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Key formula summary 

Schwartzschild metric in Gullstrand-Painlevé (GP) coordinates: • 

dτ 2 = dtff
2 − (dr + βrdtff )2 − r 2 

�
dθ2 + sin2 θdϕ2

� 

Escape velocity −dr/dtff :
•

� 

2M 
�1/2 

βr ≡ 
r 

Schwartzschild metric in standard coordinates: • 
�

2M 
� �

2M 
�−1 

dτ2 = 1 − 
r 

dt2 − 1 − 
r 

dr2 − r 2 
�
dθ2 + sin2 θdϕ2

� 
, 

= γr
−2dt2 − γr 

2dr2 − r 2 
�
dθ2 + sin2 θdϕ2

� 
, 

1 
γr .≡ �

1 − βr 
2 

Schwarzschild radius: r = 2M , corresponding to βr = 1 and γr = • 
∞.


Gravitational redshift for a clock at fixed r:
• 

dtff dt 
dτ = = 

γr γr 

Effective potential: • 

2M 
� � 

L̃2 
� 

Ṽ (L, r˜ )2 = 

�
1 − 

r 
1 + 

r2 

Equations of motion: • 
� 

dr 
�2 

Ẽ2 Ṽ (˜
dτ 

= − L, r)2 , 

dϕ L̃
= ,

dτ r2 

dt 
= γ2Ẽ

dτ r 
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Radial motion: 

Circular orbits: 

dr 
dτ 

= ± 
�

β2 
r + Ẽ2 − 1 

d ̃V 
dr 

= 0 

• Photon orbits: 
� 

dr 
dt 

�2 

= γ−4 
r 

� 

1 − 

� 
b 

γrr 

�2
� 

r 
dϕ 
dt 

= ± 
b 

rγ2 
r 
. (1) 

Small deflection of light: 

Δϕ ≈ 
4M 
b 

when b � M . 
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The Schwarzschild metric 

Schwartzschild metric in Gullstrand-Painlevé (GP) coordinates: • 

dτ2 = dt2ff − (dr + βrdtff )2 − r 2 
�
dθ2 + sin2 θdϕ2

� 
, (2) 

where the escape velocity 

� 
2M 

�1/2 

βr ≡ 
r 

(measured by a “shell” observer at fixed r). Note that this happens 
to equal the Newtonian formula for escape velocity. 

Schwartzschild metric in standard coordinates: • 

dτ2 = 

�
2M 

� 

dt2 

�
2M 

�−1 

dr2 2 
�
dθ2 + sin2 θdϕ2

� 
,1 − 

r 
− 1 − 

r 
− r 

= γr
−2dt2 − γr 

2dr2 − r 2 
�
dθ2 + sin2 θdϕ2

� 
,	 (3) 

where 
1 

γr .≡ �
1 − β2 

r 

The GP form has the advantage of being valid for all r > 0,• 
whereas the standard form is valid only for r > 2M , i.e., outside 
the Schwarzschild radius rs ≡ 2M . 

For both forms of the metric, θ and ϕ are the usual polar coor­• 
dinates and r is defined as the proper circumference of a circle 
around the origin divided by 2π. 

The only difference between the two forms of the Schwarzschild • 
metric is the choice of time coordinate. Both t and tff are “far­
away time” in the sense that they tick at the rate you’d actually see 
time flow on a far-away clock at r ≈ ∞ if you had a good enough 
telescope to see it. They differ by an additive factor, corresponding 
to how they are synchronized against this ficticious far-away refer­
ence clock. In both cases, you need to add to the time you see on 
the far-away clock an r-dependent offset Δt(r) taking into account 
the time required for the light to reach you. t and tff correspond 
to two different choices of Δt(r): 

–	 For t, sometimes called bookkeeper’s time, Δt(r) is half the 
round-trip light travel time between r and the reference clock 
(both ways take the same amount of t-time, since the metric 
above has no dtdr cross-term). 

