MIT Course 8.033, Fall 2006, Relativistic Kinematics
 Max Tegmark
 Last revised October 172006

Topics

- Lorentz transformations toolbox
- formula summary
- inverse
- composition (v addition)
- boosts as rotations
- the invariant
- wave 4 -vector
- velocity 4 -vector
- aberration
- Doppler effect
- proper time under acceleration
- calculus of variations
- metrics, geodesics
- Implications
- Time dilation
- Relativity of simultaneity, non-syncronization
- Length contraction
$-c$ as universal speed limit
- Rest length, proper time

Formula summary: transformation toolbox

- Lorentz transformation:

$$
\boldsymbol{\Lambda}(\hat{\mathbf{x}} v)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)
$$

i.e.,

$$
\left(\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
z^{\prime} \\
c t^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\gamma(x-\beta c t) \\
y \\
z \\
\gamma(c t-\beta x)
\end{array}\right)
$$

- This implies all the equations below, derived on the following pages:
- Inverse Lorentz transformation:

$$
\boldsymbol{\Lambda}(\mathbf{v})^{-1}=\mathbf{\Lambda}(-\mathbf{v})
$$

- Addition of parallel velocities:

$$
\boldsymbol{\Lambda}\left(v_{1}\right) \boldsymbol{\Lambda}\left(v_{2}\right)=\boldsymbol{\Lambda}\left(\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}}\right)
$$

- Addition of arbitrary velocities:

$$
\begin{aligned}
& u_{x}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{y}=\frac{u_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{z}=\frac{u_{z}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}}
\end{aligned}
$$

- Boosts as generalized rotations:

$$
\boldsymbol{\Lambda}(-v)=\left(\begin{array}{cccc}
\cosh \eta & 0 & 0 & \sinh \eta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \eta & 0 & 0 & \cosh \eta
\end{array}\right)
$$

where $\eta \equiv \tanh ^{-1} \beta$

- All Lorentz matrices $\boldsymbol{\Lambda}$ satisfy

$$
\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}=\boldsymbol{\eta}
$$

where the Minkowski metric is

$$
\boldsymbol{\eta}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- All Lorentz transforms leave the interval

$$
\Delta s^{2} \equiv \Delta \mathbf{x}^{t} \boldsymbol{\eta} \Delta x=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-(c \Delta t)^{2}
$$

invariant

- Wave 4 -vector

$$
\mathbf{K} \equiv \gamma_{u}\left(\begin{array}{c}
k_{x} \\
k_{y} \\
k_{z} \\
w / c
\end{array}\right),
$$

- Velocity 4-vector

$$
\mathbf{U} \equiv \gamma_{u}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right), \quad \gamma_{u} \equiv \frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
$$

- Aberration:

$$
\cos \theta^{\prime}=\frac{\cos \theta-\beta}{1-\beta \cos \theta}
$$

- Doppler effect:

$$
\omega^{\prime}=\omega \gamma(1-\beta \cos \theta)
$$

Formula summary: other

- Proper time interval:

$$
\Delta \tau=\int_{t_{A}}^{t_{B}} \sqrt{1-\frac{|\dot{\mathbf{r}}(t)|^{2}}{c^{2}}} d t
$$

- Euler-Lagrange equation:

$$
\frac{\partial f}{\partial x}-\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}=0
$$

Implications: time dilation

- In the frame S, a clock is at rest at the origin ticking at time intervals that are $\Delta t=1$ seconds long, so the two consecutive ticks at $t=0$ and $t=\Delta t$ have coordinates

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
c \Delta t
\end{array}\right)
$$

- In the frame S^{\prime}, the coordinates are

$$
\begin{aligned}
& \mathbf{x}_{1}^{\prime}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \mathbf{x}_{2}^{\prime}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
c \Delta t
\end{array}\right)=\left(\begin{array}{c}
-\gamma v \Delta t \\
0 \\
0 \\
\gamma c \Delta t
\end{array}\right)
\end{aligned}
$$

- So in S^{\prime}, the clock appears to tick at intervals $\Delta t^{\prime}=\gamma \Delta t>\Delta t$, i.e., slower! (Draw Minkowski diagram.)

