words, which trajectory 
through spacetime is the one which corresponds to maximum aging?” 
The answer we will fnd is that the trajectory of maximum aging is indeed the unaccel-

erated trajectory. This will prove to be very, very useful for us. Picking out the “trajectory 
of maximum aging” to understand the motion of a body in special relativity is overkill; it is 
fne for understanding how this technique operates, but it isn’t how you want to calculate 
a body’s trajectory through special relativity’s spacetime on an everyday basis. However, 
we will argue (using an important principle that Einstein introduced to understand how to 
incorporate gravity into relativity) that this technique is exactly what we need to compute 
a body’s motion under gravity once we start making a relativistic theory of gravity. 
For now, please fle away in some mental storage drawer the idea that “no acceleration” 

means “maximum aging” as a body moves through spacetime. We will want to return to 
this point in several lectures. 
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15.3 Making Newton’s gravity relativistic? 

Long ago, Isaac Newton taught us that two masses feel a force that is proportional to their 
masses, inversely proportional to the square of the distance between them, directed along 
the line between the two masses, and attractive: 

m1m2
FG = −G er . (15.5) 

r2 

This looks just like Coulomb’s law, which tells us about the electric force between two 
charges: 

1 q1q2
FE = er . (15.6)

4πϵ0 r2 

The diferences are that the electric force arises from charges q rather than masses m; the 
electric force can be attractive or repulsive, depending on the signs of q1 and q2 (note that 
masses are always positive); and the two forces have diferent “coupling constants” (G versus 
1/4πϵ0). Given that we were able to put the electric force into fully relativistic form without 
too much efort, with magnetic felds and forces getting wrapped up in the fnal form, can 
we perhaps do the same thing for gravity? 
Although this seems like a plausible course of action, it is important to recognize a major 

diference between the two force laws. A key issue is that the charges q1 and q2 which enter 
into the electric force are Lorentz invariants. Do all observers agree on the masses m1 and 
m2 which enter into the gravitational force? 
The issue is certainly yes if the Newtonian force only acts on rest mass. If that’s the 

case, though, then there is an interesting consequence: gravity can have no efect on anything 
massless, such as light. It is also not hard to construct “though experiments” which suggest 
that gravity would act a little oddly. 
Consider a box of mass M . Inside this box are lumps of putty, each of rest mass m. If 

gravity only acts on rest mass, then on the surface of the Earth, this box will have weight 

Fw = (M + 2m)g , (15.7) 

where 
GME 

g = ed
R2 

E 

(15.8) 

is the gravitational acceleration at the surface of the Earth. It depends on the Earth’s mass 
ME , its radius RE , and points down, ed, from the surface toward the Earth’s center. 
Let’s imagine that the lumps of putty are in fact moving toward each other at speeds 

very close to the speed of light: the box has a long axis oriented parallel to the Earth’s 
surface (let’s call this along the x direction); one lump of putty has u = uex, the other 
has u = −uex, and each lump’s speed u is close to c. Before the lumps of putty come into 
contact, the box’s weight is given by Eq. (15.7). Afterwards, the box has weight 

Fw = (M + 2γ(u)m)g . (15.9) 

If u ∼ c, then γ(u) can be huge. In such a case, the weight of the box very suddenly increases, 
perhaps by a large amount. 
Or, imagine that one lump of putty is made of matter, and the other of antimatter. All 

evidence2 indicates that antimatter responds to gravity just like “normal” matter. After the 

2It’s actually hard to gather such evidence, because antimatter tends to annihilate with regular matter 
before we can make a precise measurement. 
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two lumps collide, all of their rest mass is converted into radiation. If gravity only acts on 
rest mass, then the box now has weight 

Fw = Mg (15.10) 

after the collision; the weight very suddenly decreases. If gravity only acts on rest mass, 
then an object’s weight can very suddenly and discontinuously change. 
Let me emphasize that these thought experiments do not tell us that m1 and m2 cannot 

be rest masses. However, they make it clear that if they are rest mass, then we must be 
prepared for some potentially weird consequences. It is worth taking a few moments to think 
about alternatives. 
What if gravity doesn’t so much act on rest mass as it acts on energy? For instance, 

suppose that the m that appears in the Newtonian force law is really something like E/c2 . 
In the vast majority of situations that humanity has encountered in its history, an object’s 
kinetic energy is a very tiny fraction of its rest energy. As such, the diference between m 
and E/c2 has tended to be negligible. It is not unreasonable to imagine that gravity acts on 
energy, but that we inferred the force law (15.5) because of the overwhelming importance of 
rest energy at typical kinetic energy levels. 
If gravity acts on all forms of energy, then it acts on light. Let’s consider that possibility. 

15.4 The action of gravity on light 

We consider another thought experiment; this is a variation on one that was originally 
designed by Einstein. 

H

• Imagine we stand on a tall building, and we drop a rock of mass m. 
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• After falling a distance H, the rock enters a device. At the moment it enters this 
device, it has energy 

E = Ebottom = mc 2 + mgH . (15.11) 

• This device converts the rock into a single photon3 of Ebottom = mc2 + mgH = hν 
(be careful not to confuse the height H with Planck’s constant h) and launches this 
photon back up to the top of the building. 

• When the photon has climbed a distance H, we use yet another amazing device to 
convert the photon back into a rock. What energy must this rock have? 

Imagine frst that gravity does not act on light. If that were the case, then the rock 
would reappear next to us with energy E = Ebottom = mc2 + mgH – it would either have a 
slightly larger rest mass, or else it would have some kinetic energy, and continue to climb. 
If we allowed it to come to a halt and then fall back down, on the next pass it would have 
energy E = mc2 + 2mgH at the end of this process. We can repeat this, giving the rock an 
extra mgH of energy on each go-round. If gravity does not act on the light, then we can in 
principle make a device for creating unlimited amounts of energy4 this way. 
Let’s insist that energy be conserved: When the photon is converted back into a rock, it 

has an energy E = Etop = mc2 . Because a photon’s energy is related to its frequency, this 
tells us that the photon loses energy as it climbs out of the gravitation feld: it is redshifted 
according to the rule 

2Etop hνtop mc 
= = , (15.12)

Ebottom hνbottom mc2 + mgH 

or, using gH ≪ c2 , 
νtop gH 

= 1 − . (15.13)
νbottom c2 

Notice that this frequency diference is precisely the same as the efect we found when we 
compared the energy of a photon that is measured by two accelerated observers; compare 
Sec. 14.3 of the previous set of lecture notes. 
A few comments are worth making before moving on: 

• The magnitude of this efect can be estimated by noting that, at the Earth’s surface, 
gH ≃ 100 m2/s2 (H/10 m), and by using c2 ≃ 9 × 1016m2/s2 . This tells us that we 
expect a frequency change in the light of roughly 1 part in 1015 for every 10 meters of 
height change. 

3Alarm bells should be going of in your brain right now: Even allowing for the most amazing technology 
we can imagine, converting a single rock into a single photon would cause all sorts of problems with energy 
and momentum conservation. To address this, imagine dropping a rock and an “anti-rock” — a rock made 
of antimatter. The device can then create two photons; by mounting the device on the Earth, we can allow 
the Earth to recoil in such a way that both energy and momentum are conserved. 

4The device used in this example is, by design, kind of silly. However, it is not hard to imagine making 
less silly variations on this. For example, by allowing matter and antimatter to fall in a gravitational feld 
and then harvesting the light they produce upon annihilation, we could make any amount of energy we want, 
perhaps harvesting the energy by allowing those photons to heat up a bucket of water. The failure of gravity 
to act on light would be an on-ramp to building a perpetual motion machine. 
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• A more general form of Eq. (15.13) is 

νtop ∆ΦG 
= 1 − , (15.14)

νbottom c2 

where ∆ΦG is the change in gravitational potential between the two measurement 
points. 

We emphasize these points because this efect in fact is exactly what we measure. It was 
frst done in 1959 using Mössbauer spectroscopy by Robert Pound and Glen Rebka, looking 
at the efect of gravity on gamma rays which produced by the decay of the isotope 57Fe and 
then climbed 22.5 meters up a tower at Harvard’s Jeferson Laboratory. This measurement 
is now done millions of times a second by a huge number of people around the world, as 
it is integral to the functioning of the Global Position System. Without correcting for this 
frequency shift, GPS accuracy would degrade at a rate of roughly 8 meters per minute. 
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Lecture 16
The calculus of variations, the principle of maximum aging, and the

motion of bodies in spacetime

16.1 Our goal

In Lecture 17, we will introduce a hypothesis which will allow us to formulate how a body
moves in any spacetime, not just the spacetimes of special relativity. The key idea is to use
the principle we recently discussed which argued that unaccelerated motion means bodies
move along trajectories of “maximal aging.” Any acceleration slows down their own clocks
such that the proper time they accumulate during their motion is less than it would be on
the non-accelerated path. The goal of today’s lecture is to develop tools that allow us to use
this principle.

16.2 Euler’s equation

Imagine a function f that depends on time, on a position variable x, and on the derivative
ẋ ≡ dx/dt. Suppose that f encodes something important about our physical situation.
Suppose that at time ti we are at position xi, and that at time tf we are at position xf .
Subject to the boundary condition that we must start at the event (ti, xi) and we must end
at (tf , xf ), we are free to take any trajectory x(t) that connects these two events.

Imagine that the trajectory we actually take is the one that gives us the extremum of

J =

∫ tf

ti

f [x(t), ẋ(t); t] dt . (16.1)

For example, f might tell us about the rate at which we age along the trajectory, and J
could be the accumulated aging we experience. Of the infinite number of ways that we can
connect (ti, xi) to (tf , xf ), how do we find that one that extremizes J?

To proceed, we imagine that there exists some xe(t) which gives us this extremum. We
do not know xe(t), so our current guess deviates from this correct choice. We parameterize
how our current guess deviates from the correct trajectory as follows:

x(t) ≡ x(t;α) = xe(t) + αA(t) . (16.2)

The function A(t) is totally arbitrary, except that we require it to vanish at the endpoints:
A(ti) = A(tf ) = 0; otherwise, our trajectory would not meet the boundary condition. The
parameter α allows us to control how the variation A(t) enters into our path x(t;α).

Our basic idea is to ask how the integral J behaves when we are in the vicinity of the
extremum. We know that ordinary functions are flat — they have zero first derivative —
when we are at an extremum. Let us put

J(α) =

∫ tf

ti

f [x(t;α), ẋ(t;α); t] dt . (16.3)
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We’ve now made the integral J a function of the parameter α. We know that α = 0
corresponds to the extremum of J by its definition. However, this isn’t useful for us, since
we don’t know what x(t) this corresponds to. However, because α = 0 corresponds to an
extremum, we also know that (∂J/∂α)α=0 = 0; in essence, we’re taking advantage of the fact
that the shape of J(α) has a particular form as we approach this extremum.

Let’s take a look at the derivative of J with respect to α:

∂J

∂α
=

∫ tf

ti

[
∂f

∂x

∂x

∂α
+

∂f

∂ẋ

∂ẋ

∂α

]
dt . (16.4)

Using Eq. (16.2), we have
∂x

∂α
= A(t) ,

∂ẋ

∂α
=

dA

dt
. (16.5)

Plugging this in, we have

∂J

∂α
=

∫ tf

ti

[
∂f

∂x
A(t) +

∂f

∂ẋ

dA

dt

]
dt . (16.6)

The last term on the right-hand side of (16.6) can be rearranged in a really useful way using
integration by parts:∫ tf

ti

∂f

∂ẋ

dA

dt
dt = A(t)

∂f

∂ẋ

∣∣∣∣tf
ti

−
∫ tf

A(t)
d

dt

(
∂f

∂ẋ

)
dt

= −
∫ tf

ti

A(t)
d

dt

t(i
∂f

∂ẋ

)
dt . (16.7)

To get the final expression, we used the fact that A(ti) = A(tf ) = 0. Using this we have

∂J

∂α
=

∫ tf

ti

A(t)

[
∂f

∂x
− d

dt

(
∂f

∂ẋ

)]
dt = 0 at an extremum of J . (16.8)

∂f

∂x

d

dt

∂f

∂ẋ

The function A(t) is totally arbitrary, aside from the boundary condition that it vanish at
ti and tf . We require ∂J/∂α = 0 for all A(t); for this to occur, the quantity inside square
brackets must vanish: ( )

− = 0 . (16.9)

This is known as Euler’s equation, and was first derived by the Swiss polymath Leonhard
Euler. Properly applied, it yields a differential equation which allows us to find the trajectory
x(t) which extremizes the integral J .

For simplicity, we did this for a function of just one variable. However, we could have
imagined a trajectory in all three spatial directions. With a little more effort, it’s not too
hard to show that more general version of Eq. (16.9) is just the trio of equations

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0 ,

∂f

∂y
− d

dt

(
∂f

∂ẏ

)
= 0 ,

∂f

∂z
− d

dt

(
∂f

∂ż

)
= 0 . (16.10)

Those of you who have studied Lagrangian mechanics (which we discuss briefly at the end
of these notes) presumably have already encountered equations of this form.
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16.3 An example: The brachistochrone (“shortest time”)

A bead starts from rest at (xi, yi) = (0, 0) and slides without friction down a wire, reaching
(xf , yf ). What shape should the wire have in order for the bead to reach (xf , yf ) in as little
time as possible?

(xi,yi)

(xf,yf)

Figure 1: Three plausible paths for the brachistochrone connecting (0, 0) and (xf , yf ).

To figure this out, apply the Euler equation to minimize the total travel time of the bead
as it slides along the wire. Think of the integral we are minimizing as T , defined by

T =

∫ final position

initial position

ds

v
, (16.11)

where ds is the differential of path length along the wire, and v is its speed. For the path
length, note that the bead moves in both x and y, so

ds =
√

dx2 + dy2 = dy
√

1 + (x′)2 , where x′ ≡ dx

dy
. (16.12)

For the speed v, since the bead starts from rest, it only gets speed from falling a distance y:

1
mv2 = mgy −→ v =

√
2gy . (16.13)

2

The equation we wish to minimize is thus

T =

∫ yf

0

√
1 + (x′)2

2gy
dy . (16.14)

This is perfectly set up for us to apply the Euler equation provided we make a few adjust-
ments: we put

f =

√
1 + (x′)2

2gy
; (16.15)

we change the integration variable from t to y, and replace ẋ with x′. Our slightly tweaked
Euler equation is thus

∂f

∂x
− d

dy

(
∂f

∂x′

)
= 0 . (16.16)
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Let’s evaluate these terms:

∂f

∂x
= 0 ,

∂f

∂x′ =

(
1√
2gy

)(
x′√

1 + (x′)2

)
. (16.17)

Plugging these into the Euler equation yields

d

dy

(
1√
2gy

)(
x′√

1 + (x′)2

)
= 0 . (16.18)

We can immediately integrate this up to find(
1√
2gy

)(
x′√

1 + (x′)2

)
= constant . (16.19)

√
Let’s set this constant to 1/ 4gA, where A is another constant1 with the dimensions of
length. Squaring both sides of Eq. (16.19), we find

(x′)2

2gy (1 + (x′)2)
=

1

4gA
, (16.20)

which we can manipulate into (
dx

dy

)2

=
y/(2A)

1− y/(2A)

=
y2

. (16.21)
2Ay − y2

We thus at last have our equation governing x as a function of y:

x(y) =

∫ y

0

y dy√
2Ay − y2

. (16.22)

To wrap this up, we change variables: define y = A(1− cos θ), dy = A sin θ dθ. It’s not too
hard to show that 2Ay − y2 = A2 sin2 θ; our equation for x becomes

x =

∫ θ

0

A(1− cos θ) dθ = A(θ − sin θ) . (16.23)

The full solution for the brachistotrone is then given by

x = A(θ − sin θ)

y = A(1− cos θ) . (16.24)

The bead’s motion goes over the range 0 ≤ θ ≤ θmax; both the constant A and the angle
θmax can be found by solving x(θmax) = xf , y(θmax) = yf .

1This is one of those places where I get to invoke instructors’ privilege and cheat a little bit. If you were
doing this problem by yourself, you’d probably just set the right hand side to something like C, and hope
that C’s role is explained later in the calculation. Doing so, you would eventually find that C shows up
as 1/4gC2 in the analysis. Since I’ve already done the calculation, I’m using the fact that I know this in
advance to streamline things here.
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16.4 Maximal aging in special relativity

Let’s use the calculus of variations to see what kind of motion results in “maximal aging”
on an observer’s trajectory in special relativity. We start with the fact that, for an observer
moving on a timelike trajectory,

dτ 2 = dt2 −
(
dx2 + dy2 + dz2

)
/c2 . (16.25)

For simplicity, let’s restrict ourselves to one spatial dimension for now, setting dy = dz = 0.
Now think about the many paths which can connect event A to event B. Our goal is to

compute the accumulated τ along those paths:

τA→B =

∫ B

A

dt

√
1− 1

c2

(
dx

dt

)2

≡
∫ B

A

dt

√
1− ẋ2

c2
. (16.26)

We’ve introduced ẋ = dx/dt for notational convenience. Notice that the integrand looks like
dt/γ(ẋ) — a form that hopefully makes a lot of sense.√ Let’s now think about how to extremize τA→B by putting J → τ , and setting f(x, ẋ) =

1− ẋ2/c2. Re-stating Euler’s equation,

∂f

∂x
− d

dt

(
∂f

∂ẋ

)
= 0 , (16.27)

with
∂f

∂x
= 0 ,

∂f

∂ẋ
= − ẋ/c2√

1− ẋ2/c2
. (16.28)

Plugging these into (16.27), we find

d

dt

(
ẋ√

1− ẋ2/c2

)
= 0 (16.29)

whose solution is
ẋ = constant . (16.30)

If you include y and z in your analysis, you’ll likewise conclude that ẏ and ż must be constants
in order to follow the trajectory that maximizes the accumulated proper time from A to B.
A trajectory with ẋ, ẏ, and ż all constants is nothing more than an inertial trajectory in
spacetime. The unaccelerated trajectory is the one which maximizes an observer’s
accumulated proper time as they move through spacetime: It is the trajectory
of maximal aging.

Important side issue: strictly speaking, the calculation we just did tells us that the
unaccelerated trajectory represents an extremum of accumulated proper time, which can be
either a maximum or a minimum. How do we know this extremum is a maximum and not a
minimum? In this particular case, it is because we know that the minimum aging trajectory
is the trajectory along which τA→B = 0, and in fact that there are an infinite number of such
trajectories, all with crazy — essentially unphysical — accelerations. In general, knowing
whether the extremum is a minimum or a maximum requires you to think a little bit about
the physics of your situation. You will find that the outcome of the Euler equation calculation
picks a unique extremum; the opposite extremum tends to not be uniquely specified.
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16.5 Lagrangian mechanics and relativity

Independent of whether you continue to study relativity into the future or not, the calculus
of variations and the Euler equations are likely to be important for you as long as you remain
a physics student. The reason is that ordinary mechanics can be formulated in a way that
uses these tools. The basic idea works as follows:

• Suppose a body moves from event (ti, xi, yi, zi) to event (tf , xf , yf , zf ).

• Consider every possible trajectory that connects these events. For every point along
those trajectories, compute the body’s kinetic energy K and its potential energy U .

• Define the Lagrangian L as the difference in these quantities: L ≡ K − U .

• Define the action S as the time integral of L: S ≡
∫ tf
ti

Ldt.

A remarkable result, which is discussed in great detail in the IAP course 8.223 and the
advanced mechanics course 8.09, is that Newtonian mechanics is equivalent to the path of
least action, and can be found by applying the Euler equations (often called the Euler-
Lagrange equations in this context) to L:

∂L

∂x
− d

dt ∂ẋ
= 0 ,

∂L

∂y
− d

dt

(
∂L

∂ẏ
= 0 ,

∂L

∂z
− d

dt

(
∂L

∂ż

(
∂L
) ) )

= 0 . (16.31)

These equations work in other coordinate systems too — you can replace the Cartesian set
(x, y, z) with cylindrical coordinates (r, ϕ, z) or spherical ones (r, θ, ϕ) or really bizarre ones
that just happen to be adapted to the geometry of your problem.