–	 For tff , known as the free fall time, the synchronization is 
instead performed by letting a portable clock free-fall radially 
from rest at the far-away reference clock (where it has been 
synchronized) to r. 
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Relation between t and tff 

These two forms of the Schwarzschild metric given by equation (2) • 
and equation (3) are equivalent, related (for r > 2M where the 
t-coordinate is well-defined) by the coordinate transformation 

� 
1 

� 

tff = t + − tanh−1 βr 2M. 
βr � 
1 1 

� 
1 − βr 

�� 

= t + + ln 2M 
βr 2 1 + βr 

You will prove this on problem set 9. The plot shows contours of 
constant t — note that t is undefined and hence useless for r < 2M . 

Proof summary: Differentiating the last equation gives • 

dtff = dt + βrγr 
2dr, 

which implies that 

dr + βrdtff = βrdt + γr 
2dr. 

Substituting this into equation (2) and simplifying gives equa­
tion (3). 

Let’s prove that the GP coordinates have the interpretation we • 
claimed, i.e., that clocks free-falling radially past r from rest at 
infinity have velocity −βr and that their proper time interval dτ 
equals dtff . 
Proof: A radial (dΩ = 0) trajectory r(tff ) with dt

dr 
ff 

= −βr is one 
of maximal aging and hence a geodesic and a solution to the law 
of motion, since equation (2) gives 

� � � � 
dr 

�2 �
Δτ = dτ = 1 − 

dtff 
+ βr dtff ≤ dtff = Δtff , 

with equality only when the squared term vanishes, i.e., when 
dr = −βr. This trajectory corresponds to clocks at rest at in­dtff 

finity since their infall speed −βr 0 as r →∞.
→
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Interpretating the Schwarzschild metric: 
the River Model 

A natural interpretation of equation (2) (Hamilton 2004) is that space is 
flowing radially inward with a velocity βr, and that particles can travel 
through this moving space according to the laws of special relativity, 
no faster than the speed of light (just like fish swimming through a 
flowing river with a maximum swim speed relative to the water). This 
is analogous to the FRW coordinates, where the “river” of space was 
expanding rather than flowing. 

Event horizon: At the Schwarzschild radius r = 2M , the river • 
velocity equals the speed of light (βr = 1), so for r ≤ 2M , light 
can only move inward, not outward. Solving dτ = 0 for radial light 
rays (dΩ = 0) gives speeds 

dr 
= −βr ± 1,

dtff 

so even “outgoing” light rays (corresponding to the plus sign above) 
are in fact moving inward. 

Black hole: An object that lies within its own event horizon. • 
(Idea due to Mitchell & Laplace, math due to Schwarzschild, Kerr, 
Reissner & Nordström, name due to Wheeler.) For rotating (Kerr) 
and electrically charged (Reissner-Norbström) black holes, the met­
ric is more complicated. 

Tidal forces: Since the river is picking up speed as it flows in­• 
ward, infalling objects are stretched in the radial direction. 
Since the river is converging (flowing radially towards the orig­
ing), infalling objects are compressed in the transverse (θ and φ) 
directions. 

Infalling clocks: Our ficticious infalling synchronization clocks • 
are at rest relative to the space around them and hence stay at 
rest relative to the space around them and experience no special-
relativistic time dilation (dτ = dtff ). They are analogous to co­
moving galaxies in the FRW metric, since they stay at rest relative 
to space. 

Singularity: Since everything inside the event horizon is unavoid­• 
ably pulled inward with ever greated speed, it will end up at r = 0 
within a finite time (a time of order M), creating an infinite den­
sity at this point. This is called a singularity. We don’t know 
what actually happens there and some physicists think that if we 
one day discover a theory of quantum gravity, it may replace the 
singularity by something finite and calculable. 

Gravitational redshift and shell time: Consider clocks at­• 
tached to fixed concentric shells at different r. The time measured 
by such a clock at fixed position (r, θ, ϕ) is 

dtshell = dτ = γr
−1dtff = γr

−1dt. 
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� � 

This means that this clock will run slow by a factor γr compared 
to a far-away clock. We can interpret this result dτ = dtff /γr as 
a Doppler shift, caused by our moving with speed βr againt the 
inflowing river of space. 