Time dilation, cont'd

- The light clock movie says it all: http : //www.anu.edu.au/Physics/qt/
- Cosmic ray muon puzzle
- Created about 10km above ground
- Half life 1.56×10^{-6} second
- In this time, light travels 0.47 km
- So how can they reach the ground?
$-v \approx 0.99 c$ gives $\gamma \approx 7$
$-v \approx 0.9999 c$ gives $\gamma \approx 71$
- Leads to twin paradox

Consider two frames in relative motion. For $t=0$, the Lorentz transformation gives $x^{\prime}=\gamma x$, where $\gamma>1$.

Question: How long does a yard stick at rest in the unprimed frame look in the primed frame?

1. Longer than one yard
2. Shorter than one yard
3. One yard

Implications: relativity of simultaneity

- Consider two events simultaneous in frame S :

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{c}
L \\
0 \\
0 \\
0
\end{array}\right)
$$

- In the frame S^{\prime}, they are

$$
\begin{aligned}
& \mathbf{x}_{1}^{\prime}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& \mathbf{x}_{2}^{\prime}=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
L \\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
\gamma L \\
0 \\
0 \\
-\gamma \beta £
\end{array}\right)
\end{aligned}
$$

- So in S^{\prime}, the second event happened first!
- So S-clocks appear unsynchronized in S^{\prime} - those with larger x run further ahead

Implications: length contraction

- Trickier than time dilation, opposite result (interval appears shorter, not longer)
- In the frame S, a yardstick of length L is at rest along the x-axis with its endpoints tracing out world lines with coordinates

$$
\mathbf{x}_{1}=\left(\begin{array}{c}
0 \\
0 \\
0 \\
c t
\end{array}\right), \quad \mathbf{x}_{2}=\left(\begin{array}{c}
L \\
0 \\
0 \\
c t
\end{array}\right)
$$

- In the frame S^{\prime}, these world lines are

$$
\begin{aligned}
& \mathbf{x}_{1}^{\prime}=\left(\begin{array}{c}
x_{1}^{\prime} \\
y_{1}^{\prime} \\
z_{1}^{\prime} \\
c t_{1}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
c t
\end{array}\right)=\left(\begin{array}{c}
-\gamma \beta c t \\
0 \\
0 \\
\gamma c t
\end{array}\right) \\
& \mathbf{x}_{2}^{\prime}=\left(\begin{array}{c}
x_{2}^{\prime} \\
y_{2}^{\prime} \\
z_{2}^{\prime} \\
c t_{2}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
L \\
0 \\
0 \\
c t
\end{array}\right)=\left(\begin{array}{c}
\gamma L-\gamma \beta c t \\
0 \\
0 \\
\gamma c t-\gamma \beta L
\end{array}\right)
\end{aligned}
$$

- An observer in S^{\prime} measures length as $x_{2}^{\prime}-x_{1}^{\prime}$ at the same time t^{\prime}, - not at the same time t.
- Let's measure at $t^{\prime}=0$.
- $t_{1}^{\prime}=0$ when $t=0-$ at this time, $x_{1}^{\prime}=0$
- $t_{2}^{\prime}=0$ when $c t=\beta L$ - at this time, $\mathbf{x}_{2}^{\prime}=\gamma L-\gamma \beta^{2} L=L / \gamma$
- So in S^{\prime}-frame, measured length is $L^{\prime}=L / \gamma$, i.e., shorter
- Let's work out the new world lines of the yard stick endpoints
- $\mathbf{x}_{1}^{\prime}+\beta c t_{1}^{\prime}=0$, so left endpoint world line is

$$
x_{1}^{\prime}=-v t_{1}^{\prime}
$$

- $\mathbf{x}_{2}^{\prime}-\gamma L+\beta\left(c t_{2}^{\prime}+\gamma \beta L\right)=0$, so right endpoint world line is

$$
x_{2}^{\prime}=\gamma L-\beta\left(c t_{2}^{\prime}+\gamma \beta L\right)=\frac{L}{\gamma}-v t_{2}^{\prime}
$$

- Length in S^{\prime} is

$$
x_{2}^{\prime}-x_{1}^{\prime}=\frac{L}{\gamma}+v\left(t_{1}^{\prime}-t_{2}^{\prime}\right)=\frac{L}{\gamma}
$$

since both endpoints measured at same time $\left(t_{1}^{\prime}=t_{2}^{\prime}\right)$

- Draw Minkowski diagram of this

Superluminal communication?