A Lagrangian formulation of mechanics is often much easier to work with than the F =
ma based techniques you learned in 8.01/8.012, particularly if the problem is subject to
constraints. What makes them particularly nice to work with is that ultimately one need
only compute a single scalar quantity, L, rather than work with vector-valued forces or
torques. It is also worth noting that the classical action is intimately connected to the phase
of a quantum wavefunction. The trajectory of “least action” is closely related to the phase
corresponding to the most likely outcome of a quantum process in the classical limit.

In another few lectures, we will start working with general spacetime metrics, for which
ds2 = gαβdx

αdxβ, and for which the metric gαβ will be a function of the different coordinates.
However, it will remain the case that for a timelike observer, c2dτ 2 = −gαβdx

αdxβ. Let’s
use this to define the Lagrangian-like quantity that we will want to use to describe motion
in general spacetimes. Consider motion that begins at event A and ends at event B. The
proper time accumulated along a trajectory between these events is

c∆τ =

∫ B

A

(f)1/2dτ , (16.32)

where

f = −gµν
dxµ

dτ

dxν

dτ
≡ −gµν ẋ

µẋν . (16.33)

Requiring that the trajectory through spacetime between events A and B be an extremum
leads us to the following 4 Euler equations (one for each value of the index α):

∂(f)1/2

∂xα
− d

dτ

(
∂(f)1/2

∂ẋα

)
= 0 . (16.34)

135



This can be simplified a bit more. First, note that

∂(f)1/2

∂xα
=

1

2(f)1/2
∂f

∂xα
,

∂(f)1/2

∂ẋα
=

1

2(f)1/2
∂f

∂ẋα
. (16.35)

Second, note that df/dτ = 0: f is nothing more than gµν ẋ
µẋν = u⃗ · u⃗ = −c2, and the total

derivative of this quantity with respect to proper time is zero. (Its partial derivatives are not
zero: if we vary a particular value of xα or a particular value of ẋα while holding all other
quantities constant, we push f away from the value it “should” have.) This allows us out to
clear out an overall factor of 2(f)1/2, and the Euler equations (16.34) then become

∂f

∂xα
− d

dτ ∂ẋα

(
∂f
)

= 0 . (16.36)

This tells us that f = −gµν ẋ
µẋν plays a role in relativistic mechanics exactly like the La-

grangian of ordinary classical mechanics. It is traditional to multiply this by a factor of
−1/2 — after all, the extremum of −1/2 times a function occurs at the same place as the
extremum of that function. We then define the relativistic Lagrangian as

L =
1

2
gµν ẋ

µẋν . (16.37)

(Strictly speaking, this is a “Lagrangian per unit rest mass” for a body moving through
spacetime.) The motion of a body in the spacetime gµν can then be found by applying the
Euler-Lagrange equations to this L.

After a bit of discussion about how to get the spacetime metric gµν , we will use this
“relativistic Lagrangian” quite a bit in the last few weeks of this course.
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little slower near the surface than it moves after propagating to greater heights: 

height

t
Path through spacetime of one 
crest of a wave in light beam

Scott A. Hughes Introduction to relativity and spacetime physics 

Massachusetts Institute of Technology 
Department of Physics 

8.033 Fall 2024 

Lecture 17 
Goodbye global Lorentz frames, hello principle of equivalence 

Initial considerations on relativistic gravity 

17.1 Farewell to global Lorentz frames 

What is it that puts the “special” in special relativity? The key concept that we come back 
to again and again is the notion of a Lorentz frame: A frame of reference in which things 
move at constant velocity if no forces act on them. Such a frame is an inertial frame; we 
move between diferent Lorentz frames using Lorentz transformations. 
What is particularly special about special relativity is that it assumes that we can “cover” 

all of spacetime — all events, all time and all space — using a single Lorentz frame. In other 
words, special relativity tells us that it makes sense for there to be global Lorentz frames. 

Gravity breaks this. Once we begin including gravity in our model of physics, we 
cannot have a global Lorentz frame that covers all events. This is actually fairly easy for us 
to see based on things that we have already learned about the nature of Lorentz frames, and 
the infuence of gravity on light. 
Imagine a pulse of light that propagates from the surface of the Earth to a height H. 

Let us imagine the trajectory that one crest of a light wave in this pulse follows through 
spacetime. We do not yet know exactly how gravity will afect the pulse’s path through 
spacetime, but we can imagine that the trajectory is “bent” essentially, perhaps moving a 

Figure 1: A plausible path for the crest of a light wave in a pulse propagating vertically from 
the Earth’s surface. 

Given this behavior of the frst crest, what is the behavior of the second crest? Well, 
if we require spacetime to be Lorentz everywhere, then there is nothing special about any 
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particular place. path path 
one, simply shifted later in time. 

height

t
Path through spacetime of two 
crests of a wave in light beam

time or The of the second crest must be identical to the of the 
frst 

Figure 2: If the trajectory through spacetime of crest 1 looks like Figure 1 and we assume 
spacetime has Lorentzian behavior everywhere, then the trajectories of crests 1 and 2 together 
will look this. Figure made by duplicating the frst crest and sliding it slightly in the t 
direction. 

If this is true, then it must be the case that the wave period at the bottom (height 0) must 
be identical to the wave period at the top (height H). The two trajectories are congruent 
with each other, simply shifted a bit along the time direction. But if the periods TH and T0 

are identical, then the frequencies at the top and the bottom are identical: νH = ν0. This 
contradicts the gravitational redshift that we argued must exist (and that, indeed, 
experiments have demonstrated does in fact exist), which tells us that νH = ν0(1 − gH/c2). 
Our starting assumption must be incorrect: In the presence of gravity, we cannot have global 
Lorentz reference frames. 
Perhaps we could “rescue” special relativity with the Rindler coordinate system. Rindler 

coordinates express how things look in special relativity according to a uniformly accelerated 
observer; we saw that an analysis of light measured by such an observer looks very similar 
to the expressions we derived for the impact of gravity on light. However, the Rindler 
coordinate system describes uniform acceleration along a particular direction in space. With 
a little thought, we can convince ourselves that a Rindler coordinate system cannot describe 
all the measurements that we can make on the Earth’s surface. 
Consider an observer on the equator who measures the gravitational redshift. They 

can interpret their measurements as consistent with a Rindler coordinate system that is 
accelerating “up,” i.e., outwards from the equator. Consider a second observer at the North 
Pole who measures exactly the same gravitational redshift. They likewise may want to 
interpret the redshift as due a Rindler coordinate system that is accelerating “up.” However, 
their “up” is 90◦ diferent from the “up” of the equatorial observer! Consider a third observer 
at the South Pole. They also want a Rindler observer accelerating “up,” but their “up” is 
180◦ diferent from the North Pole’s “up.” None of these observers are in fact moving with 
respect to one another: they are widely separated, but their separations are not changing. 
This is starkly diferent from accelerations in three diferent directions which the Rindler 
hypothesis requires. 
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relative velocities in a Freely Falling Frame. 

height

t

Group of objects falling under 
the influence of gravity, viewed 
in static coordinates.

height

t

Group of objects falling under 
the influence of gravity, viewed 
in the freely falling frame.

We need a new idea in order to incorporate gravity in the framework of relativity. 

17.2 The principle of equivalence 

Let’s go back to the foundation of what an inertial frame has meant: In the absence of 
external forces, all objects maintain their relative velocities. Is there any way in which the 
essence of this idea can be captured when we include the action of gravity? 
One of Einstein’s core insights was that we observe exactly the same thing when we do 

our analysis in a Freely Falling Frame, or FFF. All objects feel the same acceleration due to 
gravity, thanks to the fact that F = ma = mg. The equivalence of “gravitational mass” and 
“inertial mass” means that gravity efectively cancels out as long as we can work entirely in 
the FFF. The notion of a Lorentz frame is now upgraded to a Freely Falling Frame, and the 
rule that we will use is: In the absence of non-gravitational forces, objects maintain their 

Figure 3: Three objects falling under the infuence of gravity. In “static” coordinates (e.g., 
coordinates at rest with respect to the Earth’s surface, shown on the left), the three bodies 
follow parabolic trajectories before meeting later at height 0. In the freely falling frame, 
the observer follows the same trajectory as the blue object. All three objects move along 
straight lines in this frame. Motion in the freely falling frame duplicates the essential features 
of unaccelerated motion in an inertial frame in the absence of gravity. 

The key intuition for this is that, as summarized by Einstein, we cannot distinguish 
between gravity and uniform acceleration. It is important to bear in mind, however, that 
in realistic situations gravity is never perfectly uniform. As we move away from the Earth’s 
center, the gravitational force gets weaker. This variation in gravity from the Earth, or from 
any realistic fnite-sized source, is responsible for tides. 
Tides are responsible for a key aspect of how we describe gravity in relativistic language. 

In special relativity, if two objects started out moving parallel to one another and no force 
acted on them, their trajectories would always remain parallel. This is a statement that 
trajectories in spacetime obey what is known as “Euclid’s parallelism postulate,” an aspect 
of Euclidean geometry which confused mathematicians and geometers for centuries. Unlike 
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Euclid’s other postulates, the parallelism postulate was not considered to be self evident, 
and could not be proved under the assumption of Euclid’s other postulates. Work by the 
Russian mathematician Lobachevsky frst showed that one could set up a logically consistent 
framework for geometry without assuming this postulate; in such a geometry, lines which 
start out parallel later cross or diverge from one another. The German mathematician 
Riemann later worked out rules describing such geometries. 
In modern language, we now say that if Euclid’s parallelism postulate holds then it means 

that one is working in a geometry that is fat. In two and three spatial dimensions, a fat 
geometry in which the Pythagorean theorem holds; in space and time, it is a geometry with 
the metric ηαβ that we have been working with for most of this semester. 
On the other hand, if Euclid’s parallelism postulate does not hold, then one is working 

in a geometry that is curved. An example is the surface of a sphere. Consider two observers 
standing on the Earth’s equator. Both begin walking due north — perfectly parallel to one 
another. They walk in a perfectly straight line on the surface, never bending their path from 
one moment to the next. Despite beginning on parallel trajectories, and despite moving 
along perfectly straight lines, their trajectories cross when they reach the North Pole. 
Tides cause trajectories which are initially parallel in spacetime to either focus or diverge 

from one another. This tells us that when we have gravity with tides, spacetime must be 
curved. We cannot use the metric ηαβ anymore; we need something new. 

17.3 How to describe relativistic gravity I: Initial considerations 

Let’s think about Newtonian gravity for a moment. Begin by considering the potential 
outside of a spherical mass M , 

GM 
Φ = − . (17.1) 

r 
This gravitational potential has the same mathematical form as the electrostatic potential 
that arises from a spherical charge Q: 

1 Q
ΦE = ; (17.2)

4πϵ0 r 

we just need to replace Q → M and 1/(4πϵ0) with −G. 
In an in-depth study of electrostatics, we learn that for a general distribution of charge, 

the electrostatic potential ΦE is the function that solves Poisson’s equation: 

ρQ∇2ΦE = − , (17.3)
ϵ0 

where ρQ is charge density. This can be proven by combining E = −∇ΦE with ∇·E = ρQ/ϵ0. 
In the same way, one can show that in Newtonian gravity, the gravitational potential ΦG is 
the function that solves a slightly diferent version of Poisson’s equation: 

∇2ΦG = 4πGρM , (17.4) 

where ρM is mass density. 
Let’s begin here as we start thinking about how to bring gravity into a relativistic frame-

work. We start by cataloguing the ways in which Eq. (17.4) falls short as a relativistic 
equation, and imagine ways in which we could perhaps “upgrade” it to something better for 
our purposes. 
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• The left-hand side of Eq. (17.4) involves spatial derivatives in a particular reference 
frame. This is not a Lorentz-covariant derivative operator. One idea for upgrading 
this: replace ∇2 with the relativistic wave operator □. Past studies of gravity were 
dominated by sources that were static or very slowly varying; perhaps the most impor-
tant aspects of gravity have been determined from sources for which ∂(gravity)/∂t ≈ 0 
in the frames in which we did these studies. 

• The right-hand side of Eq. (17.4) involves the mass density ρM . We argued (and much 
later, experiments verifed) that gravity must also act upon massless energy. However, 
past studies of gravity were dominated by sources for which the rest energy was the 
largest part of the source’s energy budget. Perhaps we can replace ρM with ρ/c2 , where 
ρ is the source’s energy density. 

This suggests that perhaps our relativistic gravity equation should look something like 

? 4πGρ 
□ΦG = 

2 
. (17.5) 

c 

This perhaps looks plausible, but on refection hopefully you’ll notice that it has some issues. 
Chief among them is that, as we discussed several lectures ago, the energy density ρ is one 
component in a specifed reference frame of the stress-energy tensor. Any theory of physics 
that picks out a particular component of a tensor as playing a special role is, for lack of 
a better term, a “sick” theory. If we want gravity to be describable from the viewpoint of 
diferent reference frames, then the right-hand side of Eq. (17.5) won’t do it. 
The left-hand side of (17.5) has problems as well. The derivative operator is a scalar, but 

what is ΦG? Is it a scalar (as it appeared to be in Newtonian physics)? Is it one component 
of a tensor, as the right-hand side seems to suggest? If so, what is the rest of the tensor? 
This is roughly where Einstein was in the early 20th century, trying to imagine how to 

fold gravity into the framework of relativity that so successfully merged Maxwell’s electrody-
namics with mechanics. Getting from there to the general theory of relativity took Einstein 
about 10 years, much of which was spent learning what was for him an entirely new feld 
of mathematics (Riemannian geometry), and fguring out how to connect this to the core 
physical concepts that describe gravity. There were multiple wrong turns along the way; in 
the meantime, others proposed diferent ways of making relativistic gravity which in the end 
did not agree with experimental tests. 
In 8.033, we don’t have the time to explore all of the wrong turns and hypotheses that were 

proposed but fell short (although we briefy discuss some highlights of interesting “wrong 
turns” in a short section of supplementary material). Instead, we will elide many details and 
compress all of the history and thought processes into a few bullet points: 

• In special relativity, an unaccelerated trajectory is one that moves on a straight line. 
If a pair of unaccelerated trajectories start out parallel, then they will remain forever 
parallel. This is consistent with the idea that the metric ηαβ describes a “fat” spacetime 
geometry. 

• When gravity is included, we can introduce principles that allow to recover much of 
that core idea. We defne an unaccelerated trajectory in the freely falling frame as the 
one that feels no non-gravitational forces. 
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• Because gravity is never perfectly uniform — it exhibits tidal variations — we expect 
a pair of unaccelerated trajectories that start out parallel to not remain parallel; in 
almost all cases, they will eventually diverge from one another, or perhaps cross. This 
suggests that gravity can be modeled by thinking about spacetimes that are not fat, 
but that have curvature. 

17.4 How to describe relativistic gravity II: Putting the pieces 
together 

Now let’s synthesize these ingredients and bullet points to see how, after 10 years of efort, 
Einstein managed to develop the relativistic theory of gravity that (so far, at least) has 
passed all experimental tests. Begin by going back to the Newtonian feld equation: 

∇2ΦG = 4πGρM . (17.6) 

We’ve already argued that the right-hand side should be something that involves ρ/c2 rather 
than ρM , where ρ is energy density. But that ρ is itself one component of the stress-energy 
tensor T µν . A covariant relativistic formulation cannot pick out one component of a tensor 
as “the” quantity of interest. Whatever goes on the left-hand side of the relativistic “gravity 
equation,” the right-hand side should be something that is proportional to T µν . 
To get some idea of how to handle the left-hand side, note that ∇2ΦG can be regarded as 

−∇ · g, where g = −∇ΦG is the gravitational feld that arises from the potential ΦG . The 
left-hand side is thus something like the divergence of the gravitational feld. Derivatives 
of the gravitational feld tell us about how this feld varies in space — which tells us about 
the behavior of gravitational tides. So the physical content of Eq. (17.6) can be regarded, 
schematically, as 

(“Quantity related to gravitational tides”) = (“numerical factor times G”)(“source”) . 
(17.7) 

For the source on the right-hand side of our equation, we’ve already decided to use 
the stress-energy tensor T µν . Figuring out how to do the left-hand side is a little more 
complicated. We begin with the idea that a body which moves under the infuence of no 
forces but gravity follows a trajectory of maximal aging through spacetime. Such a trajectory 
is called a geodesic. We will examine geodesics for specifc spacetimes soon enough; in the 
general case (which we will not consider in detail in 8.033), a body’s geodesic motion in 
some coordinate system turns out to be governed by a three-index tensor-like object. The 
diferential equation governing the body’s 4-velocity takes the form 

duα 

+ Γα
µν u

µu ν = 0 . (17.8)
dτ 

The quantity Γα
µν (called a connection coefcient or Christofel symbol) is built from deriva-

tives of the spacetime metric gµν . 
If the spacetime describes gravity with tides, then two nearby geodesics that start parallel 

to one another will eventually become non-parallel. Suppose that two geodesics each have 
µ4-velocity u , and are separated in our coordinates by δxα . Then, the action of tides will 

cause their separation to evolve. This evolution is governed by an equation that takes the 
form 

D2(δxα) µ= Rα
µνβ u u ν (δxβ ) . (17.9)

dτ 2 
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The operator D/dτ is a special kind of derivative that takes into account the fact that, in a 
spacetime with curvature, the unit vectors themselves vary from position to position. The 
4-index tensor Rα

µνβ (called the Riemann curvature tensor) describes how nearby geodesics 
deviate from one another due to variations in spacetime — i.e., how tidal variations in gravity 
make initially parallel trajectories become non parallel. This curvature tensor is built from 
derivatives of the Christofel symbol; we can think of it as expressing (in a rather complicated 
way) two derivatives of the spacetime metric gµν . 
Einstein’s hypothesis was that the “right” way to upgrade Eq. (17.6) into a relativistic 

form was to replace the left-hand side with a curvature tensor which is closely related to 
Rα

µνβ , and to replace the right-hand side with the stress-energy tensor: 

Gµν = κT αβ . (17.10) 

The tensor Gµν is known as the Einstein curvature tensor1 . It is found by combining the 
Riemann tensor with the metric in a such a way that the result is a 2nd-rank tensor with zero 
divergence (the stress-energy tensor on the right-hand side has zero divergence, so whatever 
we put on the left-hand side must have zero divergence as well). You can think of it as a 
very complicated set of second derivatives which act on the metric. 
The constant κ is determined by demanding that, in the correct limit, this equation’s 

predictions agree with the predictions of Newtonian gravity. Doing so, we at last obtain the 
Einstein feld equation: 

8πG 
Gµν T µν= . (17.11)

4c 
This equation can be regarded as a set of partial diferential equations for the spacetime 
metric, given a stress-energy tensor which describes the fow of energy and momentum in 
that spacetime. Notice that there is a sense in which (17.11) is similar in physical structure 
to Eq. (17.6): both have “two derivatives of potential” on the left-hand side (provided we 
now think about the metric of spacetime as playing the role of the potential), and a source 
that describes energy density on the right-hand side (picking out the dominant component in 
the Newtonian version, but using the full tensor-valued mathematical object in Einstein’s). 
Developing the Einstein feld equation takes roughly half of the term in 8.962. The other 

half is spent fguring out how to solve it, and to examining the nature of its solutions. In 
8.033, we will jump straight to looking at some of the solutions (though the story behind 
how some of those solutions were found is pretty interesting, and we’ll at least discuss some 
anecdotes around them). We will then study these solutions in order to tell us about the 
nature of gravity with relativity included. A very nice feature of what we have done so far 
is that, with the principle of equivalence and the calculus of variations in our toolkit, it’s a 
relatively simple step for us to examine motion in some spacetime that is provided to us. 

1Sadly, the notation overlaps with the dual Faraday tensor we discussed in the E&M section of this course. 
Context generally makes it clear which is which. 
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Lecture 18 
Some important solutions of the Einstein field equation; using those 

solutions 

18.1 Final thoughts on the Einstein feld equation 

In the previous lecture, we discussed the generic framework and logic that led Einstein, after 
roughly a decade of learning the relevant mathematics and considering how to connect the 
pieces together, to the feld equation of general relativity: 

8πG 
Gµν T µν= . (18.1)

4c 

The left-hand side of this equation (the “Einstein curvature tensor”) can be regarded as a very 
complicated second-order diferential operator acting on the metric of spacetime. It describes, 
after a little bit of massaging, the spacetime’s curvature — that is, the tendency of the 
trajectories in spacetime of freely falling bodies which start parallel to become non-parallel 
as the bodies move. The right-hand side expresses, in a covariant form, the distribution of 
energy density, momentum density, and their fow in spacetime. 
We are not going to do a lot with this equation other than to examine several of its 

solutions. However, before getting into this, it is worth remarking on a couple of points. 