Why the t-coordinate breaks down: The problem with the • 
t-coordinate is that its definition requires sending a signal to the 
far-away clock, which is impossible from r < 2M . When you’re 
“at rest” at the constant radius r = 2M , you see the far-away 
clock infinitely blueshifted because you are moving with the speed 
of light against the inflowing river of space, so you can interpret 
the problem as a Doppler shift caused by extreme, unnatural and 
(for massive observers) impossible motion. 

Flatness: In the GP coordinates, the Schwarzschild metric is spa­• 
tially flat, since at constant free-fall time tff (take dtff = 0), the 
metric reduces to 

dτ2 = −dr2 − r 2 
�
dθ2 + sin2 θdϕ2

� 
, 

i.e., simply the metric of 3D Euclidean space in spherical coordi­
nates. This means that r is simply the radial distance to the origin 
measured along a spacelike curve of constant tff , so that the radius 
of a circle is its circumference over 2π — in contrast, the radial 
distance measured along a spacelike curve of constant t is longer 
and blows up at r = 2M . 

Shell radius: At fixed free-fall time tff , things are simple: the • 
radial distance between two shells is simply dr. 
At fixed bookkeeper time t, things are more complicated: the radial 
distance between two shells is dr/γr. 
It defines what the book calls shell radius drshell = dr/γr, which is 
the distance you’d actually measure with a measuring between two 
shells. Integrating radially outward from the Schwarzschild radius 
at fixed bookeeper time t gives 

r 

Δrshell = drshell = γr� dr� = 
2M 

= rγr
−1 + M ln 

� r �
1 + γr

−1
� − 1

� 

M 

This is well-behaved and finite for any r ≥ 2M and gives Δrshell ≈
rr + M ln for r � 2M .M 
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Radial light rays 

In any metric, light rays have dτ = 0. For a photon moving radially • 
in the GP metric, we have 

dr 
= −βr ± 1. 

dt 

Integrating 
dr 

dt = − 
βr � 1 

gives the spacetime trajectories of outgoing (−) and infalling (+) 
radial light rays. 

Ingoing photon: • 

tff = tff
∗ − 2M 

�
βr
−2 − 2βr

−1 + 2 ln(1 + β−1)
� 
, 

where t∗ff is the time the photon hits the r = 0 singularity. 

“Outgoing” photon: • 

tff = tff
∗ + 2M 

�
βr
−2 + 2βr

−1 + 2 ln(|β−1 − 1|)� 
, 

where t∗ff is the time the photon hits the r = 0 singularity (for the 
r < 2M case) or t∗ff + 16M is the time the photon passes r = 8M 
(for the r > 2M case where the photon really is outgoing). 

The plot shows both ingoing photons (blue curves) and “outgoing” • 
photons (red curves). Note that the ingoing ones cross the event 
horizon, but outgoing ones don’t. 
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Orbits 

For a particle moving in the Schwarzschild metric, the energy E • 
and and angular momentum L are conserved. It’s convenient to 
divide these two by the rest mass of the particle and work with the 
energy per unit rest enery Ẽ ≡ E/m (dimensionless, since c = 1) 
and the angular momentum per unit rest mass, L̃ ≡ L/m (units of 
length). 

In terms of these two constants, the equations of motion become • 

� 
dr 

�2 
˜ Ṽ (˜ ,

dτ 
= E2 − L, r)2 

dϕ L̃
= ,

dτ r2 

where the effective potential per unit rest mass is 

�
2M 

� � 
L̃2 

� 

Ṽ (L, r˜ )2 = 1 − 1 + 
r2r 

and the proper time τ is related to the t-coordinate in the Schwarzschild 
metric (far-away time) by 

dt Ẽ ˜= = γ2E. 
dτ 1 − 2M/r r 

Ẽ ≥ 1 is a neccessary condition for being able to escape to r = ∞• 
(where Ṽ = 0). 