- Velocity addition formula shows that it's impossibe to accelerate something past the speed of light
- But could there be another way, say a type of radiation that moves faster than light?
- Can an event A influence another event B at spacelike separation (hence transmitting information faster than the speed of light)?
- There is another frame where B happened before A ! (PS3)
- Draw Minkowski diagram of this
- By inertial frame invariance, B can then send a signal that arrives back to A before she sent her initial signal, telling her not to send it.
- Implication: c isn't merely the speed of light, but the limiting speed for anything

"Everything is relative" - or is it?

- All observers agree on rest length
- All observers agree on proper time
- All observers (as we'll see later) agree on rest mass

Transformation toolbox: the inverse Lorentz transform

- Since $\mathbf{x}^{\prime}=\boldsymbol{\Lambda}(v) \mathbf{x}$ and $\mathbf{x}=\boldsymbol{\Lambda}(-v) \mathbf{x}^{\prime}$, we get the consistency requirement

$$
\mathbf{x}=\boldsymbol{\Lambda}(-v) \mathbf{x}^{\prime}=\boldsymbol{\Lambda}(-v) \boldsymbol{\Lambda}(v) \mathbf{x}
$$

for any event \mathbf{x}, so we must have $\boldsymbol{\Lambda}(-v)=\boldsymbol{\Lambda}(v)^{-1}$, the matrix inverse of $\boldsymbol{\Lambda}(v)$.

- Is it?
$\boldsymbol{\Lambda}(-\mathbf{v}) \boldsymbol{\Lambda}(\mathbf{v})=\left(\begin{array}{cccc}\gamma & 0 & 0 & \gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \gamma \beta & 0 & 0 & \gamma\end{array}\right)\left(\begin{array}{cccc}\gamma & 0 & 0 & -\gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\gamma \beta & 0 & 0 & \gamma\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$,
i.e., yes!

Transformation toolbox: velocity addition

- If the frame S^{\prime} has velocity v_{1} relative to S and the frame $S^{\prime \prime}$ has velocity v_{2} relative to S^{\prime} (both in the x-direction), then what is the speed v_{3} of $S^{\prime \prime}$ relative to S ?
- $\mathbf{x}^{\prime}=\boldsymbol{\Lambda}\left(v_{1}\right) \mathbf{x}$ and $\mathbf{x}^{\prime \prime}=\boldsymbol{\Lambda}\left(v_{2}\right) \mathbf{x}^{\prime}=\boldsymbol{\Lambda}\left(v_{2}\right) \boldsymbol{\Lambda}\left(v_{1}\right) \mathbf{x}$, so
- $\boldsymbol{\Lambda}\left(\mathbf{v}_{3}\right)=\boldsymbol{\Lambda}\left(v_{2}\right) \boldsymbol{\Lambda}\left(v_{1}\right)$, i.e.

$$
\begin{aligned}
\left(\begin{array}{cccc}
\gamma_{3} & 0 & 0 & -\gamma_{3} \beta_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{3} \beta_{3} & 0 & 0 & \gamma_{3}
\end{array}\right) & =\left(\begin{array}{cccc}
\gamma_{2} & 0 & 0 & -\gamma_{2} \beta_{2} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{2} \beta_{2} & 0 & 0 & \gamma_{2}
\end{array}\right)\left(\begin{array}{cccc}
\gamma_{1} & 0 & 0 & -\gamma_{1} \beta_{1} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma_{1} \beta_{1} & 0 & 0 & \gamma_{1}
\end{array}\right) \\
& =\gamma_{1} \gamma_{2}\left(\begin{array}{cccc}
1+\beta_{1} \beta_{2} & 0 & 0 & -\left[\beta_{1}+\beta_{2}\right] \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\left[\beta_{1}+\beta_{2}\right] & 0 & 0 & 1+\beta_{1} \beta_{2}
\end{array}\right)
\end{aligned}
$$

- Take ratio between $(1,4)$ and $(1,1)$ elements:

$$
\beta_{3}=-\frac{\boldsymbol{\Lambda}\left(v_{3}\right)_{41}}{\boldsymbol{\Lambda}\left(v_{3}\right)_{11}}=\frac{\beta_{1}+\beta_{2}}{1+\beta_{1} \beta_{2}} .
$$