• First, note that when working in Cartesian coordinates, the curvature tensor on the 
left-hand side has dimension 1/(length)2 . With that in mind, it is interesting to look 
at the numerical value of the constant which connects the curvature tensor to the 
stress-energy tensor: 

8πG 
= 2.08 × 10−43 meter

−2 

. (18.2) 
c4 J/meter3 

I’ve written the units to emphasize that this constant converts energy density (Joules 
per meter cubed) into curvature (inverse meters squared). Notice it takes a lot of 
energy density to produce a tiny amount of curvature. Osmium is the densest metal 
naturally found on Earth, at 22.6×103 kilograms per meter cubed (roughly three times 
the density of iron, and twice that of lead). Multiplying by c2 , we see that osmium 
has a rest energy density of 2.03 × 1021 Joules per meter cubed. But this density only 
produces 4.22 × 10−22 inverse meters squared of curvature. When you hear someone 
describe gravity as the weakest of the fundamental interactions, this is the essence of 
what they mean — we need a lot of energy density to curve spacetime. To get strong 
curvature, we need to go to regimes far beyond what we encounter on Earth. 

This doesn’t mean that gravity is negligible though. Because “gravitational charge” — 
i.e., mass — only comes with one sign (there is no negative mass), its efects add up. 
Still, it’s worth noting that every time you lift any object, electrochemical reactions 
in a couple hundred grams of muscle tissue overcome the accumulated gravitational 
efects of 6 × 1024 kilograms of our planet. 
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• People often seemed a little surprised by how ad hoc the derivation of the Einstein 
feld equation seems to be. In essence, Einstein seems to have decided that the source 
should be T µν , decided that the left-hand side should be a curvature tensor, then just 
matched T µν to a curvature tensor that is divergence free and has the right number of 
indices. 

This is not wrong! Einstein’s original derivation of the Einstein feld equation is indeed 
just as ad hoc as this makes it seem. Two remarks on this are in order: 

– First, it’s worth bearing in mind that the ultimate arbiter of what description 
we should use for any physical interaction is measurement. You should therefore 
regard the Einstein feld equation and its predictions as hypotheses to be tested. 
Testing this hypothesis is still something being done today, and in fact 
motivates quite a lot of modern research (including a bit of my own). 

– Around the time that Einstein formulated these feld equations, other plausible 
formulations of relativistic gravity were also proposed. Those all were found to be 
fawed in important ways, failing experimental tests or turning out to have internal 
contradictions. General relativity can be regarded as the relativistic gravity theory 
that (so far, at least) best fts the data. 

– There’s another way of deriving the feld equation which is based on a variational 
principle, similar to the way that we apply variational principles to a Lagrangian in 
order to describe a body’s motion. Though quite a bit beyond the scope of 8.033, 
it is worth remarking that this approach makes it clear that the Einstein feld 
equation is, in a way that can be made precise, the simplest theory of relativistic 
gravity. A lot of research these days explores how general relativity may be, in a 
meaningful sense, itself an approximation to something deeper. This variational 
principle provides a foundation for exploring the nature of gravity. 

There’s a lot more we could say, but this will sufce for 8.033. The tack we are going to 
take from now on is to look at solutions of this equation and examine their consequences. I 
want to emphasize that so far we have not found any compelling evidence of shortcomings in 
general relativity’s description of gravity, which is why this is often taught as “the” theory 
of relativistic gravity. But we keep looking. 

18.2 Some example solutions and their signifcance 

18.2.1 The “weak gravity” metric 

Upon fguring out the feld equation, Einstein developed its frst solution. This is done by 
considering “weak” gravity — spacetime that is not too diferent from the metric of special 
relativity. This simplifes the curvature tensor, essentially by allowing us to approximate 
terms that are nonlinear in the spacetime metric as small enough that their infuence can be 
neglected. The solution which emerges in this limit has 4 non-zero metric components: 

g00 = −(1 + 2Φ/c2) , g11 = g22 = g33 = (1 − 2Φ/c2) . (18.3) 

All other components of the spacetime metric are zero. The coordinates used here are 

0 1 2 3 x = ct , x = x x = y x = z . (18.4) 
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The function Φ which appears in (18.3) is just the Newtonian gravitational potential. Outside 
a spherical body of mass M centered on the origin, it takes the form pGM 

Φ = − , r = x2 + y2 + z2 . (18.5) 
r 

This metric works well when Φ ≪ c2 , which is a good description of spacetime almost 
everywhere in our solar system, for example. 

18.2.2 The Schwarzschild metric 

As mentioned at the end of the November 17 lecture, the frst exact solution to the Einstein 
feld equations was found by Karl Schwarzschild in 1916. It also has 4 non-zero metric 
components: � � � �−1

2GM 2GM 
g00 = − 1 − , g11 = 1 − , g22 = r 2 , g33 = r 2 sin2 θ . (18.6) 

rc2 rc2 

All other components of the metric are zero. The coordinates used here are 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.7) 

As we will discuss in an upcoming lecture, this describes exactly the spacetime outside of 
a spherically symmetric, non-rotating body of mass M . Schwarzschild found this solution 
essentially in his spare time while serving as an artillery ofcer on the eastern front during 
the First World War. Shortly after submitting this solution for publication, he died of an 
autoimmune disorder that most believe was sparked by an infection he contracted while 
serving in the trenches. The fact that this solution existed and was found so quickly shocked 
Einstein, who did not expect anyone would manage to fnd relatively simple exact solutions 
— certainly not so quickly after the feld equations were developed, and certainly not under 
such trying1 circumstances. 
This spacetime continues to play an important role in helping us to understand the 

limiting behavior of gravity; we will study it in some detail in coming lectures. 

18.2.3 The Kerr metric 

For decades, people wondered if there might be a more general exact solution than that 
provided by the Schwarzschild metric. What about near a body that is not spherical, or that 
is rotating? By the 1950s and 1960s, people were beginning to realize that one could take the 
Einstein feld equation and treat it as a complicated diferential equation that could be solved 
numerically, much as they were beginning to use computers to solve complicated diferential 
equations describing things like fuid dynamics. As computers and computer programmers 
got more sophisticated, it became possible to study the Einstein feld equations to build the 
spacetimes describing more interesting and complicating bodies. However, it seemed unlikely 
that a “closed form” solution for a body more complicated than spherical symmetry would 
ever be found. 

1In a letter that Schwarzschild sent to Einstein, dated 22 December 1915, he wrote “As you see, the war 
treated me kindly enough, in spite of the heavy gunfre, to allow me to get away from it all and take this 
walk in the land of your ideas.” He died a little less than 5 months later. (And I just realized that I defended 
my Ph.D. on the 82nd anniversary of his death, an odd bit of morbid trivia.) 
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That expectation held until 1963, when the mathematician Roy Kerr published the fol-
lowing glorious mess: 

∆ − a2 sin2 θ Σ 
g00 = − , g11 = , g22 = Σ ,

Σ ∆� � 
(r2 + a2)2 − a2∆ sin2 θ 

g33 = sin2 θ ,
Σ 
˜2aMr 

g03 = g30 = − sin2 θ , (18.8)
Σ 

with all other metric components equal to zero, and where 

2 − 2 ˜ 2 2 2 ˜∆ = r Mr + a Σ = r + a cos 2 θ , M = 
GM

, a = 
J

. (18.9)
2c Mc 

The coordinates used here are 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.10) 

When Kerr originally published this solution, it wasn’t actually clear what it meant. To be 
fair, he used a coordinate system which made it easier to solve the feld equation, but made 
it less clear what the solution means; this form of the coordinates was published by Robert 
Boyer2 and Richard Lindquist in 1967. If you set the parameter a to zero, it is not hard 
to show that the spacetime is identical to the Schwarzschild solution. After much study, it 
became clear that this solution describes a black hole with mass M and with spin angular 
momentum of magnitude J = aMc, oriented along the axis defned by θ = 0. We will discuss 
this solution briefy, and explore a few simple analyses that can done in the Kerr metric. 

18.2.4 The Friedmann-Lemâıtre-Robertson-Walker metric 

Finally, an exact solution that describes all of spacetime flled with a fuid of density ρ and 
pressure P is given by 

2(t)r 2 g00 = −1 , g11 = a 2(t)/(1 − kr2) , g22 = a , g33 = a 2(t)r 2 sin2 θ . (18.11) 

This again uses the coordinates 

0 1 2 3 x = ct , x = r x = θ x = ϕ . (18.12) 

The function a(t) is the solution to the diferential equations � �2 
ȧ 8πGρ k ä 4πG 

= − , = − (ρ + 3P ) . (18.13)
2 2 2a 3c a a 3c 

(Overdot denotes d/dt.) The parameter k takes one of three values — +1, 0, or −1. Which 
value of k describes our universe is something that must be determined from data; unpacking 
this is kind of complicated. 
This solution was frst found by the Soviet mathematician Alexander Friedmann in the 

early 1920s, although its signifcance was not broadly recognized prior to his death in 1925. 

2Boyer was tragically murdered, along with 17 other people, in an infamous mass shooting event at the 
University of Texas a few months before the paper’s publication. 

147 



Georges Lemâıtre, a Belgian priest and mathematician who earned a PhD in mathematics 
from MIT in 1923, rediscovered much of this solution in 1927. Via his eforts, people began 
to realize that this solution could be used as a tool for understanding the large-scale scale 
structure of the universe. Finally, Howard Robertson and Arthur Geofrey Walker very 
thoroughly explored and described these spacetimes. Since the full cabal of discovers is a 
mouthful, this solution is often called the FRW (leaving out poor Lemâıtre) or FLRW metric. 
The FLRW spacetime appears to give a good description of our universe on very long 

scales — tens of millions of light years, and over comparably long timescales. The “trick” 
is to come up with an appropriate description of the density and pressure that describes 
the “stuf” that characterizes the universe on such scales. This solution largely forms the 
foundation of the science of cosmology. 

18.3 The Newtonian limit 

18.3.1 The clocks of static observers 

Let us begin our study of the consequences of general relativity with the solution that best 
describes spacetime near us: the “weak gravity” metric described in Sec. 18.2.1: � � � � 

2Φ 2Φ � � 
ds2 = − 1 + c 2dt2 + 1 − dx2 + dy2 + dz2 . (18.14)

2 2c c 

We begin by thinking about the 4-velocity of an observer who is at rest in this spacetime; 
perhaps they are standing on the surface of the body that produces the gravitational potential 
Φ. How do we describe this observer’s 4-velocity? 
Since they are at rest in this spacetime, we require that dx/dτ = dy/dτ = dz/dτ = 0. 

What remains is to fgure out dt/dτ . To deduce this, we insist that exactly as in special 
relativity, we must have u⃗ · ⃗u = −c2 . 
The reason we insist on this is because of Einstein’s principle of equivalence: If we 

go into a freely falling frame, then everything behaves in spacetime exactly as it did in 
special relativity. We already know that u⃗ · u⃗ = −c2 in special relativity; and we know that 
the spacetime dot product is an invariant. We thus require that it have this form in all 
representations. 
Enforcing this, we have 

� 

= − 1 + 

� 
2Φ 2 c 
2c

� �2
dt 
dτ 

+ 0 

2 = −c . (18.15) 

u⃗ · ⃗u = gαβ u α u β 

Let’s solve this for dt/dτ , using the fact that the “weak gravity” metric requires Φ ≪ c2: � �−1/2
dt 2Φ Φ 
= 1 + ≃ 1 − . (18.16)

2 2dτ c c 

Let’s take the source of the gravitational potential to be spherically symmetric and of 
mass M , so that Φ = −GM/r. Let’s consider two diferent observers: Observer 1 at height 
r1 (say, the surface of the Earth) has a clock which measures time τ1; observer 2 at height 
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r2 > r1 (some distance above the surface of the Earth) has a clock which measures time τ2. 
Let’s compare the rates at which their two clocks tick: 

dτ2 dt/dτ1 
= 

dτ1 dt/dτ 2 
(1 + GM/r1c

2) 
= 
(1 + GM/r2c2)� � 

GM 1 1 ≃ 1 + − . (18.17)
2c r1 r2 

Notice that since r2 > r1, this is positive: the clock of observer 2 ticks faster than the clock of 
observer 1. This is exactly what we found based on our intuitive analysis of the light redshift 
efect. 
Before moving on, you might wonder — what does the coordinate t mean in this space-

time? We used it as an intermediate factor in order to compare the two observers’ clocks, but 
the coordinate itself disappeared from the fnal analysis. To get some sense of this, notice 
that dt/dτ → 1 as r → ∞. This means that the coordinate t is in fact proper time for an 
observer who is infnitely far away from the mass M . This tells us that t is time as measured 
on the clocks of very distant observers. We basically use t as a kind of “book-keeper” time; 
it’s a time standard that everyone agrees on, no matter where they stand in spacetime. It 
facilitates making comparisons between diferent observers. 

18.3.2 Falling down 

Let’s consider a body freely falling in the weak gravity spacetime (18.3). We begin by writing 
down the relativistic Lagrangian (per unit mass of the body) for this motion: 

2 � � � � 
1 β c 2Φ � �2 1 2Φ � 

2 2 2 
� 

L = gαβẋ α ẋ = − 1 + 
2 

ṫ + 1 − 
2 

ẋ + ẏ + ż . (18.18)
2 2 c 2 c 

Here, an overdot denotes d/dτ . Note that the potential Φ is independent of time, but depends 
on x, y, and z. Let’s imagine a body that is falling along the z axis in this spacetime, so that 
x = y = 0, and see what applying the Euler-Lagrange equations tells us about the body’s 
motion. 
The equation of motion we need to examine is � � 

∂L d ∂L − = 0 . (18.19)
∂z dτ ∂ż 

Let’s evaluate these derivatives: � �2
∂L � �2 ∂Φ ż ∂Φ 

= − ṫ − , (18.20)
∂z ∂z c ∂z � � 
∂L 2Φ 

= 1 − ż , (18.21)
∂ż c2 � � � � � � 

d ∂L 2Φ 2ż ∂Φ ∂Φ ∂Φ 
= 1 − z̈  − ẋ+ ẏ + ż 

dτ ∂ż c2 c2 ∂x ∂y ∂z � � 
22Φ 2ż ∂Φ 

= 1 − 
2 

z̈  − 
2 

. (18.22) 
c c ∂z 
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To get Eq. (18.22), we used the chain rule to expand the total derivative along the falling 
body’s trajectory. We then used the fact that we are taking the body to fall only in the z 
direction to set ẋ = ẏ = 0. 
The equation of motion we have derived appears to be a mess. Let’s put all the pieces 

together and see what we get. For clarity, let’s write all the overdot terms explicitly as d/dτ : � �2 � � 
dt ∂Φ 2Φ d2z (dz/dτ)2 ∂Φ − − 1 − + = 0 . (18.23)
dτ ∂z c2 dτ 2 c2 ∂z 

Divide everything by (dt/dτ)2 , and rearrange the terms: 

d2z (1 − (dz/dt)2/c2) ∂Φ 
= − . (18.24)

dt2 (1 − 2Φ/c2) ∂z 

Finally, using the fact that this metric requires Φ ≪ c2 , we can write this as � � 
d2z ∂Φ 2Φ (dz/dt)2 Φ(dz/dt)2 

= − 1 + − − 2 . (18.25)
dt2 ∂z 2 2 4c c c 

The leading approximation to this equation is simply 

d2z ∂Φ 
= − 

dt2 ∂z 
GM 

= − z . (18.26)
3r 

This is nothing more than the Newtonian limit: the acceleration of a body falling in the 
spacetime (18.3) is given by minus of the gradient of the gravitational potential. Doing this 
calculation without assuming that the body is falling along the z axis yields the equation of 
motion, 

d2x GM 
= − x . (18.27)

dt2 r3 

This exactly reproduces Newtonian gravity. 
It’s worth noting that if this result had not been found, we would not be having this 

discussion today. Newtonian gravity works quite well over a wide range of important sit-
uations, and it was necessary for the relativistic version of gravity to reproduce Newton’s 
successes. In fact, when we do a more complete derivation of the Einstein feld equation, we 
use the fact that the theory should reproduce the Newtonian limit to pin down the constant 
of proportionality 8πG/c4 in the feld equation. 
What about those terms we’ve neglected in going from (18.25) to (18.26)? Notice that 

they introduce corrections to Newtonian gravity; notice also that each such term involves 
factors of 1/c2 . That’s a signal that they can be thought of as “relativistic corrections” to 
the leading result. For example, the frst term we’ve neglected has a value at the Earth’s 
surface of 

2Φ 2GMEarth 
2 
= ≃ 1.38 × 10−9 . (18.28) 

c c2REarth 

This term introduces a roughly part per billion correction to gravitational acceleration. The 
second term is of order the small body’s speed squared divided by c2; the third is the product 
of those two corrections. 
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For the vast majority of applications, those corrections are negligible — indeed, measuring 
them at all is not easy. However, Einstein thought it might be interesting to include their 
infuence and see what efect they have on the motion of bodies moving under the infuence of 
gravity. He was motivated by the fact that for centuries people had been wondering how to 
resolve a mystery regarding Mercury’s orbit. It was well known that an orbit in Newtonian 
gravity — i.e., an orbit governed by Eq. (18.27) — would be a closed ellipse, if we had a 
single small body orbiting a single large body. It was also well known that if the system was 
more complicated than this simple two-body setup, then the ellipse wouldn’t quite close — 
it would precess, with the axis along its long direction slowly rotating with time. 
Mercury’s orbit is determined mostly by the gravity of the Sun, but it is perturbed 

by other planets in the solar system — especially Venus and Earth (which are fairly close 
by), and Jupiter (which is very massive). During the 19th century, a lot of mathematical 
techniques were perfected fguring out to account for the actions of these planets on Mercury’s 
orbit. After a lot of back and forth, the consensus emerged: Mercury’s orbit should precess 
by 5556 arcseconds per century. 
To the great consternation of natural philosophers in the 19th century, the data do not 

quite bear this out. Over many decades of observation it became clear that Mercury’s orbit 
precessed a little too fast, giving us a measured rate of 5599 arcseconds per century. A 
discrepancy of 43 arcseconds per century was clearly present in Mercury’s orbit data. 
Many hypotheses were advanced to explain this, including the idea that a planet pro-

visionally named Vulcan3 occupied an orbit very close to the Sun, inside Mercury’s orbit. 
None of them worked. Einstein was curious what happens if he turned the crank on Eq. 
(18.25), including terms which are of order 1/c2 . With some efort, and focusing on a bound 
orbit in the spacetime (18.3), one can show that the equation of motion becomes � � � � 

d2x GM |v|2 4GM(x · v)v 1 
= − 

3 
1 + 

2 
x + 

2 3 
+ O 

4 
. (18.29)

dt2 r c c r c 

(The O(1/c4) in this equation means that the next term, which we are ignoring, involves 
things that scale with 1/c4.) With a little efort, one can show that an orbit governed by this 
equation of motion is described by a precessing ellipse. When applied to Mercury’s orbit, 
the rate at which the angle of the orbit’s ellipse rotates is given by 

dϕ 6πGM⊙ 
= . (18.30)

dt a(1 − e2)Pc2 

In this equation, M⊙ = 1.99 × 1030 kg is the mass of the sun; a = 57.9 × 106 km is the 
semi-major axis of Mercury’s orbit; e = 0.2 is the eccentricity of the orbit; and P = 88 days 
is the period of the orbit. Plugging all these numbers in, using 36,524 days per century, we 
fnd the rate of advance of Mercury’s orbital ellipse due to relativistic corrections: 

dϕ 
= 0.000208 radians/century . (18.31)

dt 

There are 2π radians in 360 degrees; there 3600 arcseconds in one degree. Hence, there are 
360·3600/2π = 206,265 arcseconds per radian. Converting units, Einstein found that general 
relativity’s prediction for the “extra” precession of Mercury’s orbit is 

3Proposed way earlier than Gene Roddenberry’s time. 
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dϕ � � 
= (0.000208 radians/century) 2.063 × 105 arcseconds/radian 

dt 
= 42.9 arcseconds/century . (18.32) 

Further refnements to these numbers only improves the ft. In one fell swoop, Einstein 
managed to explain a phenomenon that puzzled many of the most signifcant mathematicians 
and physicists of history. No wonder that in a letter to his friend and colleague Paul Ehrenfest 
shortly after completing this calculation, he wrote “I was beside myself with ecstasy for days.” 