To build intuition for Schwarzschild orbits and the effective poten­• 
tial, I highly recommend the interactive simulator at http://www. 
fourmilab.ch/gravitation/orbits/. Note that it crashes and 
requires reloading if you accidentally fall in. 
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Circular orbits 

Circular orbits are possible at extrema of the effective potential • 
(follows from requiring dr/dτ = d2r/dτ2 = 0), with a minimum 
giving a stable orbit and a maximum giving an unstable orbit. 
Setting Ṽ �(r) = 0 gives the possible circular orbit radii 

L̃ � 
˜

�
L̃2r± = 2M

L ± − 12M2
� 

. 

This is plotted in the figure. The larger of these solutions is the 
stable circular orbit, while the smaller is the unstable orbit at the 
maximum. If the angular momentum is too small (|L| < 

√
12M), 

no stable orbit exists and the object will either fly off to infinity or 
be devoured. 

Inverting the last equation gives (see plot) • 

L̃ = � 
r 

r
. 

M − 3 

L̃ is infinite both for r = 3M and r = ∞, taking its minimum 
value L̃ = 

√
12M for r = 6M , the innermost stable orbit. 
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Table 1: Interesting of circular orbits 

r vshell Ẽ L̃
3M 1 

1 
∞ ∞

4M √
2 

1 4M q
1 86M 

√
12M

2 9 
0 1∞ ∞ 

Speed in a circular orbit according to a shell observer (see plot): • 

� 

M

r − 2
�−1/2 βrγr 

vshell = = √
2 

Energy per unit rest mass in a circular orbit (see plot): • 

Ẽ = 
r − 2M �
r(r − 3M) 

Ẽ(r) = 1 at r = 4M and r = ∞, and takes its minimum value 
Ẽ = 

�
8/9 for r = 6M . 

The unstable r = 4M orbit is the “tourist orbit”, since a rocket full • 
of tourists will have the same energy there as it will far from the 
black hole, hence making it accessible with a minimal expenditure 
of rocket fuel. Using no rocket fuel at all, tourists can follow a 
spiral trajectory winding many times around the black hole to just 
outside r = 4M and then spiraling out again - or spiraling into 
the black hole if the calculation was slightly off! In Newtonian 
gravity, the analogous orbit (with just barely enough energy to 
escape to infinity) is a parabola, i.e., much less interesting than this 
nearly infinitely would up spiral. (Amusing factoid: in four or more 
spatial dimensions, Newtonian gravity becomes more qualitatively 
like GR, admitting both such a spiral solution and “death orbits” 
that spiral into the point mass!) 
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Radial orbits 

Our infalling portable clocks satisfy • 

dr 
dtff 

= −βr, 

so integrating 
dr 

� 
r 

dtff dr= − 
βr 

= − 
2M 

gives 

ff −∗
2 4M3/2= tff −∗tff = tr ,

9M 3β3 
r 

� 
9M 

�1/3 

r = (t 2/3)∗ t− ffff ,
2 

where t∗ 
ff is the time when the clock hits the r = 0 singularity. The 

plot shows worldlines (green) of such falling clocks. 

More generally, L̃ = 0 for radial orbits, so our radial equation of • 
motion simplifies to 

dr

dτ 

= ± 
�

βr 
2 + Ẽ2 − 1.


The falling clock example above was simply the special case Ẽ = 1, 
for which dτ = dtff . 
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Photon orbits and the deflection of light 

The orbit equations above aren’t useful for photons since they in­• 
volve dτ , which is zero for photons. 

Taylor & Wheeler show that eliminating dτ between the equations • 
and taking the limit where the rest mass m 0 gives → 

� 
dr 

�2 

= γr
−4 

� 

1 − 

� 
b 

�2
� 

dt γrr 

dϕ b 
r 

dt 
= ± 

rγr 
2 
, (4) 

where the impact parameter 

L 
b ≡ 

E 

is the only constant of motion that we need to keep track of. 