- In other words,

$$
v_{3}=\frac{v_{1}+v_{2}}{1+\frac{v_{1} v_{2}}{c^{2}}} .
$$

Transformation toolbox: perpendicular velocity addition

- Here's an alternative derivation of velocity addition that easily gives the non-parallel components too (but 4-vector method on next page is simpler)
- If the frame S^{\prime} has velocity v in the x-direction relative to S and a particle has velocity $\mathbf{u}^{\prime}=\left(u_{x}^{\prime}, u_{y}^{\prime}, u_{z}^{\prime}\right)$ in S^{\prime}, then what is its velocity u in S ?
- Applying the inverse Lorentz transformation

$$
\begin{aligned}
x & =\gamma\left(x^{\prime}+v t^{\prime}\right) \\
y & =y^{\prime} \\
z & =z^{\prime} \\
t & =\gamma\left(t^{\prime}+v x^{\prime} / c^{2}\right)
\end{aligned}
$$

to two nearby points on the particle's world line and subtracting gives

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right) .
\end{aligned}
$$

$$
\begin{aligned}
d x & =\gamma\left(d x^{\prime}+v d t^{\prime}\right) \\
d y & =d y^{\prime} \\
d z & =d z^{\prime} \\
d t & =\gamma\left(d t^{\prime}+v d x^{\prime} / c^{2}\right)
\end{aligned}
$$

- Answer:

$$
\begin{aligned}
& u_{x}=\frac{d x}{d t}=\frac{\gamma\left(d x^{\prime}+v d t^{\prime}\right)}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\frac{d x^{\prime}}{d t^{\prime}}+v}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{x}^{\prime}+v}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{y}=\frac{d y}{d t}=\frac{d y^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d y^{\prime}}{d t^{\prime}}}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{y}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}} \\
& u_{z}=\frac{d z}{d t}=\frac{d z^{\prime}}{\gamma\left(d t^{\prime}+\frac{v d x^{\prime}}{c^{2}}\right)}=\frac{\gamma^{-1} \frac{d z^{\prime}}{d t^{\prime}}}{1+\frac{v}{c^{2}} \frac{d x^{\prime}}{d t^{\prime}}}=\frac{u_{z}^{\prime} \sqrt{1-\frac{v^{2}}{c^{2}}}}{1+\frac{u_{x}^{\prime} v}{c^{2}}}
\end{aligned}
$$

Transformation toolbox: velocity as a 4 -vector

- For a particle moving along its world-line, define its velocity 4vector

$$
\mathbf{U} \equiv \frac{d \mathbf{X}}{d \tau}=\gamma_{u}\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right)
$$

where

$$
\gamma_{u} \equiv \frac{1}{\sqrt{1-\frac{u^{2}}{c^{2}}}}
$$

- This is the derivative of its 4 -vector \mathbf{x} w.r.t. its proper time τ, since $d \tau=d t / \gamma_{u}$
- $\mathbf{U}^{\prime}=\boldsymbol{\Lambda} \mathbf{U}$:

$$
\mathbf{U}^{\prime}=\frac{d \mathbf{X}^{\prime}}{d \tau^{\prime}}=\frac{d \boldsymbol{\Lambda} \mathbf{X}}{d \tau}=\boldsymbol{\Lambda} \frac{d \mathbf{X}}{d \tau}=\boldsymbol{\Lambda} \mathbf{U}
$$

since the proper time interval $d \tau$ is Lorentz-invariant

- This means that all velocity 4 -vectors are normalized so that

$$
\mathbf{U}^{t} \boldsymbol{\eta} \mathbf{U}=-c^{2}
$$

- This immediately gives the velocity addition formulas:

$$
\begin{aligned}
\mathbf{U}^{\prime} & =\gamma_{u^{\prime}}\left(\begin{array}{c}
u_{x}^{\prime} \\
u_{y}^{\prime} \\
u_{z}^{\prime} \\
c
\end{array}\right)=\boldsymbol{\Lambda}(-\mathbf{v}) \mathbf{U}=\gamma_{u}\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)\left(\begin{array}{c}
u_{x} \\
u_{y} \\
u_{z} \\
c
\end{array}\right) \\
& =\left(\begin{array}{c}
\gamma_{u} \gamma\left[u_{x}+v\right] \\
\gamma_{u} u_{y} \\
\gamma_{u} y_{z} \\
\gamma_{u} \gamma\left[1+\frac{u_{x} v}{c^{2}}\right] c
\end{array}\right)=\gamma_{u^{\prime}}\left(\begin{array}{c}
\frac{u_{x}+v}{1+u_{x} v / c^{2}} \\
\frac{u_{y} / \gamma}{1+u_{x} v / c^{2}} \\
\frac{u_{z} / \gamma}{1+u_{x} v / c^{2}} \\
c
\end{array}\right),
\end{aligned}
$$