18.4 Addendum: Other attempts to make relativistic gravity 

As emphasized at the beginning of this discussion, we should take general relativity as 
described by the feld equation Gµν = (8πG/c4)T µν as a hypothesis, one that must be tested 
by comparing with data. It was not inevitable that we would end up with what we now call 
general relativity. Here is a brief discussion of a few alternates that were considered, and 
why we they didn’t hold up. 

• Motivated by the idea that one can needs to make ∇2Φ = 4πGρM something that makes 
sense in Lorentz frames, the Swedish/Finnish physicist Gunnar Nordström proposed 
that gravity acts via a scalar feld Φ which, in the language we are now using, satisfes 
the diferential equation 

□Φ = − 
4πG 

Φ5ηαβT αβ . (18.33)
4c 

(Note, it’s possible I have botched a few factors! In particular, I haven’t carefully 
checked the powers of Φ on the right-hand side. The form in which this theory appears 
in textbooks involves using some quantities which would be a big detour for us to 
introduce and discuss here; I don’t guarantee that I’ve translated this with 100% 
accuracy.) With a little efort, it can be shown that this yields an equation of motion 
that looks like 

d(Φuα) ∂Φ 
= − . (18.34)

dτ ∂xα 

In the limit of Φ ≪ 1, this reproduces Newtonian gravity, and correctly produces the 
redshifting of light. However, it turns out to get Mercury’s precession wrong; and, it 
predicts that light rays do not change direction under the infuence of gravity. The 
bending of light by gravity was a particularly important early triumph of Einstein’s 
version of relativistic gravity. 

• Motivated by the idea that Fg = −Gm1m2x/r
3 looks an awful lot like the Coulomb 

interaction, perhaps we can defne a quantity like the Faraday tensor which describes 
gravity. In short, one might wish to construct a Maxwell-equation-like theory of gravity. 

This can be done, but the result turns out to be theoretically inconsistent. Whenever 
one makes an interaction relativistic, one fnds that it predicts the interaction produces 
radiation. This is a simple consequence of causality: If we “shake” the source of 
the interaction (e.g., charges for electric and magnetic felds, masses for gravity), the 
outcome of this shaking can be communicated to distant observers no faster than the 
speed of light. Indeed, all relativistic theories of gravity predict that some form of 
gravitational radiation must exist. 
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When we do this for a “Maxwell-like gravity,” the radiation that it produces has a very 
weird feature: the radiation that it produces has negative energy density. This means 
that in this theory, if I have a dynamical system that produces radiation, it carries 
away “negative energy” from the system. Taking away “negative energy” is the same 
thing as adding energy. The dynamics that made the system radiate in the frst place 
thus become more energetic — making the radiation have higher amplitude, which 
means they carry away more negative energy, thus making the system even MORE 
energetic. 

Such a description of gravity turns out to be catastrophically unstable — any dynamics 
would almost immediately become grow without bound, destroying the system. Since 
we do not observe this (indeed, since we exist in order to observe that this does not 
happen), we reject the Maxwell-like theory of gravity. (Details of this analysis can be 
found in exercise 7.2 in the textbook Gravitation by Misner, Thorne, and Wheeler. It 
is not a simple exercise!) 

Though ideas of this kind didn’t hold up, we haven’t stopped thinking about ways in which 
Einstein’s general relativity may not quite meet the mark. Precisely because gravity is the 
weakest fundamental interaction, it is extremely difcult to test. It’s worth noting that 
the gravitational constant G is the least precisely determined of the main “fundamental 
constants” of nature — although the product of G with certain masses is quite well known, 
simply because that product is what enters many observable formulas. For example, although 
G is known to about 5 digits, GM⊙ is known to about 10 digits. 
Thinking about plausible modifcations to general relativity, and coming up with exper-

imental methods for testing them, is among the topics that are at the vanguard of modern 
physics research. 
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Lecture 19 
From weak gravity to strong gravity 

19.1 A “strong gravity” spacetime 

In the previous lecture, we described a few exact solutions that have been found to Einstein’s 
feld equations of general relativity, and we discussed in some detail how things behave in 
the spacetime that describes “weak” gravity. For a spherical body, this can be taken to be 
gravity for which GM/rc2 ≪ 1 everywhere. We found that in this spacetime: 

• freely-falling bodies move in a way that reproduces the predictions of Newtonian grav-
ity; 

• clocks “lower” in the spacetime (i.e., at smaller r) tick more slowly than those at higher 
altitudes in a way that is exactly consistent with the redshift of light1; 

• although we skipped over many of the details, terms beyond the ones which repro-
duce the predictions of Newtonian gravity explain a centuries-old mystery about the 
precession of Mercury’s orbit about the Sun; 

• and fnally, as you will show on problem set #9, the trajectory of light bends as it 
passes near a gravitating body. A celebrated measurement by Dyson and Eddington in 
1919 confrmed2 the predictions of general relativity; indeed, the publicity3 surrounding 
the light-bending measurement was a huge part of what turned Albert Einstein from 
a highly respected scientist into an international public fgure. 

These items went a long way toward convincing most scientists that general relativity pro-
vides a valid relativistic theory of gravity. Most people are happy to work under the assump-
tion that gravity is described by spacetimes which solve the equation Gµν = (8πG/c4)T µν . 
However, as we noted in the previous lecture, this is not the only way to combine relativity 

with gravity. Indeed, as was briefy described in Lecture 18, there’s a certain sense in which 
general relativity can be regarded as the simplest theory of relativistic gravity. Perhaps 
diferences between theory and measurement will arise as we investigate strong gravity — 

1We didn’t actually look at light propagation yet; we will do that in this lecture. 
2There has been some controversy about whether this measurement’s error bars are as good as was 

claimed. Independent of that controversy (which has been thoroughly investigated; the consensus is that the 
measurement by Dyson and Eddington was valid, though it is worth digging into the details), the bending 
of light by gravity has been thoroughly examined many times since 1919, and general relativity’s predictions 
hold up. Indeed, they hold up so well that these days people assume that general relativity correctly describes 
light bending, and use it to learn about the properties of large distributions of mass by measuring how light 
bends. This is what the astronomical science of gravitational lensing is all about. 

3In no small part because an expedition by British scientists to examine what was then regarded as a 
German theory was treated as a welcome example of the scientifc community setting aside the antagonism 
of World War I to focus on truths that transcend national borders. 

154 



after all, if you want to push the boundaries in physics, you take the framework in which
you interpret your measurements and either figure out how to measure things with greater
and greater precision, or you push into regimes beyond what you have already investigated
(or both).

In this lecture, we’re going to explore what general relativity tells us about when gravity
is not weak — i.e., in situations where it is not the case that GM/rc2 ≪ 1. Our tool for this
exploration is the Schwarzschild metric, for which the line element takes the form

ds2 = gαβdx
αdxβ = −

(
1− 2GM

rc2

)
(c dt)2+

dr2

(1− 2GM/rc2)
+r2

(
dθ2 + sin2 θ dϕ2

)
. (19.1)

This spacetime is exact, and holds for all r. By using the full mathematical machinery of
general relativity, one finds that (19.1) exactly describes a spacetime for which T µν = 0.
However, this spacetime also describes the spherically symmetric gravity of a mass M .

What this is telling us is that Eq. (19.1) describes the gravity of a mass M , but there’s
no matter or energy density anywhere. So, what does that mean? Perhaps the simplest way
of understanding this (admittedly counterintuitive) aspect of the Schwarzschild solution is
by analogy. If you take the Coulomb point charge electric field,

E =
1

4πϵ0

q

r3
x , (19.2)

and apply the divergence operator to it, you get zero. This means that the charge density
everywhere is zero:

ρ = ϵ0 (∇ · E) = 0 . (19.3)

So there’s no charge density ... but when we integrate it up, we get a non-zero charge q.
The resolution of this apparent paradox in electrostatics is that the divergence is actually

an ill-behaved operation exactly at the origin, x = 0. In courses like 8.07, we learn that we
can resolve this by introducing a singular “function”4 that essentially puts a finite amount
of charge into a zero-volume point at the origin. At least heuristically, something similar is
going on with the Schwarzschild spacetime — at least in classical general relativity, there’s
a singular point at the coordinate r = 0 where general relativity’s equations are ill-behaved.
But everywhere away from that point, there is no problem.

Thanks to non-linear terms in Einstein’s field equations, the r = 0 singularity is even
more disturbing and hard to deal with than the analogous Coulomb singularity. Nonetheless,
it is useful to set aside misgivings about this spacetime and examine what it tells us. (Indeed,
an aspect of the spacetime’s nature we will soon investigate suggests that any “weirdness”
near r = 0 is not of concern — at least, not of immediate concern. We will elaborate on this
cryptic remark soon.)

Let us begin by again looking at an observer who is at rest in the spacetime, and think
about how their clocks behave. Notice that as r → ∞, the Schwarzschild metric is noth-
ing more than the metric of special relativity (albeit in spherical coordinates — you can
transform from the inertial coordinate form we’ve long been using by the transformations
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ). This tells us that, as in the “weak gravity”
metric of the previous lecture, t describes clocks that are used by very distant observers.
This means t makes a useful “bookkeeper” time for comparing different observers’ clocks.

4Strictly-speaking, the quantity we use is not a function, but it can be treated much like a function if we
are careful. If this is new to you and you are curious about this, look up the Dirac delta function. This is a
topic for another day, and another course.
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Let’s compare the bookkeeper time with the time of an observer who is spatially at rest
at some radius r. We put ur = 0, uθ = 0, uϕ = 0; invoking the principle of equivalence, we
require u⃗ · u⃗ = −c2 to solve for ut = c dt/dτ :

u⃗ · u⃗ = −
(
1− 2GM

rc2

)(
c
dt

dτ

)2

= −c2 , (19.4)

which means

dt

dτ
=

1√
1− 2GM/rc2

or ∆τ(r) = ∆t

√
1− 2GM

rc2
. (19.5)

Notice that if r ≫ 2GM/rc2, we can use the binomial expansion and approximate:√
1− 2GM

rc2
≃ 1− GM

rc2
for r ≫ 2GM/rc2 . (19.6)

At clock located at coordinate r ticks slower than a clock that is very far away by a factor
GM/rc2, exactly the variation in clock ticking that we found in the weak-gravity metric. This
confirms that the Schwarzschild metric agrees with our previous results in the right limit.
However, the rate at which clocks slow as r gets slower is far more extreme than what we saw
in the weak-field case (remember that the weak field formula was only valid if r ≫ GM/c2

everywhere). Indeed, (19.5) predicts that our observer’s clock stops as r → 2GM/c2 — and
it appears to break down completely when r < 2GM/c2.

So what is going on with that??

19.2 Light propagation

The propagation of light was one of our most important tools for making sense of how space
and time behave in special relativity. Light propagation helps us in general relativity too,
though we need to lay out a few rules for how we are going to use it.

We cannot define 4-velocity along a light ray — because the speed is c, proper time is
not defined along it. However, 4-momentum is perfectly well defined along a light ray. Let
us look at the 4-momentum of a body with mass m:

p⃗ = m
dx⃗

dτ
. (19.7)

Let us define a parameter λ such that dλ = dτ/m. Then,

p⃗ =
dx⃗

dλ
. (19.8)

If we consider a sequence of bodies with ever decreasing m, we can define the 4-momentum
of light to be p⃗ = dx⃗/dλ in the limit m → 0. The parameter λ can then be regarded as a
kind of “tick mark” that allows us to label events along a light ray, with units chosen so that
dx⃗/dλ yields a quantity with the units of momentum.

Since the Schwarzschild spacetime is spherically symmetric, let’s examine light rays that
propagate radially, setting pθ = pϕ = 0. The defining characteristic of a null or light-like
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4-momentum in special relativity was that p⃗ · p⃗ = 0. Invoking the principle of equivalence,
the same thing holds in general relativity:

p⃗ · p⃗ = gαβ
dxα

dλ

dxβ

dλ
= −

(
1− 2GM

rc2

)(
c
dt

dλ

)2

+

(
1− 2GM

rc2

)−1(
dr

dλ

)2

= 0 . (19.9)

Using this, we can solve for the speed at which light propagates in this coordinate system:

dr

dt
= ±c

(
1− 2GM

rc2

)
. (19.10)

Notice this appears to tell us that the light is not propagating at speed c! Please bear in
mind, however, that this is the light’s speed in this coordinate system. Equation (19.10)
expresses the ratio of an interval of radial coordinate r to an interval of coordinate time
t. ϕ√);Consider two events: one is at (t, r, θ, the other is at (t, r + dr, θ, ϕ). The distance
between these events is given by ds = dr/ 1− 2GM/rc2. This distance is larger than dr.
So when the light moves through a coordinate distance dr, the spatial distance it moves is
greater than dr. Note also that this speed is defined in terms of the time used by observers
who are very far away. The clocks of observers near r tick more slowly than the clocks of
distant observers. With a little effort, one can show that observers will always see light move
with speed c when things are expressed as physical distance divided by their own time. The
idea that the speed of light is c for all observers has not been broken; indeed, thanks to the
principle of equivalence, it remains foundational to this subject.

That said, Eq. (19.10) has very interesting behavior in the limit r → 2GM/c2 — the
coordinate velocity there is zero. That suggests that a light ray “launched” radially outward
(or inward, for that matter) at r = 2GM/c2 will stay there forever. This appears to contradict
the principles outlined in the previous paragraph. However, recall from Eq. (19.5) that an
observer’s clock stops relative to a distant clock when we reach this radius. The radius
r = 2GM/c2 is indeed special, and a bit weird. More on this radius below.

Let’s look at one more aspect of the behavior of light — its energy as it propagates
outwards from some radius. Before doing this, it is very useful to pause and look at the
Lagrangian for light propagating in the Schwarzschild spacetime. We defined L = gαβẋ

αẋβ/2
as the Lagrangian for material bodies moving through the spacetime gαβ with ẋα ≡ dxα/dτ .
By adjusting the definition so that ẋα ≡ dxα/dλ, the Euler-Lagrange equations

∂L

∂xα
− d

dλ

(
∂L

∂ẋα

)
= 0 (19.11)

can then be used to describe light moving through the spacetime.
The Lagrangian for a light ray is given by

L =
1

2

[
−
(
1− 2GM

rc2

)(
cṫ
)2

+
(ṙ)2

(1− 2GM/rc2)
+ r2(θ̇)2 + r2 sin2 θ(ϕ̇)2

]
, (19.12)

where ẋ0 ≡ cṫ = c dt/dλ = pt, ṙ = dr/dλ = pr, etc.
Notice that ∂L/∂x0 = (1/c)∂L/∂t = 0. By one of the exercises you did on problem set

#8, this tells us that
1

c

∂L

∂ṫ
= −

(
1− 2GM

rc2

)
cṫ = constant . (19.13)
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Using the fact that cṫ = pt and −(1− 2GM/rc2) = gtt, this tells us that along the light ray

gttp
t ≡ pt = constant . (19.14)

The downstairs t component of the 4-momentum, pt, is a constant along the light ray’s
trajectory.

Let’s use this to compare the energy that is measured by a static observer at r = R with
an observer who is very far away, r → ∞. We use the fact that the energy measured by
an observer whose 4-velocity is u⃗ is given by Eu⃗ = −p⃗ · u⃗ — by the equivalence principle,
this result (which we developed in special relativity) will work just fine for us in general
spacetimes. We use the fact that√an observer who holds static at r = R has a 4-velocity with
components ut = c(dt/dτ) = c/ 1− 2GM/rc2, ur = uθ = uϕ = 0. So then

E(r → ∞)

E(r = R)
≡ E∞

ER

=

∣
−p⃗ · u⃗∣∣r→∞
−p⃗ · u⃗∣

r=R

=
ptu

t(r → ∞)

ptut(r = R)

=
1

1/
√

1− 2GM/Rc2

=

√
1− 2GM

Rc2
. (19.15)

The first line of this relation just inserts the definition E = −p⃗ · u⃗. The second line expands
the inner product, using the downstairs form of the 4-momentum and the upstairs form of
the 4-velocity, taking advantage of the fact that only ut ̸= 0. On the third line, we use the
fact that pt is a constant along the light ray’s trajectory to cancel it out — pt has the same
value at r = R as it does in the limit r → ∞. We also use the solution for ut that we derived
earlier in this lecture.

The final line shows us how light is redshifted as propagates from r = R out to infinity.
Notice once again the interesting behavior as R → 2GM/c2: the light is so redshifted in this
case that the energy measured very far away is zero. None of the light’s energy gets
out if it starts at R = 2GM/c2.

To summarize, our investigation of the Schwarzschild spacetime has yielded the following
outcomes:

• Clocks run slower at smaller values of r. If dτR is an interval of time measured at
r = R, and dt is an interval measured by clocks very far away (r → ∞), then we find

dτR = dt

√
1− 2GM

Rc2
. (19.16)

• Light that is emitted from r = 2GM/c2 appears to move in the radial direction with
coordinate speed dr/dt = 0. In other words, light does not seem to ever move away
from this radius.

• If light is emitted from radius r = R with energy ER, then it is measured far away to
have energy

E∞ = ER

√
1− 2GM

Rc2
. (19.17)
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This is consistent with the redshifting of light we saw in other contexts, but notice
that E∞ → 0 as R → 2GM/c2.

This all tells us that there is something quite interesting about the radius r = 2GM/c2.
Let’s do one more calculation, which if all goes well will really confuse us.

19.3 The trajectory of an infalling observer

Imagine an observer who starts at rest from r = R and then falls. Suppose they have no
motion in the θ or ϕ directions. The Lagrangian describing their motion is then given by

L =
1

2
gαβu

αuβ = −1

2

(
1− 2GM

rc2

)(
c
dt

dτ

)2

+
1

2

(dr/dτ)2

1− 2GM/rc2
. (19.18)

On problem set #8, you found that because ∂L/∂t = 0, it must be the case that ∂L/∂ṫ is a
constant along the body’s trajectory. We call this constant the body’s energy per unit mass
(up to a minus sign) because of its limiting behavior as r → ∞:

E = −∂L

∂ṫ
= c2

(
1− 2GM

rc2

)
dt

dτ
= constant . (19.19)

This observer starts at rest, and we know that for an observer who is at rest in the
Schwarzschild spacetime

dt

dτ

(
2GM

rc2

)−1/2

= 1− . (19.20)

Applying this to our infalling observer when they are at rest at r = R, we find

Eobs = c2
√

1− 2GM

Rc2
. (19.21)

We also know that u⃗ · u⃗ = −c2:

−c2 = −
(
1− 2GM

rc2

)(
c
dt

dτ

)2

+
(dr/dτ)2

1− 2GM/rc2
. (19.22)

We can clean this up, using Eq. (19.19) to replace dt/dτ with Eobs and a function of r. After
making this substitution, we can rearrange to make an equation describing the infalling
observer’s trajectory with respect to r:(

dr

dτ

)2

=
E2

obs

c2
− c2

(
1− 2GM

rc2

)
−→ dr

dτ
= −

√
2GM

r
− 2GM

R
. (19.23)

The second line of Eq. (19.23) uses the value of Eobs we found above; we choose an overall
minus sign for the square root to give us infall.

Equation (19.23) is most easily solving by finding τ(r) — i.e., the elapsed proper time
that passes after the observer has fallen from R to r. The result is

τ =

√
1

2GM

[
R3/2 arctan

(√
R− r

r

)
+
√

rR(R− r)

]
. (19.24)
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This tells us that the observer falls on a rather smooth trajectory according to their own
clocks, reaching r = 0 in finite proper time:

∆τ(r = R → r = 0) =
π

2

√
R3

2GM
. (19.25)

Despite the fact that r = 2GM/c2 seems to be quite important, nothing special happens
here as r passes through this coordinate.

Parameterizing the motion in terms of the observer’s proper time is fine for discussing
how they see their own motion. But how does it look to a distant observer, someone who is
watching that person fall in from a safe distance? Very distant observers use the coordinate
t for their clocks, and an interesting question is how the motion looks when parameterized
in a way that suits their perspective. We know that the infalling observer’s clocks “run
slow” according to distant observers. We thus expect that a process which happens quickly
according to the infalling observer’s clock may not look quite so fast as seen by someone
very far away.