The impact parameter is related to rmin, the distance of closest • 
approach, by 

b = γrmin rmin. 

Since this shows that b = rmin if M = 0, we can interpret the 
impact parameter b as the smallest r-coordinate that the photon 
would ever get if the black hole were not there and the photon 
simply moved in a straight line. 

For a photon, the only closed orbit is a circular one with r = 3M . • 

Deflection angle: Consider a photon arriving from far away, get­• 
ting deflected by the gravity of a star or a Schwarzschild black hole 
and flying off to infinity again. As shown in Taylor & Wheeler 
project D, the total deflection angle is 

Δφ = −π + 2 
� 1 �

2 2M 
(1 − u 3)

�−1/2 

du, 
0 

1 − u − 
rmin 

where rmin is the distance of closest approach, related to the impact 
parameter b is given by 

�
2M 

�−1/2 

b = γrmin rmin = 1 − rmin 
rmin 

In the plot below, I’ve done this integral numerically. 
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Interesting special cases: 

Δφ ≈ 4 for b � M (dotted red curve in the plot). Ein­
stein applied this approximation to the deflection of starlight 

M– b

near the Sun as confirmed by Eddington in 1919 and later 
to exquisite 0.1% precision for radio waves from the quasar 
3C273 passing near the Sun. A heuristic Newtonian estimate 

M2

≈ 5.196M , corresponding to the 
photon getting captured and making infinitely many orbits 

gives only Δφ ≈ .b √
27MΔφ → ∞ as b– → 

as it spirals in toward the circular r = 3M orbit. 

– For b < 
√

27, the photon disappears into the black hole. This 
also means that no photons can come from the black hole 
direction towards you with larger impact parameters, so that 
when far from a black hole, you will see it as a black disc of 
radius 

√
27M , not 2M . In other words, the black disk appears 

with 27/4 ≈ 7 larger area than you might naively expect. 

–	 The plot shows that for b ≈ 5.357M , Δφ = π (dotted hori­
zontal lines show π, 2π, 3π, etc.), which means that you can 
see your own image in a circle around the black hole of thie 
radius. 

–	 The plot also shows that there will be an infinite number of 
smaler circular images of you, piling up towards the innermost 
radius r = 

√
27M , so pointing your telescope at the perimeter 

of that scary-looking black disk reveals quite an interesting 
“halo”. 
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The field equations (optional) 

The Einstein field equations are 

Gµν = 8πGTµν , 

where 

1 
Gµν ≡ Rµν − 

2 
Rgµν , 

R gµν Rµν ,≡ 

RαRµν ≡ µαν , 

Rα = Γα + Γγ Γα Γα 
µνβ νβ,µ − Γα 

µβ νβ µγ ,µβ,ν νγ − Γγ 

1
Γα = g ασ (gσµ,ν + gσν,µ − gµν,σ) ,µν 2 

and gµν is the matrix inverse of gµν , i.e. 

gµαgαν = δν
µ. 

Here repeated indices are to be summed over from 0 to 3, commas denote 
derivatives, and G is Newton’s gravitational constant. Throughout this 
section, we will use units where the speed of light c = 1. In the Einstein 
field equations, the dependent variables are the two tensors gµν and Tµν . 
They are both symmetric, and thus contain ten independent components 
each. g is the metric tensor, and describes the structure of spacetime 
at each spacetime point xµ. Tµν is called the stress-energy tensor, and 
describes the state of the matter (what is in space) at each point. The 
quantities Gµν , Γα 

µνβ and Rµν are named after Einstein, Christoffel, µν , R
α 

Riemann and Ricci, respectively. 
The Schwarzschild metric is obtained by setting Tµν = 0 except at 

the origin and solving for the most general spherically symmetric time-
independent metric. Requiring this requiring only azimuthal symmetric 
(φ-independence) gives the Kerr metric corresponding to rotating black 
holes. For the FRW metric, Tµν is not zero but takes a simple diagonal 
form independent of position. 
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