MIT Course 8.033, Fall 2005, Supplement Max Tegmark

Matrix Primer

- An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns. Example of a 2×3 matrix:

$$
\mathbf{A}=\left(\begin{array}{lll}
3 & 1 & 4 \\
1 & 5 & 9
\end{array}\right)
$$

- $\mathbf{A}_{i j}$ denotes the number on row i and column j - for example, $\mathbf{A}_{13}=4$.
- The transpose of a matrix, denoted by a superscripted t, is a matrix with the rows and columns interchanged, i.e., $\mathbf{A}_{i j}^{t}=\mathbf{A}_{j i}$. For example,

$$
\left(\begin{array}{lll}
3 & 1 & 4 \\
1 & 5 & 9
\end{array}\right)^{t}=\left(\begin{array}{ll}
3 & 1 \\
1 & 5 \\
4 & 9
\end{array}\right)
$$

- Two matrices of identical shape can be added by adding their corresponding elements: If $\mathbf{C}=\mathbf{A}+\mathbf{B}$, then $\mathbf{C}_{i j}=\mathbf{A}_{i j}+\mathbf{B}_{i j}$. Example:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)+\left(\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right)=\left(\begin{array}{ll}
11 & 22 \\
33 & 44
\end{array}\right)
$$

- A matrix can be multiplied by a number by multiplying all of its elements by that number: If $\mathbf{B}=a \mathbf{A}$, then $\mathbf{B}_{i j}=a \mathbf{A}_{i j}$. Example:

$$
10 \times\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
10 & 20 \\
30 & 40
\end{array}\right)
$$

- The product $\mathbf{C}=\mathbf{A B}$ of an $l \times m$ matrix \mathbf{A} and an $m \times n$ matrix \mathbf{B} is defined as

$$
\mathbf{C}_{i j} \equiv \sum_{k=1}^{m} \mathbf{A}_{i k} B_{k j}
$$

Example:
$\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)\left(\begin{array}{ll}10 & 20 \\ 30 & 40\end{array}\right)=\left(\begin{array}{ll}1 \cdot 10+2 \cdot 30 & 1 \cdot 20+2 \cdot 40 \\ 3 \cdot 10+4 \cdot 30 & 3 \cdot 20+4 \cdot 40\end{array}\right)=\left(\begin{array}{rr}70 & 90 \\ 150 & 220\end{array}\right)$

- An identity matrix is a square matrix with 1 on the diagonal and 0 everywhere else. It is denoted \mathbf{I}. Its acts like the number 1 , since multiplying another matrix by it has no effect: $\mathbf{I A}=\mathbf{A}$ and $\mathbf{A I}=\mathbf{A}$ for any \mathbf{A}. Example: the 2×2 identity matrix is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- A matrix \mathbf{B} is said to be the inverse of a matrix \mathbf{A} if $\mathbf{A B}=\mathbf{I}$. Example:

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)^{-1}=\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)
$$

since

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\left(\begin{array}{rr}
2 & -1 \\
-3 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

- 1×1 matrices are simply numbers, and it is easy to see that the above rules for addition, multiplication and inversion reduce to the familiar ones for this special case.
- Vectors are special cases of matrices and therefore obey the above rules for addition and multiplication.
- A matrix with only one column is called a column vector. All vectors in 8.033 are column vectors, usually referred to simply as vectors. Example:

$$
\mathbf{a}=\binom{2}{3}
$$

- A matrix with only one row is called a row vector. Example:

$$
\mathbf{a}^{t}=\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

- In a linear algebra class, you typically learn more advanced aspects of matrices, such as their determinant, eigenvalues and eigenvectors.