We begin by working out the infall as parameterized by t:

dr

dt
=

dr

dτ

(
dt

dτ

)−1

= −

√
2GM

(
1

r
− 1

R

)
c2

Eobs

(
1− 2GM

rc2

)
. (19.26)

Using Eobs = c2
√

1− 2GM/Rc2, we can solve this for t(r). The solution is the rather more
complicated expression

t(r) =
2GM

c3
ln


√

r(R−2GM/c2)
2GM(R−r)/c2

+ 1√
r(R−2GM/c2)
2GM(R−r)/c2

− 1

+

√
r(R− r)

(
Rc2

2GM
− 1

)

+

(
R +

4GM

c2

)√
Rc2

2GM
− 1

[
π

2
− arctan

(√
r

R− r

)]
. (19.27)

This leads to a very different description of the infalling body’s motion! Let’s look at this
function as r → 2GM/c2+x: being very careful with our expansions, we find that as x → 0,

t(x) → 2GM

c3
ln

[
8GM(R− 2GM/c2)

Rc2x
+ C1

]
+ C2 . (19.28)

The quantities C1,2 are constants whose precise values depend on the starting radius R, but
are not important for us right now. In particular, note that the influence of the constant C1
becomes negligible as x gets small. Neglecting C1, we can easily rearrange this to find x as
a function of t:

x → 8GM(R− 2GM/c2)

Rc2
exp

[
−(t− C2)c3/(2GM)

]
. (19.29)

The infalling body only asymptotically approaches r = 2GM/c2 as t → ∞.
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To nail this home, let’s plot the motion according to these two time parameterizations: 

Figure 1: Infall trajectory from R = 8GM/c2 , parameterized by the infalling observer’s time 
τ [using Eq. (19.24)] versus the trajectory parameterized by distant observer time t [using 
Eq. (19.27)]. Adapted from the course notes for 8.962; include a multiplicative factor of G/c2

on the M on the vertical axis, and a factor of G/c3 on the M on the horizontal axis. 

We have two very diferent pictures: According to the observer’s own proper time, they more 
or less plummet merrily along, reaching r = 0 in short order according to their own clocks. 
(Incidentally, gravity diverges at r = 0, so that’s not a very happy place to wind up.) But 
according to the clocks of very distant observers, they never get anywhere close to r = 0. 
Indeed, they only asympotically approach r = 2GM/c2 , reaching it only as t →∞ according 
to those observers. 
A favorite saying of Einstein’s was Rafniert ist der Herr Gott, aber boschaft ist er nicht 

— “Subtle is the Lord, but malicious he is not.” This fgure seems to reveal a side of Nature 
that is not only malicious but positively perverse. A driving principle throughout this course 
has been that the view of two diferent observers must be consistent — perhaps they difer 
in some details, but they agree on physical outcomes. Can we possibly reconcile these two 
vastly diferent viewpoints consistent? 
The answer will be yes, and the reconciliation is subtle. Doing so will turn on thinking 

very carefully how the observer who is very far away is observing the infalling observer. 
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Lecture 20 
Exploring strong gravity 

20.1 Overview 

In this set of notes, we are going to explore some of the ways in which observational tests 
of the unique predictions of strong gravity can be formulated. These notes are a little on 
the long side, and will probably be delivered over the course of multiple lectures. They 
also rather dense, and involve calculations whose details require a bit of care. Every one 
of these calculations is, at heart, nothing more than an examination of a “geodesic” (the 
trajectory followed by a freely-falling body or the propagation of light) in the strong-feld 
spacetime. The recipe for performing such a calculation is always the same — write down 
the Lagrangian for motion in the spacetime, apply the Euler-Lagrange equations. The core 
ideas underlying these calculations are hopefully clear to you; do not worry if the amount 
of information is a bit too much to follow. We summarize the key points that we hope you 
take away from this discussion at the end of these notes. 

20.2 Weirdness of infall according to two diferent observers 

Our discussion of motion in the Schwarzschild spacetime reached the point where we looked 
at an infalling observer: someone who is at rest at r = R, then falls. What we found 
is that this observer’s motion as a function of time looks radically diferent depending on 
what “time” means. If we parameterize the observer’s trajectory using proper time τ , i.e. 
the time that the observer measures on their own clocks, we fnd a trajectory that is a 
simple function relating their coordinate position r with their measured proper time τ . This 
parameterization shows that the infalling observer reaches r = 0 in fnite proper time. 
On the other hand, if we parameterize the observer’s motion using coordinate time t, 

which describes time as measured on the clocks of observers who are very far away, we get 
a very diferent picture. With that parameterization, the infalling observer never crosses 
r = 2GM/c2 , let alone reaches r = 0. Instead, we see them asymptotically approaching 
r = 2GM/c2 as t →∞. This behavior is shown in Fig. 1. 
From the exact solution for r(t) written down in the previous lecture, examine how things 

behave near r = 2GM/c2 . Putting r = 2GM/c2 + δr, it is not too hard to show that 

8GM(R − 2GM/c2) −(t−C2)c3/(2GM)δr = e . (20.1)
Rc2 

The constant C2 depends on the initial condition; its precise value is not important for us. 
What this expansion shows us is that at late times in the t parameterization, the infalling 
observer gets closer to 2GM/c2 by a factor of e for every time interval 2GM/c3 . This is a very 
short time. For example, if M is the mass of the Sun, 2GM/c3 is roughly 10 microseconds. 
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Figure 1: Infall trajectory for R = 8GM/c2, parameterized by the infalling observer’s proper
time τ , and parameterized by distant observer time t. Figure taken from lecture notes for
8.962; include a multiplicative factor of G/c2 to the M on the vertical axis, and a factor of
G/c3 to the M on the horizontal axis.

Throughout our study of relativity, we have encountered situations in which two ob-
servers measure different things. We’ve learned not to be too bothered by this, but have
learned instead to try to find a way to make sure that measurements, though perhaps not
in agreement (two observers measure different lengths and see events happen in a different
order; one measures a pure magnetic field, another measures a combination of electric and
magnetic fields) are nonetheless consistent. We have found that the observers agree on the
nature of important events at the end of the analysis (a long pole moving very fast never
collides with a door; an electron feels a force which causes it to accelerate).

But making consistent the two pictures of the infall-in-Schwarzschild scenario that we’ve
painted seems like a tall order. How can we reconcile falling all the way to r = 0 in one
parameterization (where, incidentally, gravitational tidal stresses get so strong that anyone
or anything will be shredded) with “hovering” near r = 2GM/c2 for all eternity in another?

We do this by thinking carefully about what the coordinate t means. An observer who is
fixed at coordinate r = R uses a clock that ticks uniformly in intervals of their proper time
τ . Compared to intervals in t, that observer’s clock behaves as

dτ = dt

√
1− 2GM

Rc2
. (20.2)

Notice that as R → ∞, dτ → dt. In other words, the coordinate t is in fact proper time
for observers who are at rest very far away from the mass M . This hopefully makes sense
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since, as we described in the previous lecture, the Schwarzschild metric looks just like the 
spacetime of special relativity (in spherical coordinates) for an observer who is very far away. 
As we’ve emphasized a few times, the coordinate t describes the clocks of observers who 

are far away. How do these clocks communicate and “sync up” with the clocks of other 
observers? In special relativity, we did this using light — the invariant properties of light 
give us a tool which allows us to connect the clocks of diferent observers. General relativity 
inherits this: the diferent clocks of diferent observers are synchronized with one another by 
allowing their properties to be carried from observer to observer using light. 
However — and this is the crucial point — the propagation of light is strongly afected 

by gravity. Clocks which tick very nicely in time t very far from the mass M do not tick so 
nicely when they are close to r = 2GM/c2 . In fact we, saw that light’s coordinate velocity 
goes to zero as r → 2GM/c2 . Light emitted at that radius carries no energy to observers 
who are infnitely far away. 
This helps us to see why infall according to the t parameterization looks so weird com-

pared to infall in the τ parameterization. In the τ parameterization, we are writing things 
in terms of a clock that makes sense exactly where the infalling observer is located. That 
parameterization in essence tells us exactly what the infalling observer is actually experi-
encing. The t parameterization, on the other hand, tells us how things “look” according 
to an observer who is watching things happen from very far away. The distant observer 
makes their measurements using light (or, as we’ll discuss a little later, other forms of 
radiation that travel at the speed of light) and so their measurements are afected by 
how gravity afects light. In essence, the infalling observer never crosses r = 2GM/c2 

according to the t parameterization because the light that allows distant observers to see 
that happen never reaches them. It doesn’t mean that they see this observer just “hovering” 
outside r = 2GM/c2 , however — they actually see nothing at all. 
Imagine that as the infalling observer approaches this point, they carry a beacon which 

emits a signal — “My time is now τ , and all is well!” — directed to a distant observer. As 
the infalling observer approaches r = 2GM/c2 , the light takes longer and longer (according 
to very distant clocks) to get out. The message is also increasingly redshifted to longer and 
longer wavelengths. Keep in mind that at late times (as seen by distant observers), the 
infalling observer gets closer by a factor of e after every interval ∆t = c3/2GM . This time 
is a bit less than 10 microseconds if M = 1 solar mass. This means that for M = 1 solar 
mass, after an interval ∆t = 1 second, the distant observer sees the position of the infalling 
observer change from r = 2.01GM/c2 to r = 2(1 + 0.01e−100,000)GM/c2 . Very quickly we 
can no longer see the infalling observer, nor get any message from them. 
Although strictly speaking, the distant observer claims that their infalling friend never 

crosses r = 2GM/c2 , when that friend gets close to this radius, what the distant observer 
claims does not matter. No communication with the infalling friend is ever possible. For 
all practical purposes, their friend has merged with the spacetime, and can no longer be 
distinguished as an independent entity. (Indeed, later measurements would show that the 
mass which appears in the spacetime line element is no longer M , but has become M +mfriend. 
Your friend is part of spacetime now.) 
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20.3 The event horizon 

A good way to summarize this discussion is that the time coordinate t is perfect for observers 
who are very far away. Indeed, t is their proper time, and is how they naturally describing 
the ticking of clocks. The coordinate t can be used for all r > 2GM/c2 , though it gets 
increasingly problematic as r gets close to 2GM/c2 . It is bad exactly at r = 2GM/c2 . 
What about for r < 2GM/c2? To be blunt, this is tricky. Time t connects clocks from 

the very distant region to other places using light; since light doesn’t propagate at all when 
r = 2GM/c2 , t simply ceases to be a useful measure of time that radius. This means that 
we need to be a lot more careful about how we set up and defne “past” and “future” when 
we examine the region r ≤ 2GM/c2 . This requires a bit more setup and analysis than 
is appropriate for 8.033, but we can borrow the punchline for our purposes: with a little 
efort, it can be shown that no light ray emitted at r < 2GM/c2 can ever propagate to 
r > 2GM/c2 . In essence, the behavior that we saw at r = 2GM/c2 — light rays emitted 
exactly at that spot remain forever bound to that spot — turns around. What we fnd is 
that all light rays inevitably evolve to smaller and smaller values of r. Even a light ray that 
we “think” is pointing outward ends up on a trajectory that eventually hits r = 0. 
Since light can never “get out” from r ≤ 2GM/c2 , this radius defnes a boundary beyond 

which events cannot communicate with the rest of spacetime. We call this boundary the 
event horizon — events inside rH = 2GM/c2 are “over the horizon” and forever out of our 
reach. An object which has an event horizon is called a black hole. 
The event horizon is one of the strangest predictions of physics. Before thinking about 

whether we can safely test for its existence, it’s worth pausing to review a few issues that 
you might wonder about. Further discussion of these points can be found in a paper1 which 
summarizes a presentation of these issues at a summer school for graduate students. 

• The Schwarzschild spacetime describes an object that is spherically symmetric, and is
non-rotating. Are conclusions about the nature of event horizons robust if they are
made with such a “special” confguration?

It turns out we do indeed need to go beyond this spacetime; the Kerr spacetime that
we mentioned in Lecture 18 (which describes a rotating black hole) turns out to be just
what we need. It describes an object which has rotation, and has an event horizon atp

˜ ˜ 2 ˜radius rH = M + M2 − a , where M = GM/c2 , a = J/Mc, and J is the magnitude of
the object’s spin angular momentum. Although the quantitative details change as we
go from Schwarzschild to Kerr, the qualitative picture remains pretty much the same.
Light rays at r = rH remain bound to that radial location (although they “twist” in
axial coordinate, in essence being dragged along by the black hole’s spin; you’ll explore
a related issues arising from this behavior on pset #9). Light rays emitted at r < rH
can never reach r > rH , but instead inevitably propagate to r = 0.

• Is Kerr the end of the discussion, or is there a whole “zoo” of spacetimes with event
horizons that may describe black holes?

There is one further change we can make beyond Kerr — black holes can have electric
charge — but that is it. It is expected that in “real life,” any black hole’s charge
will be vanishingly small, since they will tend to form near environments with a lot
of free plasma. The combination of electromagnetic and gravitational forces means

1https://arxiv.org/abs/hep-ph/0511217 
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that black holes will tend to pull in charges opposite in sign to their own charge, 
neutralizing themselves and leaving a Kerr black hole behind. So a Kerr black hole is, 
for observational and experimental purposes, indeed the end of the discussion. 

You might wonder: What happens if something disturbs this black hole? Won’t it 
change its shape or its other properties in some way? Indeed, such a thing can happen 
(and we’ll talk about some examples soon). However, a set of remarkable results prove 
what is now summarized as the no-hair theorem: A spacetime which contains an event 
horizon is either the Kerr solution (which does not change with time), or it is time 
evolving. If it is time evolving, then it evolves into the Kerr black hole spacetime. This 
time evolution forces the spacetime to “shake of” all deviations, until only the Kerr 
solution remains. 

What this means is that if we have a black hole described by the Kerr spacetime and it 
is disturbed somehow (perhaps you threw your roommate into it to see if has an event 
horizon), it will “jiggle” a little bit, and then settle down to a new Kerr spacetime. Its 
mass and spin might change after the disturbance; the nature of the jiggling may tell 
us something about what happened to disturb it. We describe this as the black hole 
“no-hair” theorem because it tells us that black holes have no distinguishing structure 
(no “hair”) beyond their mass and spin (and, in principle, their electric charge). 

• The black hole spacetime exists for all time. Are the only black holes we might en-
counter in Nature ones that have existed forever? Or does Nature provide a way to 
make black holes from “normal” objects? 

It is not terribly difcult to show that, starting with normal-behaved matter, it can 
evolve into a spacetime with an event horizon. For a very special but unrealistic case, 
this can be done analytically: a spherical ball of dust, with no pressure to hold it up 
against gravity, collapses to form a black hole. This calculation was frst done by the 
famous physicist Robert Oppenheimer with his student Hartland Snyder; their result 
appeared in publication on September 1 1939. (This date is important for other reasons; 
Oppenheimer’s research moved into military applications very soon after this.) The 
Oppenheimer-Snyder collapse calculation is simple enough that I use it as a homework 
exercise in 8.962. For more realistic situations (including efects such as rotation and 
realistic pressure profles), it requires numerical computation (though a UROP student 
is now exploring whether including rotation can be done in a simple way). The outcome 
of these studies is that we can indeed start with “normal” matter, and have it evolve 
into a black hole. 

• What about the behavior as r → 0? We argued earlier that, kind of like the Coulomb 
point charge, there must be an infnite amount of “stuf” crammed into zero volume 
there, at least classically. Can that behavior possibly be correct? Doesn’t quantum 
physics have something to say about this? 

The nature of what happens at the very center of the black hole remains a mystery. 
Quantum efects must surely have a major impact on the nature of things as we ap-
proach r → 0; the exact nature of those efects remains unknown since we haven’t 
formulated an undisputed quantum theory of spacetime. This is a source of some 
concern. One thing that is indisputable is that everything which crosses the event 
horizon eventually reaches r = 0. Indeed, when we develop a better parameterization 
to describe “time” for a body that has crossed the horizon, we discover that r = 0 is 
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not really the “center” of the spacetime. Instead, r = 0 is actually the future of the
spacetime — at least, the future of all spacetime interior to r = 2GM/c2. (Further
discussion of this point can be found in the paper whose URL is listed in the footnote
on a previous page.)

Whatever mysteries may occur as r → 0, they are hidden from us by the black hole’s
event horizon, and cannot have any effect on measurements that we make out in the rest
of the universe2. This gives us freedom to apply the laws of physics that we understand
to the region of spacetime that is able to communicate with us. We content ourselves,
for now, with the fact that physics we believe we understand describes everything that
we can measure in principle3.

20.4 What can we observe?

Putting these issues of principle to the side, the question becomes: what observations can we
make of an object which tell us that the spacetime has the strong-field properties we expect
if the object is a black hole? This is a very open-ended question (to first approximation,
answering this question has constituted a substantial fraction of your lecturer’s research
career). In this discussion, we look at two aspects of motion in black hole spacetimes (focusing
on the Schwarzschild case, which is relatively simple) that are hallmarks of the object being
a black hole. Motion in these spacetimes is important because black holes are themselves
totally dark. But, if things move near them, we may be able to measure the light that these
objects emit — or some other kind of radiation associated with the motion.

20.4.1 The motion of material bodies

A material body moving near a Schwarzschild black hole is governed by the Lagrangian

L =
1

2
gαβẋ

αẋβ =
1

2

[
−
(
1− 2GM

rc2

)
(cṫ)2 +

(ṙ)2

(1− 2GM/rc2)
+ r2(θ̇)2 + r2 sin2 θ(ϕ̇)2

]
,

(20.3)
where ẋα = dxα/dτ . As you showed on problem set #8, because the spacetime is independent
of t and independent of ϕ, we can find two constants of the motion right away. If we focus

2Should you be curious to read about this, the hypothesis that singularities are hidden behind event
horizons is called the “cosmic censorship conjecture.” Note that this is a conjecture, not a theorem. Indeed,
counterexamples have been found, although they tend to describe very special circumstances that will not
happen in Nature. From an experimental/observational standpoint, the idea that the r = 0 singularity is
always “clothed” by an event horizon works well enough that many of us go along with it. We’re certainly
not 100% satisfied about the situation given that this conjecture remains just a conjecture.

3There is another lingering bit of concern, which is that when we apply the leading effects of quantum
physics to black holes, we find that they lose mass, eventually evaporating away entirely. This is the
phenomenon of Hawking radiation. What happens to the mysteries at r = 0 then? We do not have a full
understanding of this, and it’s quite bothersome. We can content ourselves with knowing that the timescale
for evaporation is so long that for most black holes we encounter, evaporation is unlikely to be a problem.
For instance, a black hole of 1 solar mass will take about 1067 years to evaporate, and this lifetime scales
with mass cubed. We appear to have some time to figure this out.
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on motion that is confined to the plane θ = π/2, then these constants take the values

∂L

∂ṫ
= −

(
1− 2GM

rc2

)
c2ṫ ≡ −Ê ; (20.4)

∂L

∂ϕ̇
= r2ϕ̇ ≡ L̂z . (20.5)

We interpret Ê as a conserved orbital energy (per unit mass), and we interpret L̂z as a
conserved orbital angular momentum (per unit mass); the z subscript4 is because if we think
of the normal to the orbital plane as the z axis, this is the angular momentum about that
axis. (Since the orbit is confined to this plane, this is also the total angular momentum.)

We also know that u⃗ · u⃗ = gαβẋ
αẋβ = −c2, so (again using θ = π/2)

−c2 = −
(
1− 2GM

rc2

)
(cṫ)2 +

(ṙ)2

(1− 2GM/rc2)
+ r2(ϕ̇)2 . (20.6)

Using Eqs. (20.4) and (20.5), we can replace ṫ and ϕ̇ in this expression, and rewrite it as an
equation governing the radial motion of the body orbiting in this spacetime:

dτ
=

E
(
dr
)2 ˆ2

c2
− Veff(r) , (20.7)

where

Veff(r) =

(
1− 2GM

rc2

)(
L̂2
zc2 +

r2

)
. (20.8)

√ple

This function is often called the “effective potential” for orbits in the Schwarzschild space-
time, since it plays the same role in determining the motion of bodies as a similar potential
that is often used to describe Newtonian orbits, and from which we derive Kepler’s laws.

Equations (20.7) and (20.8) are going to be our main tools for a little while, so it is
worthwhile focusing on what they tell us. Figure 2 shows an exam of what this function
looks like, plotted for a particular choice of L̂z (in the case, L̂z = 3 3/2GM/c).

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

Figure 2: The function Veff(r) plotted for L̂z = 3
√
3/2GM/c.

4It is also useful to “decorate” the symbol for angular momentum a bit so that it isn’t too easy to confuse
it with the Lagrangian.
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to use it to fgure out how the body’s motion depends on its energy and its angular 
momentum. 
Consider for example the situation illustrated in Fig. 3. 

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2)

( ̂E)2/c2 = 0.90c2

yield any allowed orbital motion. 
Consider next the situation shown in Fig. 4. This is the same potential, but 

/c2 0.924c2 . Notice that this time Ê2/c2 ≥ Vef over a range of radii. 

5 10 15
r (units of GM/c^2)

0.89

0.90

0.91

0.92

Veff (units of c^2) ( ̂E)2/c2 = 0.924c2

Turn now to Eq. (20.7). This equation tells us that the radial component of the orbiting 
body’s 4-velocity is determined by subtracting Vef from a quantity made from the orbit’s 
conserved energy, Ê2/c2 . There is a tremendous amount of information in this equation. We 
are going 

Figure 3: The same Vef (r), showing this potential versus Ê2/c2 = 0.90c2 . 

For almost the entire span of radius we have included here, Ê2/c2 is less than Vef (r). This 
means that over this range (dr/dτ)2 is negative, and there is no real solution describing a√

ˆ 2body moving over these radii. At least for this value of angular momentum, E = 0.9c 
does not 

the energy 
ˆis now E2 = 

Figure 4: The same Vef (r), showing this potential versus Ê2/c2 = 0.924c2 . 

For the situation shown in Fig. 4, (dr/dτ ) ≥ 0 over a range of radii. This situation describes 
an eccentric orbit: an orbit that oscillates from rmin = 5GM/c2 to rmax ≃ 17.2GM/c2 and 
back over the course of its orbit. The turning points are defned by the condition (dr/dτ ) = 0, 
which means that they are found by fnding the values of r at which Ê2/c2 = Vef (r). Bear in 
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mind that while it is sloshing back and forth in radius, its angle ϕ is continually increasing: 
from the relationship between the conserved angular momentum L̂ 

z and dϕ/dτ , we fnd 

ˆdϕ Lz 
= 

2 
. (20.9)

dτ r 

In the Newtonian limit, this orbit would look like a closed ellipse if we looked at its angular 
and radial motion together. In general relativity, the orbit does not quite close, and we get 
a more interesting pattern. Defning x = r(τ) cos[ϕ(τ)], y = r(τ) sin[ϕ(τ)], Fig. 5 shows one 
complete radial period for the parameters used in Fig. 4: 

-10 -5 5 10 15
r Cos[ϕ] (units of GM/c^2)

-10

-5

5

10

15

r Sin[ϕ] (units of GM/c^2)

p
Figure 5: Motion in r and ϕ for an orbit with L̂ 

z = 3 3/2GM/c, Ê = 0.924c2 . 

This is a “strong-feld” orbit; it looks very diferent from a Newtonian orbit. In particular, 
the orbit moves through a lot more than 2π radians of ϕ in the time in takes to move from 
rmin to rmax and back. (This example actually completes 2.31 complete “whirls” in ϕ during 
a single cycle of radial motion.) When the orbital radius is at all times large compared to 
GM/c2 , the “extra” ϕ per orbit is much smaller. In fact, it is not too hard to show that 
this motion precisely reproduces the anomalous precession of Mercury’s orbit that so excited 
Albert Einstein in 1915. 
A particularly special value of the energy is illustrated in Fig. 6. This value is chosen so 

that Ê2/c2 = Vef (r) at exactly one point. This case defnes a circular orbit. To fnd thisp
ˆorbit, we require that E = c Vef (r) (so that dr/dτ = 0). We also require that the orbit 

“live” at the minimum of the efective potential: ∂Vef /∂r = 0. As you show on problem set 
#9, this yields a set of analytic solutions that describe the energy and angular momentum 
per unit mass for a body in a circular orbit: 
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r (units of GM/c^2)
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0.92

Veff (units of c^2)

( ̂E)2/c2 = 0.907c2

Figure 6: The same Vef (r), showing this potential versus Ê2/c2 = 0.907c2 . 
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r (units of GM/c^2)
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Veff (units of c^2)

L̂ = 3.5GM/c
3.49GM/c

3.48GM/c
3.47GM/c

3.4641GM/c
3.45GM/c

Figure 7: A zoom onto the region of the minimum for a sequence of Vef (r), looking at 
diferent values of L̂z. 

As L̂ 
z gets smaller, the minimum moves to smaller values of r. At the same time, the 
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L̂z = ±

√
GMr

1− 3GM/rc2
, Ê =

1− 2GM/rc2√
1− 3GM/rc2

. (20.10)

(The ± on the angular momentum is because we take a square root at one point, and both
solutions are valid. The signs describe orbits going in opposite ϕ directions at radius r.)

One last point before moving on: if we examine a sequence of potentials, we find some-
thing interesting and a little odd. For almost all values of L̂z, the potential qualitatively has
the shape we saw in the previous figures — a peak at small radius, with a minimum at some
finite r, the asymptoting to Veff → c2 as r → ∞. However, if we make L̂z small enough, we
see that there is a change. Figure 7 shows what happens as we reduce L̂z from 3.5GM/c to
3.45GM/c:



vicinity of the minimum gets progressively flatter, and is less well defined as a minimum.
In fact, at a certain point the function flattens out so much that the minimum goes away
altogether. When this happens, there are no more stable circular orbits.

To find when the minimum goes away, we look for the point along the sequence at which
the first and second derivatives both vanishes: ∂Veff/∂r = 0 and ∂2Veff/∂r

2 = 0 at the same
value of r. A quick analysis shows us that this condition is met when

L̂z =
√
12GM/c ≃ 3.4641GM/c . (20.11)

(The purple curve in Fig. 7 was computed with exactly this special value of L̂z.) Using the
formula that relates a circular orbit’s energy to its radius tells us that this happens when
r = 6GM/c2. Here is a prediction about strong-field orbits that is starkly different from
what we encountered with Newtonian gravity: No stable circular orbits exist at all for
radii r ≤ 6GM/c2.

20.4.2 The motion of light

On problem set #9, you looked at how light is bent by gravity in the weak gravity limit.
What is the strong-field analog of this?

To answer this question, let’s think about the geometry of a light ray that comes in from
very far away. Let’s imagine that the black hole is at the origin of coordinates, and the light
ray comes in parallel to the x axis. Far away, it is displaced from the axis by a distance
b. We will call this distance the impact parameter of the incoming light ray. From basic
mechanics, we can say that the light ray has an angular momentum that is related to the x
component:

|L| = |r× p| = bpx = bE/c ≡ Lz . (20.12)

All of the quantities in this equation are evaluated very far away, where the spacetime is the
same as that of special relativity. The geometry of this situation is illustrated in Fig. 8.

b

pt = E/c , px = E/c , py = pz = 0

Lz = |r × p | = bpx = bE/c

Figure 8: The geometry of a photon that is “launched” from far away toward the black hole.

To figure out how the photon evolves as it propagates in to the strong gravity region,
consider the Lagrangian for light:

Llight =
1

2
gαβẋ

αẋβ =
1

2

[
−
(
1− 2GM

rc2

)(
c
dt

dλ

)2

+

(
1− 2GM

rc2

)−1(
dr

dλ

)2

+ r2
(
dϕ

dλ

)2
]

.

(20.13)
(We’ve simplified this a bit by putting θ = π/2, dθ/dλ = 0, and we are using ẋα = dxα/dλ.)
Because ∂Llight/∂t = 0 and ∂Llight/∂ϕ = 0, we identify both ∂Llight/∂ṫ and ∂Llight/∂ϕ̇ as
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constants of the motion:

∂Llight

∂ṫ
= −

(
1− 2GM

rc2

)
c2

dt

dλ
= c gttp

t = c pt ≡ −E ; (20.14)

∂Llight

∂ϕ̇
= r2

dϕ

dλ
≡ Lz = bE/c . (20.15)

In setting these equalities, we’ve used the fact that it is very easy to compute pt and Lz

very far from the black hole. But, because they are constants along the light ray, once we’ve
computed them, we can use these values through the entire calculation.

Using p⃗ · p⃗ = 0 in combination with these relations between E, dt/dλ, Lz, and dϕ/dλ we
find an equation for dr/dλ that is similar in form to the equation we found for the motion
of a material body: (

dr

dλ

)2

=
E2

c2
− Lz

2

r2

(
1− 2GM

rc2

)
. (20.16)

This is a useful form because it parameterizes the motion in terms of the constants of motion
Lz and E. However, we can do better, since we know that Lz = bE/c. Let’s use this to
eliminate E from the equation:(

dr

dλ

)2

=
Lz
2

b2
− Lz

2

r2

(
1− 2GM

rc2

)
. (20.17)

And, since Lz is itself a constant of the motion, we can eliminate it from the right-hand side:

1

Lz
2

(
dr

dλ

)2

=
1

b2
− 1

r2

(
1− 2GM

rc2

)
=

1

b2
− Vlight(r) . (20.18)

This equation now tells us that light propagates whenever 1/b2 > Vlight, where Vlight plays
a role in our analysis just like the effective potential that governs the motion of material
bodies. However, Vlight is much simpler — it doesn’t depend on any free parameters.
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b = 7.07 GM/c2

4 6 8 10
r (units of GM/c^2)

0.01

0.02

0.03

Vlight (units of (c^2/GM)^2)

b = 3 3 GM/c2 = 5.196 GM/c2
b < 3 3 GM/c2

Figure 9: The potential Vlight(r) that governs the motion of light in the Schwarzschild space-
time, plus a few lines illustrating 1/b2 for several values of b.

Figure 9 plots this potential as a function of r. Its maximum occurs at r = 3GM/c2; its
value at the maximum point is given by

Vlight(3GM/c2) =

(
c2

GM

)2 [
1

9

(
1− 2

3

)]
=

c4

27G2M2
=

(
c2

3
√
3GM

)2

. (20.19)

Figure 9 also includes several lines illustrating 1/b2 for several interesting values of b. Light
propagates in radius as long as (dr/dτ)2 > 0, which occurs when 1/b2 > Vlight. With that in
mind, let’s examine how light behaves in this spacetime for several values of b:

• If b > 3
√
3GM/c2, light propagates in from infinity just fine until it reaches the radius

at which 1/b2 = Vlight. At this point, the light reverses radial direction, and heads back
out to larger radius. When we look at the motion in the equatorial plane, we see that
it comes in, has its trajectory bent as it comes closest to the black hole, then heads
back out to large radius. An example of this is shown in the top-left of Fig. 10.

•
√

If b < 3 3GM/c2, light propagates from infinity all the way to r = 0. In this case,
light passes into the event horizon and disappears from us forever. This is illustrated
in the top-right of Fig. 10.

• If b = 3
√
3GM/c2, light comes in until it reaches r = 3GM/c2. At this point, dr/dτ =

√in0, so it sits this light orbit forever. This is an unstable orbit, so the slightest deviation
from b = 3 3GM/c2 means that the light will either eventually zoom away or else fall
in. The bottom of Fig. 10 shows what happens when b is too large by 4× 10−8GM/c2.
In this case, the light completed about 3.7 orbits before zooming away.
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Figure 10: Examples of the (r, ϕ) motion for light propagating in the Schwarzschild space-
time. 

This light orbit, or light ring is a distinctly non-Newtonian feature. But, it turns out 
to be something that makes a very strong observational prediction. Imagine that a black 
hole in Nature is immersed in some kind of hot gas or plasma. That material will emit 
electromagnetic radiation across a wide range of wavelengths. If some of that radiation 
passes close to the black hole hole, we expect that its trajectory will be bent very strongly 
around the black hole. Some of it will even get “trapped” into the light orbit at radius 
r = 3GM/c2 , at least for several orbits. When that radiation escapes from the light√ orbit, it 
can propagate toward us. The expectation is that we could see a ring of radius 3 3GM/c2 

on the sky. This has long been regarded as a “smoking gun” of the strong-feld nature of a 
black hole spacetime. 
It turns out other kinds of radiation get trapped at that radius too, and leave an imprint 

that likewise is a smoking gun of the nature of the spacetime. We will discuss that in the 
next lecture. 

20.5 Summary: Features of strong-gravity motion 

This set of lecture notes is extremely dense. I hope that everyone who takes 8.033 is now 
capable of going through and understanding everything that is presented here; however, 
there is so much material (and this comes at such a stressful point in the semester) that I 
have little illusion that everyone will actually do that. So let me summarize what I regard 
as the most important points to note: 

• Infall parameterized by τ looks completely diferent from infall parameterized by t. This 
is because t describes clocks that are very far away; they connect to clocks at small 
r using the trajectories of light. As one approaches r = 2GM/c2 , the propagation of 
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light is hugely afected by gravity. The observer who is far away never sees an infalling 
observer cross r = 2GM/c2 because the light they would use to make this measurement 
never reaches them. 

• The radius r = 2GM/c2 marks an event horizon in the spacetime. Events at r < 
2GM/c2 cannot communicate with events “outside the horizon.” Once any trajectory 
crosses this radius, it is doomed to eventually reach r = 0, where it will fnd a quick 
(as measured by the trajectory’s own clock) and violent end. 

• The Lagrangian for the orbits of material bodies in this spacetime can be studied in the 
usual way with the Euler-Lagrange equations. Given an orbit’s angular momentum per 

ˆ ˆunit mass Lz and its energy per unit mass E, one can fgure out the kind of motion one 
is likely to get. We examined one example of an “eccentric” orbit (which generalizes 
the “elliptical” orbits of Newtonian gravity), and characterized circular orbits (which 
you will examine on pset #9). 

• Stable circular orbits do not exist for r < 6GM/c2 , starkly non-Newtonian behavior. 

• Light can be bent so strongly by gravity that it forms an orbit at√r = 3GM/c2 . 
Observers far away may be able to see a ring of light with radius b = 3 3GM/c2 . This 
value of b is set by the impact parameter that puts light exactly on the light ring. 
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Lecture 21 
Data on strong gravity 

21.1 Overview; Kerr versus Schwarzschild 

Having discussed in some detail the features which make strong-gravity spacetimes special, 
we turn now to what data and observations have taught us. 
The most interesting feature to observe would of course be an event horizon. However, 

the horizon is hard to observe since, by defnition, the signpost of its existence is a kind of 
absence — a “one-way membrane” from which we can get no information. One can imagine 
looking for spacetimes that describe a very dense, massive body, but that appear to lack 
well-defned surfaces. That indeed has been done, and is responsible for providing many of 
the black hole candidates studied by astronomers over the years. In this set of lecture notes, 
we will focus our discussion of measurements that have provided evidence for other features 
associated with motion in very strong gravity that we have discussed: 

• Non-Keplerian orbits: As noted in Lecture 20, strong-feld orbits are not closed ellipses 
in general, but show rather more complicated patterns of motion. This fundamentally 
arises from the fact that, in the time takes an orbiting body to move from minimum 
radius to maximum radius and back, the body moves through more than 2π radians. At 
its core, this is the same efect that leads to the 43 arcseconds per century of Mercury’s 
anomalous perihelion precession; in very strong-feld spacetimes, the efect is quite a 
bit stronger. 

• Unstable orbits: No stable circular orbits exist for r ≤ 6GM/c2 . 

• The light ring: The gravitational bending of light becomes so severe that a light ray 
can in principle loop around forever. In practice, because this is an unstable orbit, we 
expect it to loop around a few times at most before zooming out. (Presumably some 
light rays loop around and then fall in — but we never measure those light rays.) 

The analyses we have done so far which allowed us to develop and describe all these efects 
were based on studies of the Schwarzschild spacetime. Schwarzschild is now understood to 
be a special case of the Kerr spacetime, which describes black holes which rotate; indeed, 
the generic solution that we have long expected1 Nature to provide is the Kerr solution. 
Cataloguing in detail what happens when we go from Schwarzschild to Kerr is beyond the 
scope of 8.033, but it is not beyond us to understand how things change when we do this: 

• Frame dragging: As you showed on problem set #9, near a rotating black hole, space-
time “wants” to pull you along, so that you move in the same sense in which the black 

1As discussed briefy in class, there are solutions which describe black holes with charge as well, but 
our expectation is that such solutions will be neutralized by infalling charges which cancel out the hole’s 
“intrinsic” charge in any realistic astrophysical environment. 
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hole is rotating. When you very deep in the strong feld (at a coordinate fairly close to 
the event horizon), it becomes impossible to resist this motion, and you are forced to 
move in the same rotational sense as the black hole, no matter how strongly you oppose 
it. This frame-dragging efect — the dragging of all observer frames into co-rotation 
with the black hole — amplifes the non-Keplerian features that we saw in the case of 
a Schwarzschild metric. 

• The properties of unstable orbits depend on orbit orientation: There are unstable orbits 
in the Kerr spacetime, analogous to the orbit at r = 6GM/c2 that we found for 
Schwarzschild. However, when the black hole is spinning, the radius of these orbits 
varies depending upon the orientation of the orbit with respect to the spin axis. Figure 
1 (the curves labeled “material body orbit”) shows what we fnd for orbits that are 
in the black hole’s equatorial plane (i.e., orbits that have θ = π/2). Orbits which are 
prograde move in the same sense as the black hole’s rotation; those which are retrograde 
move in the opposite sense of the rotation. Notice that as the black hole’s spin increases 
from a = 0 (which is the same thing as Schwarzschild) to a = GM/c2 , the radii of 
these two possibilities diverges quite a bit. 

• Properties of light rings also depend on orbit orientation: Just as the unstable orbit’s 
position varies with orientation, so does the radius of the light ring. Figure 1 also 
shows the radii of the light ring associated with orbits that have θ = π/2, and it also 
splits into a prograde and a retrograde branch. 

Figure 1: Important orbital radii in the Kerr spacetime as a function of black hole spin 
parameter a. The two “material body orbit” curves show the radii at which circular orbits 
become unstable. The “prograde” curves traces out the radius of orbits which move in the 
same sense as the black hole’s spin; the “retrograde” curves traces out this radius for orbits 
which move opposite to the black hole’s spin. The two light ring curves do the same things 
for the radius at which light rays are captured onto orbits. 

Conceptually, it’s not very difcult to generalize everything we did for Schwarzschild 
to Kerr. Getting all the details right, however, is a rather involved process, signifcantly 
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more difcult in detail than Schwarzschild analyses. We won’t go through these details here, 
but strongly emphasize that these additional complications should be borne in mind as we 
examine the data we have on strong-gravity systems. 

21.2 Gravitational radiation 

Much of the best data on strong-gravity systems we have accumulated in recent years has 
come from a form of observation that has only come into fruition within the past decade. 
To understand why this, it is important to understanding that light can very often be hard 
to observe from very strong-gravity systems. The most interesting part of the system is 
dark; any light comes from objects or matter moving near or orbiting around the darkest 
bit. Such sources of light are often “buried” in dense astronomical environments with lots 
of other bodies and matter around, which makes it hard for their light to get out. Very 
bright, intense, high-energy light may be generated deep in these spacetimes, but the light 
can be highly scattered or absorbed by other matter, making it difcult for us to observe 
it and to use it to study these spacetimes. Even when the light gets out, its properties can 
be modifed by scattering and absorption, making it difcult for us to use the light to learn 
about the nature of the spacetime in which it was generated. 
“Light” is being used here as shorthand for all bands of electromagnetic radiation — 

oscillating disturbances to electric and magnetic felds which propagate across spacetime, 
from gamma rays down to radio. In the past several years, decades of efort have come 
to fruition to use another form of radiation: gravitational radiation, or gravitational waves 
(which we’ll abbreviate GWs). GWs are another consequence of the theory of relativity. 
Their existence follows from the fact that any relativistic theory involving felds which act 
at a distance predicts that the feld itself must radiate. This radiation refects how changes 
to the feld propagate across spacetime when the feld’s sources themselves vary with time. 
If spacetime is nearly that of special relativity, we can write gαβ = ηαβ + hαβ . Run this 

through the Einstein feld equations Gµν = (8πG/c4)T µν , discard all terms that are of order 
h2 , and the result is2 

16πG 
□hαβ = − 

4 
Tαβ . (21.1) 

c 
The “weak gravity” metric that we discussed a few lectures ago is a solution of this equa-
tion when the time variations are zero (so that ∂(anything)/∂t = 0). When the source is 
time varying, the solutions to this equation are time-varying metric components hαβ that 
propagate across spacetime. An example of an allowed solution is one which takes the form  

0 0 0 0 
.

hαβ 

 
0 h(z − ct) 0 0 
0 0 −h(z − ct) 0 
0 0 0 0 

 (21.2)= 

This solution represents a disturbance in spacetime, h, which propagates in the z direction 
at the speed of light. The nature of the function h(z − ct) which appears in these tensor 

2In this analysis, I am skipping over a very important technical detail involving what is called the “choice 
of gauge.” Just as one can adjust the scalar potential ϕ and the vector potential A of electrodynamics in 
such a way as to leave the felds E and B unchanged, so one can adjust the metric-like quantity hαβ but 
leave its associated curvature tensors unchanged. For the purposes of 8.033, this subtlety is a tangent that 
we can skip over. 
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components is related to the dynamics of the gravitating source; we’ll talk about what it 
looks like in a moment. The key thing to emphasize for us right now is that the infuence of 
this function on spacetime can be measured by looking at light propagating in the x and y 
directions for a gravitational wave propagating along3 z. 
Consider light which propagates in the x direction. How much time does it take to travel 

a distance L? We calculate this using the metric. Use the fact that light has a 4-momentum 
which obeys p⃗ · p⃗ = 0, and that it propagates in the x direction: � �2 � �2

dt dx 
0 = p⃗ · p⃗ = (ηtt + htt) c + (ηxx + hxx) . (21.3)

dλ dλ 

Rearranging this, using htt = 0 and hxx = h(z−ct), we solve for dt/dx as the light propagates: pdt 1 
= 1 + h(z − ct)

dx c � � 
1 1 ≃ 1 + h(z − ct) (21.4) 
c 2 

Here, we’ve assumed that the function h ≪ 1; as we’ll see shortly, this is a reasonable 
assumption. We now integrate up to compute the time it takes for light to propagate this 
distance in x: Z L � � 

1 1 
∆tx = 1 + h(z − ct) dx 

c 2�0 � 
L 1 ≃ 1 + h(z − ct) . (21.5) 
c 2 

On the last line, we imagine that in the time it takes light to travel a distance L, the function 
h(z −ct) changes by very little (so that this function remains approximately constant4 during 
the time interval corresponding to the integral). If this is not correct, then some details of 
the analysis change, but the fnal result is quite similar. 
Imagine that while light travels in the x direction, light also travels a distance L in the 

y direction. Repeating this calculation along the y axis, we fnd � �2 � �2
dt dy

0 = p⃗ · p⃗ = (ηtt + htt) c + (ηyy + hyy) (21.6)
dλ dλ 

Using htt = 0 and hyy = −h(z − ct), this becomes pdt 1 
= 1 − h(z − ct) (21.7)

dy c � � 
1 1 ≃ 1 − h(z − ct) . (21.8) 
c 2 

3More generally, the infuence of the wave is along the axes normal to the wave’s direction of a propagation. 
So if the GW propagates along x, you want to measure with light that propagates along y and z; etc. 

4More precisely, we imagine that the function changes slowly compared to the time for light to travel the 
distance L. 

180 



Integrating up, this yields Z L � 
1 1 

� 

∆ty = 
c 0� 

1 − h(z − ct)
2 � 

dy (21.9) 

L 1 ≃ 
c 
1 − h(z − ct)

2 
. (21.10) 

So in the x direction, the light travel time is a bit longer than it would be without the 
gravitational wave; in the y direction, it is a bit shorter. For the most interesting sources, 
the function h is sinusoidal, so it oscillates — but it always does so in such a way that the 
light travel time is long in one direction, short in the other. 
Such behavior is perfectly set up to be measured using an interferometer, much like the 

one that Michelson used in the famous Michelson-Morley experiment that we discussed very 
early in 8.033. Imagine our interferometer set up like the one shown in Fig. 2: the two 
arms are oriented along the x and y directions, and the gravitational wave propagates in 
the z direction, which is normal to the page. The interferometer is set up so that, in the 
absence of a gravitational wave, light destructively interferes after bouncing of the mirrors 
and recombining at the beam splitter. When this happens, the readout photo diode measures 
nothing: the signal is “dark” when h = 0. But when a gravitational wave comes along, the 
light takes diferent times to travel in each arm. The phase associated with the light in the 
two arms won’t balance just right to destructively interfere when it recombines, and instead 
we will now have a non-zero signal in the readout photo diode. 

Figure 2: An interferometer set up to measure a GW like the one described in the text: One 
arm points along the x direction, one points along the y direction, and z — the direction of 
propagation of the wave — is “up,” normal to the page. 

This all depends upon the function h, which itself depends on the nature of the source. 
Solving the “linearized” Einstein feld equation (21.1), we fnd that the leading-order solution 
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describing radiation looks as follows5 for a source that is a distance r away from us: 

2 G d2Ijk 
h00 = 0 , h0j = 0 , hjk = . (21.11)

4 dt2r c 

This is called the quadrupole formula for gravitational waves, because the tensor Ijk is related 
to the quadrupole moment of mass and energy distributed in the source: Z � � 

1 
d3Ijk = ρM (x) xj xk − δjk|x|2 x . (21.12)

3 

(Here ρM ≡ ρ/c2 is the mass density distribution.) Those of you who have studied some 
advanced electrodynamics may be reminded of the dipole formula for electromagnetic radia-
tion, which shows us how the radiative potential that arises from a dynamical charge source 
varies as a single time derivative of a source’s charge dipole moment. 
To get an idea of the size of the efect that we expect for gravitational waves, let’s make 

a rough estimate for how big a typical component of the wave tensor will be. The typical 
magnitude of a non-zero component of Ijk is ∼ MR2 , where M is the amount of mass that 
is dynamical in the system, and R is the amplitude of its motion. Take two time derivatives, 
and assume that the mass is bound into some kind of orbital motion. You fnd that the 
typical magnitude of d2Ijk/dt2 is ∼ Mv2 , where v is the speed associated with that bound 
orbital motion. Combine this with Eq. (21.11) and we get the typical magnitude we might 
expect for a GW: 

2GM v 
hjk ∼ . (21.13)

2 2c r c 

Let’s imagine a source that involves 50 solar masses in orbital motion with speeds typically 
near 10% of the speed of light; imagine that this source is located about a billion light years 
away. Using these numbers, we fnd � �� �� �2M 109 lyear v 

hjk ∼ 10−22 . (21.14)
50 M⊙ r 0.1 c 

(The symbol M⊙ stands for 1 solar mass.) This sets the stage for the magnitude of the 
timing efect we need to be able to detect — roughly a part in 1022 or so. 
In other words, the efect of any realistic gravitational wave is TINY. Finding a part in 

1022 change, in the presence of the kind of noise that afects any realistic experiment, is a 
topic which can consume an entire course (indeed, multiple entire courses). For our purposes, 
sufce it to say that such measurements can be done; that they in fact have been done; but 
that performing such measurements is not easy. Making the measurements possible is the 
kind of thing for which foundations associated with Swedish royalty award prizes. Let us 
move on to discussing what we learn when we can measure these waves. 

21.3 Observing objects in orbit about black holes 

Let us turn now back to what we can (and do!) observe. The most important data comes 
from observing objects that orbit very massive things. Some of the most compelling examples 

5Following the previous footnote about skipping over some details having to do with gauge, those details 
have an infuence on details here too. The formula presented here is missing some overall factors that refect 
how the waves “look” from diferent viewing angles, but is otherwise accurate. 
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have been observations of stars which orbit some kind of a very massive but dark object. 
Over the course of about 30 years, astronomical techniques have made it possible to resolve 
stars moving in the very innermost regions of the galactic center. What these objects have 
showed us is that roughly half a dozen stars move on orbits very close to a big “something,” 
with orbital properties that noticeably change over the course of several years. 
Several of these stars complete their orbits in ten or so years, making it possible to use 

them to precisely measure the mass of the object that they orbit. The mass we fnd turns 
out to be 

M ≈ 4 × 106 M⊙ . (21.15) 

So these stars are orbiting around 4 million solar masses of something. However, there is no 
object visible that these stars orbit around — whatever that 4 million solar mass “thing” 
might be, it is dark and it is massive. At least one of those stars is now seen to undergo 
orbit precession in a way that aligns perfectly with the “non-Keplerian” aspect of black hole 
orbits that we discussed in Lecture 20; rather than advancing by 43 arcseconds per century 
like Mercury, its orbital ellipse advances by about 10◦ per orbit. 
This object at the center of our galaxy has long been perhaps the most striking example 

of a spacetime that describes something that is really massive but dark that we have studied 
with telescopes, though there are quite a few others. In the past several years, some of the 
most compelling data probing such spacetimes has come from gravitational-wave observa-
tions. Suppose two objects are in circular orbit around one another. The gravitational waves 
that they generate carry away energy and angular momentum from the system. This causes 
the objects to fall closer toward one another. When this happens, they move faster, gener-
ating stronger gravitational waves, causing them to fall toward one another even faster. The 
result is a characteristic chirping waveform. This “chirping” continues until the two bodies 
come so close to one another that there no longer exists a stable circular orbit. When this 
happens, the two objects plunge together. Figure 3 shows an example of what a waveform 
in this scenario looks like. 
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“Inspiral” through sequence of circular orbits

“Plunge” after orbital instability

Figure 3: An example of a theoretical model of a gravitational waveform computed for bodies 
in circular orbit about one another. The region highlighted in light blue shows the waveform 
over the range of orbits for which the system is slowly evolving through a sequence of circular 
orbits; the area in orange corresponds roughly to the waves after the members have come 
so close to one another that stable circular orbits no longer exist. The last few decaying 
cycles are described in more detail below. Note the units are a little diferent from what we 
generally use in this class; multiply M by G/c3 on the horizontal axis, and multiply µ [the 
system’s reduced mass, µ ≡ m1m2/(m1 + m2)] by G/c2 on the vertical. D is the distance to 
the binary from the detector that observes this waveform. 

This fgure shows us one example of the gravitational waveform produced by two bodies 
orbiting each other; this example was computed for a system with a mass ratio of 10. In this 
case, we see a train of cycles in which the amplitude starts out changing fairly slowly. This is 
what we expect at this mass ratio when the system is evolving through a sequence of stable 
circular orbits. The amplitude starts changing much more rapidly when the members of the 
binary become close enough that a stable orbit no longer exists, around t ∼ 2300GM/c3 . At 
this point, they plunge toward one another, accelerating very rapidly, generating very strong 
waves at least until they merge into one object. (The nature of the fnal damped cycles at 
the end we describe a bit further below.) 
We have been able to compute waveforms like that shown in Fig. 3 for quite a while, 

but measuring these waves is a challenge, thanks to the fact that the efect we are trying 
to measure amounts to a timing variation of about 1 part in 1022 . Hard work, much of it 
done by colleagues here at MIT, steadily improved the sensitivity of the antennae which 
can measure this efect. For many of us, the world changed in Fall of 2015, when the two 
detectors of the LIGO Laboratory recorded the signals shown in the top panels of Fig. 4. 
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Figure 4: The frst directly observed gravitational wave event. The data in the top two 
panels (which show the traces of h picked up by the two LIGO detectors) match superbly to 
theoretical models of the waves produced by black holes of mass 29 M⊙ and 36 M⊙ merging 
to produce a single black hole of 62 M⊙. 

These data show the gravitational waveform that was picked up by the two antennae run by 
the LIGO laboratory (one in eastern Washington, one in a pine forest in Louisiana). It also 
shows the waveforms that are predicted by solving the Einstein feld equations. (Note that 
these waveforms are the output of much more complicated calculations than we have explored 
in 8.033! Because there are two massive bodies, the spacetime is more complicated than 
the Schwarzschild or Kerr spacetimes we have been studying. Supercomputer simulations 
are needed to model these solutions in general, though a lot of insight comes from careful 
“analytic” modeling as well.) The agreement between theory and data is superb. The 
conclusion is that a black hole of mass 29 M⊙ merged with a black hole of 36 M⊙, leaving a 
62 M⊙ remnant black hole6 behind. 
Since that frst discovery, the two LIGO instruments plus the Virgo antenna in Pisa Italy 

(which was commissioned and joined observations a year or so later) have measured well over 
100 such merging black hole pairs, as well as a few events that involve neutron stars. Our 
universe appears to be full of sources of extremely strong gravity, and Einstein’s relativity 
describes all of our measurements (at least so far!) perfectly well. 

21.4 Observing the light ring 

The data we have briefy discussed in this lecture covered a few of the features of strong-
gravity orbits that we discussed previously — the non-Newtonian orbit shapes that are 
seen in the motion of stars in our galactic center, and the orbital instability. It should be 
emphasized that as detectors get more sensitive, and new instruments make it possible to 
observe diferent bands7 of gravitational waves, we expect to be able to “watch” systems 

6You might notice that some mass appears to be missing — 36 + 29 ≠ 62. In fact, an amount of energy 
2equal to 3 M⊙c was lost due to gravitational radiation produced by the system. Most of that energy was 

lost in roughly 0.1 seconds. If that energy had been radiated in light rather than GWs, then during that 
second, this system would have shined more brightly than several hundred billion Milky Way galaxies. 

7Currently active instruments are sensitive to gravitational waves which oscillate in the frequency band 
several × 10 Hz ≲ f ≲ 1000 Hz. Sources which radiate in this band tend to have masses similar to stars 
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evolve through a wide range of orbits. Orbits with substantial eccentricity are ones that 
are likely to be especially interesting, and to carry a lot of information that will allow us to 
probe the nature of these systems. 
But what about that light ring? The light ring is one of the most striking predictions of 

motion in black hole spacetimes. Perhaps the biggest challenge here is one of scale. Consider 
the black hole in the center of our galaxy, with a mass M ≈ 4 × 106 M⊙. How big do we 
expect the ring to be in this case? 
Recall that for light moving the Schwarzschild spacetime, we expect the ring to be of√ 

radius b = 3 3GM/c2 . For the black hole in the center of galaxy, this translates to b ≈ 30 
million kilometers. That sounds big! — but the ring is in the center of our galaxy, which is 
about 27,000 light years from our solar system. Such a ring would have an angular diameter 
on the sky of 

2 × 30, 000, 000 km 
δθring = ≃ 2.4 × 10−10 radians ≈ 0.05 milliarcseconds . (21.16)

27, 000 lyear 

This is an extraordinarily small angle; recall there are 3600 arcseconds in a degree, and this 
is smaller than an arcsecond by a factor of 20,000. Further complicating this is that we need 
to see “through” a lot of intervening gas and plasma, which tends to scatter electromagnetic 
radiation. By carefully studying the properties of all that “stuf” which is in the way, a team 
of astronomers deduced that radiation with a wavelength of about 1 millimeter was the best 
choice to look at the core of our galaxy, as well as the cores of a few nearby galaxies. The 
galaxy M87 was of particular interest — it is 1000 times farther away than the center of our 
galaxy, but appears to host a black hole that is about 1000 times more massive. The factors 
of 1000 cancel out as far the angular size is concerned, and the light ring is similar in size to 
what we estimated above. 
If you’re trying to resolve something with an angular size δθ, Rayleigh’s criterion teaches 

us that the diameter D of the telescope we need to use is related to the wavelength λ of the 
radiation we are measuring according to 

1.22λ 
δθ = . (21.17)

D 

Plugging in λ = 10−3 meters, and using the δθring we estimated above, we fnd that we need 
D = 5000 kilometers — comparable to the radius of the Earth! 
This may seem challenging — and it is. However, we don’t need a single telescope of this 

size; we “just” need to have an array of telescopes that are separated by this distance. If we 
can then combine the data from all these telescopes in just the right way (and doing this 
requires that we know when each bit of data arrived with a precision better than δt < λ/c, 
and we need to know the distance between telescopes with a precision of about λ), then we 
can treat all the data as coming from a single telescope whose size is given by the diferent 
telescopes’ separations. 
Such measurements were done by a multi-month observing campaign focusing on the 

black hole candidate at the center of M87 by a collaboration called the “Event Horizon 

— solar masses up to about a hundred or so solar masses. Planned detectors will broaden this; your 
lecturer is particularly excited about space-based instruments which will be sensitive in a band of about 
10−4 Hz ≲ f ≲ 0.1 Hz. Waves in this band will come from sources of millions of solar masses, like the kind 
of black holes that appear to exist in the cores of many galaxies, including our own. 
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Telescope.” They frst announced their results in Spring 2019. For our purposes, perhaps 
the most exciting result is the one shown in Fig. 5. 

This image is in the public domain. 

Figure 5: Emission in the inner few dozen microarcseconds at the center of the galaxy M87. 

This is what a light ring actually looks like for emission deep inside a strong-gravity space-
time. Note that it’s thicker than the (rather idealized) picture that we sketched in a previous 
lecture. This is in part because the illumination which provides the light we observe is itself 
kind of “lumpy,” brighter in some areas than others, and appears to be orbiting around the 
black hole. Also, the telescope’s resolution blurs things out somewhat. Bearing those correc-
tions to our ideal picture in mind, this ends up having exactly the characteristics expected 
for a black hole light ring in general relativity. 
In addition to this light ring, the light ring has an infuence on the gravitational waves 

that we have been measuring since 2015. Look again at the fnal few cycles of the waveforms 
shown in Figs. 3 and 4. Notice that they very rapidly decay away, oscillating several times 
as they do so. These fnal few cycles oscillate at a period that very closely corresponds to 
what we expect for light orbiting in the light ring. Gravitational waves propagate across 
spacetime just as light does, and so gravitational waves can be trapped in the light 
ring just as light rays can get trapped. 
That in fact is what we are seeing in those fnal gravitational wave cycles. Those fnal 

cycles can be thought of as gravitational waves from the coalescence that orbit around a few 
times in the spacetime of the remnant black hole that is left over at the end of coalescence. 
Because that light ring is an unstable orbit, those last gasps of radiation leak away, gradually 
reducing in amplitude as more and more of that trapped radiation leaves the strong-feld 
region of the spacetime. 
At least so far, measurements done using both light and gravitational waves have con-

frmed all the various “weird” features associated with strong-gravity spacetimes. All the 
evidence to date is consistent with gravity behaving exactly like general relativity predicts 
when it is so strong that its behavior is signifcantly diferent from that of Newtonian gravity. 
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Lecture 22 
Our universe at large 

22.1 Does T µν = 0 describe our universe? 

Strong-gravity spacetimes tell us about “compact” bodies, things that can be localized to 
some spatial region. They reproduce Newtonian gravity, and they introduce new behavior 
that (so far, at least!) all fts the data. However, these spacetimes are “asymptotically 
fat”: when we go very far away from the source of mass in the spacetime, we fnd ds2 → 
−c2dt2 + dx2 + dy2 + dz2 . Does this behavior describe our universe? Spacetimes for which 
this true all solve the Einstein feld equations if T µν = 0. Is this an accurate description of 
our universe? 

The answer to this, very clearly, is no! Looking out, we see our galaxy, other galaxies, 
clusters of galaxies, light, gas. Indeed, on the very largest scales, the universe appears to 
be a uniform fog of matter and radiation, limiting to a haze of microwaves known as the 
“cosmic microwave background,” or CMB, at the largest distances that we are able to probe. 
However, an interesting property of what we see is that the universe is quite uniform on the 
largest scales. For example, on the very largest scales we can measure, variations in the 
CMB are a fraction of about 10−5 of its mean level1 . Things become clumpier on smaller 
scales because gravity tends to make things clump up. 

On the very largest scales — larger than about 10 − 100 Megaparsecs2 — we can think of 
our universe as a perfect fuid. This may seem crazy, but it is an acceptable treament as long 
as we focus on scales where matter’s granularity has no efect. It’s kind of the way we treat 
water as a fuid, even though we know it is made of individual molecules. On large enough 
scales, the granularity of water cannot be perceived; on large enough scales, the granularity 
of stars and galaxies cannot be perceived. 

22.2 A spacetime for the large-scale structure of the universe 

Although the universe is uniform in all spatial directions on the largest lengthscales, it is not 
uniform in time. Light travels at fnite speed, so large distances are seen at earlier times. 
What we see at earlier times is a universe that was much denser than today. 

To describe the large-scale structure of our universe’s spacetime, we want to use a metric 
that is uniform in space, but not in time. It can be proven that the most spatially symmetric 
spacetime has the form � 

dr̄  2 
� ��2 

ds2 = −c 2dt2 + a 2(t) 
2 
+ r̄  dθ2 + sin2 θ dϕ2 . (22.1)

1 − kr̄  

1After correcting for a Doppler efect. The CMB defnes a preferred rest frame, and we are moving with 
respect to that rest frame due to the motion of our solar system with out galaxy, plus the infall of our galaxy 
toward the local cluster of galaxies. 

21 parsec = 3.26 lightyears. This is a unit of distance that is particularly useful in astronomy, because it 
arises directly from measurements we can make using parallax. 
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This is a “Robertson-Walker” spacetime. It has the following important properties: 

• The function a(t) is the scale factor, and controls the physical scale associated with 
distance between two objects. If k = 0, the distance between (r̄1, θ, ϕ) and (r̄2, θ, ϕ) is 

L = a(t) [r̄2 − r̄  1] . (22.2) 

Notice that if two objects are at spatial rest in the coordinate system (so that r̄, θ, and 
ϕ are all constant) then the physical distance between them is nonetheless changing if 
a(t) changes with time. 

• The coordinate r̄  is a dimensionless radial coordinate. For k = 0, a(t)r̄ is essentially 
just our “normal” spherical distance. 

• The parameter k is called the “spatial curvature” parameter, and takes the value −1, 
0, or 1. For k = 1, we defne 

dr̄  √ = dχ 7→ r̄  = sin χ . (22.3)
1 − r̄2 

In this case, the value of r̄  is bounded: we can never exceed r̄  = 1. This describes 
a closed universe: the physical separation between objects has a maximum at each 
moment in time. 

For k = −1, we defne 
dr̄  √ = dχ 7→ r̄  = sinh χ . (22.4)

21 + r̄  
This describes an open universe: the physical separation between objects is totally 
unbounded. 

For k = 0, space has a “fat” Euclidean geometry: for dt = 0, � � �� 
= a(t)2 2 2ds2 dr̄ + r̄  dθ2 + sin2 θ dϕ2 . (22.5) 

This is often called a “fat universe,” though that is a bit misleading — spacetime is 
curved. 

22.3 Propagation of light in this spacetime 

The value of k and the behavior of a(t) are connected to the matter that flls the universe, 
and can be determined from the Einstein feld equations. Before discussing those quantities, 
it is useful to examine how light and matter behave in these spacetimes. 

t r̄Begin by asking what happens to observers at rest in the coordinates: u = c, u = 
uθ = uϕ = 0. When we examine geodesics, we fnd that they remain fxed at coordinate 
(r̄, θ, ϕ). However, as those observers remain fxed at that coordinate, we see that the proper 
separation of observers changes as a(t) changes. Those observers “co-move” as the universe’s 
geometry changes3 . 

3Note that this only applies to comoving points. This means points which do not experience forces which 
“push” them away from the geodesic. The separation between us and a very distant galaxy changes as a(t) 
changes. However, that galaxy’s size does not change because it is a bound object — it is not built out of 
things that are comoving in the Robertson-Walker spacetime. The scales of things that are bound together — 
like stars, planets, solar systems, people — do not change as a(t) changes. The Robertson-Walker spacetime 
describes the geometry of events on very large scales; it doesn’t describe things on small scales. 
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Next examine light — which is our main tool for measuring and understanding our 
universe. For simplicity, we will focus on k = 0. (The calculation can be generalized to 
k = ±1, but the details are a bit messy using the tools of 8.033; we’ll just quote the result 
for these cases.) Imagine that light is emitted at some time te, and is received by an observer 
at some time tr. It’s enough to consider light that moves radially, so we’ll put pθ = pϕ = 0. 

Our goal is to compare the energy of light when it is emitted to the energy when it is 
received. To do this, we imagine one comoving observer measures the light at emission, and 
another at reception: 

tEemit = −p⃗emit · ⃗uemit = p (22.6)emitc . 

Here we used the fact that the comoving observer has only one non-zero 4-velocity compo-
nent, which we can write ut = −c. Likewise, we fnd Erec = prec 

t c. 
Let’s now propagate this light across spacetime as a radial geodesic and see what energy 

it has at t = tr. We use two rules to propagate the light: 

1. It follows a light-like trajectory or null trajectory, so p⃗ · p⃗ = 0: 

t)2 r)2−(p + a 2(t)(p ¯ = 0 → p r̄  = p t/a(t) . (22.7) 

2. It follows a geodesic, so we extremize � �2 � �2
1 dxα dxβ c2 dt a(t)2 dr̄  

L = gαβ = − + . (22.8)
2 dλ dλ 2 dλ 2 dλ 

Let’s focus on the x0 = ct component of the Euler-Lagrange equations: 

∂L 1 ∂L 1 da 
= = aȧ (p r̄  )

2 
, where ȧ = ; (22.9)

∂x0 c ∂t c dt 
∂L dt t = −c = −p ; (22.10)

∂(dx0/dλ) dλ� � 
d ∂L dpt 

= − . (22.11)
dλ ∂(dx0/dλ) dλ 

Put all these ingredients together: � � 
∂L d ∂L − = 0 (22.12)
∂x0 dλ ∂(dx0/dλ) 

becomes 
aȧ 2 dpt 

(p r̄  ) + = 0 . (22.13) 
c dλ 

Using the constraint p⃗ · p⃗ = 0, this becomes 

1 ȧ � �2 dpt 
p t + = 0 . (22.14) 

c a dλ 

But we also know that 
t da dt da 

˙ = = c . (22.15)a p c 
dt dλ dλ 
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With this, our equation becomes 

da/dλ t dpt 
p + = 0 , (22.16) 

a dλ 
or 

da/dλ dpt/dλ 
= − , (22.17) 

a pt 

Integrate both sides from λ = λe (corresponding to the moment te when light is emitted) to 
λ = λr (corresponding to the moment tr when light is received): � � � � 

pt(tr) a(tr)
ln = − ln , (22.18) 

pt(te) a(te) 

or 
pt(tr) a(te) 

= . (22.19) 
pt(te) a(tr) 

From the fact that Eemit = cpt(te) and Erec = cpt(tr), this means � � 
a(te)

Erec = Eemit . (22.20) 
a(tr) 

In other words, the energy associated with the light that we measure gives us a way to directly 
probe the scale factor of the universe. (The result turns out to be identical for k = ±1.) 

So how do we use this? We take advantage of the fact that atoms and molecules whose 
electrons are in an excited state emit light with distinct spectral lines. Figure 1 illustrates 
what the spectrum from a gas cloud might look like if the atoms and molecules in the 
gas all undergo known electronic transitions. The blue curve in this fgure illustrates the 
spectrum in the “rest frame,” i.e., what we might measure in a laboratory. In this sketch, 
we imagine that there are 4 diferent “lines,” each at a wavelength λ1,2,3,4 that has been very 
well characterized (e.g., by laboratory measurements and/or theoretical calculations). 

Figure 1: Sketch of how the universe’s scale factor afects an object’s light emission spectrum. 
Blue curve sketches a spectrum as it would be viewed in that object’s “rest frame.” This is 
what we would measure in the laboratory, for example. Imagine that this light is emitted 
at te, and is measured at tr. Orange curve shows that same spectrum if it is measured at tr 

such that a(tr)/a(te) = 1.1. 
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Imagine that the light is emitted at te, when the universe’s scale factor is a(te). The 
orange curve in Fig. 1 illustrates what this spectrum might look like if it is measured at tr, 
when the scale is now a(tr). Each photon that contributes to the light has been redshifted by 
the expansion of the universe. Because the energy of light relates to its wavelength according 
to E = hc/λ, each “line” at λi has been shifted to � � 

a(tr)
λ ′ i = λi ≡ λi(1 + z) . (22.21) 

a(te) 

This equation defnes the cosmological redshift, z. This is what we determine when we 
measure a spectrum and deduce the nature of the atoms or molecules that emitted its light. 

The punchline is that by measuring the spectra of distant objects and looking for the 
“fngerprints” of known4 atomic and molecular transitions, we can deduce the scale factor 
at which the light was emitted, compared to the scale factor’s value today. If you do this 
for a large number of sources, you can build up map of how the scale factor evolves. If we 
understand how the scale factor evolves as a function of time, we can then use measurements 
of many diferent sources’ redshifts in order to learn how the universe is evolving. 

22.4 The behavior of a(t) and k 

If you run the Robertson-Walker line element through the Einstein feld equation, you fnd 
that the scale factor a(t) and the curvature parameter k are related to the energy density of 
“stuf” in the universe according to � �2 

ȧ 8πGρ kc2 

= 
2 
− 

2 
. (22.22) 

a 3c a 

This relationship was frst discovered by Alexander Friedmann in 1922, and is known as the 
Friedmann equation. Any Robertson-Walker spacetime for which a(t) and k connect to ρ by 
this relationship is known as a Friedmann-Robertson-Walker (or FRW) cosmology. 

Before discussing some details, it is useful to introduce some terminology: 

ȧ ≡ H The “Hubble” expansion parameter. (22.23) 
a 

Noice that this parameter has the dimensions of 1/time. The value of the Hubble parameter 
today is a subject of quite a bit of active research: 

H0 ≡ H(t = now) ≈ 70(km/sec)/Mpc . (22.24) 

The precise value of H0 is somewhat controversial as I write this document, with diferent 
techniques yielding somewhat diferent values, ranging from about 67 in these units up to 
about 73. Not that long ago, methods that yielded values this close to one another (each 
difers by about 5% from 70) would have been celebrated as a triumph; when I started grad-
uate school, people were concerned about whether the value was closer to 50 or to 100. One 
reason that there is a lot of interest in the diferent values obtained by current measure-
ments is that it is not clear whether these numbers refect diferent systematic uncertainties 

4Note that in principle there’s a big assumption being used here: We assume that the basic physics 
describing atoms and molecules is the same now as when and where the light was emitted. 
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in the diferent methods, or whether the physics of the diferent methods means that they 
are measuring fundamentally diferent things. 

Another useful parameter is a critical density: 

3H2c2 

ρcrit 

ρcrit = 
8πG 

. (22.25) 

We can normalize density to this value: 

ρ 
Ω ≡ , (22.26) 

and then rearrange the Friedmann equation using this defnition: 

8πGρ kc2 ρ kc2 

1 = − = − , (22.27)
3H2c2 a2H2 a2H2ρcrit 

or 
kc2 

Ω − 1 = 
a2H2 

. (22.28) 

This lets us see the signifcance of ρcrit: 

• If ρ > ρcrit, then Ω > 1 and we must have k positive. We must have a spatially closed 
universe if ρ > ρcrit. It can be shown in this case that the universe expands to a 
maximum size, then recollapses. 

• If ρ < ρcrit, then Ω < 1 and we must have k negative. We must have a spatially open 
universe if ρ < ρcrit. It can be shown in this case that the universe expands forever. 

• If ρ = ρcrit, then Ω = 1 and we must have k = 0. We must have a spatially fat universe 
if ρ = ρcrit. It can be shown in this case that the universe expands forever, but (in most 
cases) with ever decreasing speed. (There is one interesting an important exception to 
this trend, which we describe in more detail below.) 

To know which of these options corresponds to our universe, we need to know how the 
universe behaves depending on the mixture of “stuf” that goes into it. This is in general a 
complicated problem, but we can get insight by looking at a couple of illustrative limiting 
cases. Let’s take a universe with k = 0 and fll it with matter in the form of dust5 . In this 
limit, the total number of dust particles is fxed, but their density changes as a(t) changes: � �3 3a(now) a 

ρM (t) = ρM (now) ≡ ρ0
0 . (22.29) 

a(t) a(t)3 

When you plug this in to the Friedmann equation (with k = 0), you fnd that a(t) can be 
solved using a power-law in time: � �n 

t 
a(t) = a0 . (22.30)

t0 

Running this through Eq. (22.22), we fnd n = 2/3. This tells us that in a spatially fat 
“matter-dominated” universe, the scale factor grows as a function of time as a ∝ t2/3 . 

5Recall that “dust” can be thought of as a perfect fuid with P = 0. 
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This solution implies an expanding universe. If you run it backwards, it implies that 
a = 0 at some point in the past. This means that all spatial locations were smashed into a 
single zero-size point (assuming that the FRW model holds all the way back to that moment 
— perhaps a rather big assumption!). Spacetime itself comes into existence as we evolve 
from that moment. The birth of all of space is known as the “Big Bang.” Notice it is not an 
explosion into space — it is the creation of space itself. There wasn’t any “there” to explode 
into until the Big Bang happened! 

Another representative example: a universe flled with radiation. Imagine that the num-
ber of photons is fxed, but their density varies as a(t)−3 . In addition, each photon has an 
energy that itself varies as 1/a(t) — the redshift efect. This implies that the energy density 
of radiation obeys � �4 

a0
ρR(t) = ρ0 . (22.31) 

a(t) 

This also admits a power-law solution; running it through Friedmann, we fnd a(t) ∝ t1/2 in 
a “radiation-dominated” universe. 

One last example has been found to be very important — “vacuum energy,” also known 
as a “cosmological constant.” The vacuum energy arises in quantum feld theory as an 
energy associated with the ground state of quantum felds. Its key property is that it must 
be invariant with respect to Lorentz transformations in the freely-falling frame: T µν ∝ ηµν 

in the FFF. This means that this variety of “stuf” looks like a perfect fuid, but one with 
negative pressure: 

PΛ = −ρΛ . (22.32) 

We can see how this contribution evolves by enforcing the rule that the stress-energy tensor 
be divergence free; doing so, we fnd out that ρΛ is constant with time. This rather odd 
behavior is a consequence of the fact that this “fuid” is associated with the vacuum itself. 

When we plug this behavior for the density into the Friedmann equation, here’s what we 
get: � �2 

ȧ 8πGρΛ 
= 

2a 3c r 
8πGρΛ 

ȧ = ±a 
3c2" r # 

8πGρΛ 
a(t) ∝ exp ±t . (22.33)

3c2 

This solution yields exponential expansion. (Or contraction; however, expansion dominates, 
since the contracting solution rapidly crushes away its own relevance.) This case is the 
exception to k = 0 describing expansion with ever decreasing speed. Exponential expansion 
for a(t) accelerates with time. 

The three cases discussed here — matter-dominated, radiation-dominated, vacuum-energy-
dominated — are idealized, but demonstrate how diferent contributions to the universe give 
diferent ways in which a(t) evolves with time. We generally expect a mixture of difer-
ent ingredients, for which these power-law solutions don’t apply. But, these limits provide 
asymptotic solutions which are useful for guiding our understanding. The general case is not 
too hard to solve for by integrating the Friedmann equation numerically. By measuring the 
rate of expansion at many diferent times and comparing to diferent models, we can infer 
what our universe is (apparently) made of. 
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22.5 Measurements and our universe 

What we really want, then, is to measure a (which is encoded in the redshift of distant 
sources) at many values of t. This will let us build up a(t); connect this to some good 
models for matter in the universe, and we should be able to learn something interesting. 

Our main tool for doing this is to measure the distance to diferent objects. Since light’s 
travel speed is known, distance tells us the time at which light was emitted. Time or distance 
plus redshift lets us build a(t). Two tools are particularly important for doing this: 

• Standard rulers are sources whose size is known by some physics. We compare the 
apparent size to the physical size; the ratio tells us the source’s distance. 

• Standard candles are sources whose intrinsic brightness is known. Compare the appar-
ent and intrinsic brightness; the ratio again tells us the source’s distance. 

Doing measurements of this kind is an industry. The basic idea is to build a large data set 
containing high-quality data describing distance versus redshift for class of sources, and then 
fnd the solution to the Friedmann equations — some self-consistent solution with H0, ΩM , 
ΩΛ, Ωr, and k — that bests describes these data. 

Nearly current data6 (at least, as of the writing of these notes) tells us 

ΩM = ρM /ρcrit = 0.311 ± 0.006 (22.34) 

ΩΛ = ρΛ/ρcrit = 0.689 ± 0.006 (22.35) 

Ωtotal ≡ ΩM + ΩΛ = 0.9993 ± 0.0019 . (22.36) 

(The contribution of radiation, Ωr, is so small it doesn’t show up in this table.) The data 
are consistent with k = 0, telling us that our universe appears to be spatially fat. 

This is lovely ... but there is some weirdness under the hood. Here are a few current 
mysteries: 

1. What’s the real value of H0? As mentioned, the value of H0 is something that 
diferent techniques disagree on. The table above is based on one of those values (which 
is “self consistent” with the technique that contributes the most to that dataset), but 
other values difer. Is there something prosaic skewing some of the measurements? Or 
is there something deeper going on — perhaps we have overlooked some contributor 
to the Friedmann equations whose importance is not obvious right now? 

2. Why is k = 0? One can show that if Ω − 1 = ϵ, then |ϵ| grows with time in a matter-
or radiation-dominated universe (becoming larger in magnitude, whether positive or 
negative). In other words, the deviation from spatial fatness should be magnifed as the 
universe evolves, if the universe is matter or radiation dominated. Observations indeed 
indicate that our universe is matter dominated now, and was radiation dominated long 
ago (greater than about 13.5 billion years ago). For ϵ to be so close to zero today, it 
would have had to be even closer — many digits closer — at a very early time in the 
universe’s history. 

If, however, the universe is not matter or radiation dominated, but is instead vacuum-
energy dominated, then it is not hard to show that Ω − 1 evolves to zero as a(t) 

6Numbers taken from https://pdg.lbl.gov/2021/reviews/rpp2021-rev-cosmological-parameters.pdf 
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exponentially expands. A way out is thus to imagine that the universe was in such a 
state at very early times — perhaps very, very early in the universe’s history, before it 
became radiation dominated. The idea that our universe behaved this way constitutes 
the theory of cosmic infation. 

Infation comes in diferent favors, depending upon details of how one designs the 
energy of the “vacuum” (more correctly, the false vacuum) that drives the expansion. 
The version most people look at for this today, whose foundations were developed by 
Alan Guth about 40 years ago, suggests that our universe exponentially infated for 
about 10−30 seconds at a very early time. If this is the case, then infation very likely 
left a mark in the form of very weak gravitational waves that have a unique and very 
broad spectrum, stretching from the band to which LIGO is sensitive now, down to 
frequencies of order 1/(billions of years). Searching for the imprint of these waves is 
one of the top problems in observational cosmology today. 

3. What is the matter that contributes to ΩM ? If we add up all the matter we can 
see that produces light — stuf we know about from the standard model of particle 
physics — we get 

Ωb = 0.0489 ± 0.0003 . (22.37) 

(The b on this symbol stands for “baryon,” since most of the mass comes from protons 
and neutrons and the atoms that are built from them.) This is way smaller than ΩM = 
0.311. The remaining ΩDM = 0.262 is apparently some kind of “dark” matter. We can 
see its gravitational infuence, but have never detected any “dark matter particle” in 
any experiment. Lots of people have proposed diferent ways that matter can produce 
gravity, but (apparently!) not couple to electromagnetic felds (or, at best, couple 
weakly enough to evade all detection limits so far). We’re still working on this one. 

4. What is ΩΛ? The fact that the vacuum energy plays an important role in cosmology 
today was a rather large surprise when it was frst clearly measured about 25 years 
ago. We are kind of bafed as to what this ingredient in the universe’s “energy budget” 
consists of; indeed, just last year, preliminary evidence was presented hinting that it 
might not be the “cosmological constant” that one normally thinks of in this context, 
but might be something even weirder7 . 

It is very interesting that when we apply general relativity to compact, strong-gravity 
objects, it passes every quantitative test we have been able formulate so far. When we apply 
general relativity on the largest scales, we fnd it can describe what we observe just fne, but 
it tells us that our universe is even weirder than we realized. This is a story which is not 
even close to being over. 

7See https://arXiv.org/abs/2404.08056 for references presenting this preliminary evidence, as well as 
discussion urging caution about the “evolving dark energy” interpretation. 
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