where $\gamma_{u^{\prime}}=\gamma_{u} \gamma\left[1+\frac{u_{x} v}{c^{2}}\right]$ - this last equation follows from the fact that the 4 -vector normalization in Lorentz invariant, i.e., $\mathbf{u}^{\prime t} \boldsymbol{\eta} \mathbf{u}^{\prime}=$ $\mathbf{u}^{t} \boldsymbol{\eta} \mathbf{u}=-1$.

- The 1st 3 components give the velocity addition equations we derived previously.

Transformation toolbox: boosts as generalized rotations

- A "boost" is a Lorentz transformation with no rotation
- A rotation around the z-axis by angle θ is given by the transformation

$$
\left(\begin{array}{cccc}
\cos \theta & \sin \theta & 0 & 0 \\
-\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- We can think of a boost in the x-direction as a rotation by an imaginary angle in the ($x, c t$)-plane:

$$
\boldsymbol{\Lambda}(-v)=\left(\begin{array}{cccc}
\gamma & 0 & 0 & \gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & \gamma
\end{array}\right)=\left(\begin{array}{cccc}
\cosh \eta & 0 & 0 & \sinh \eta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh \eta & 0 & 0 & \cosh \eta
\end{array}\right)
$$

where $\eta \equiv \tanh ^{-1} \beta$ is called the rapidity.

- Proof: use hyperbolic trig identities on next page
- Implication: for multiple boosts in same direction, rapidities add and hence the order doesn't matter

Hyperbolic trig reminders

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2} \\
& \sinh x=\frac{e^{x}-e^{-x}}{2} \\
& \tanh x=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}} \\
& \cosh ^{-1} x=\ln \left(x+\sqrt{x^{2}-1}\right) \\
& \sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right) \\
& \tanh ^{-1} x=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
& \cosh \tanh ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \\
& \sinh \tanh ^{-1} x=\frac{x}{\sqrt{1-x^{2}}} \\
& \cosh ^{2} x-\sinh ^{2} x=1
\end{aligned}
$$

The Lorentz invariant

- The Minkowski metric

$$
\boldsymbol{\eta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

is left invariant by all Lorentz matrices $\boldsymbol{\Lambda}$:

$$
\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}=\boldsymbol{\eta}
$$

(indeed, this equation is often used to define the set of Lorentz matrices - for comparison, $\boldsymbol{\Lambda}^{t} \mathbf{I} \boldsymbol{\Lambda}=\mathbf{I}$ would define rotation matrices)

- Proof: Show that works for boost along x-axis. Show that works for rotation along y-axis or z-axis. General case is equivalent to applying such transformations in succession.
- All Lorentz transforms leave the quantity

$$
\mathbf{x}^{t} \boldsymbol{\eta} \mathbf{x}=x^{2}+y^{2}+z^{2}-(c t)^{2}
$$

invariant

- Proof:

$$
\mathbf{x}^{\prime t} \boldsymbol{\eta} \mathbf{x}^{\prime}=(\boldsymbol{\Lambda} \mathbf{x})^{t} \boldsymbol{\eta}(\boldsymbol{\Lambda} \mathbf{x})=\mathbf{x}^{t}\left(\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}\right) \mathbf{x}=\mathbf{x}^{t} \boldsymbol{\eta} \mathbf{x}
$$

- (More generally, the same calculation shows that $\mathbf{x}^{t} \boldsymbol{\eta y}$ is invariant)
- So just as the usual Euclidean squared length $|\mathbf{r}|^{2}=\mathbf{r} \cdot \mathbf{r}=\mathbf{r}^{t} \mathbf{r}=$ $\mathbf{r}^{t} \mathbf{I r}$ of a 3 -vector is rotaionally invariant, the generalized "length" $\mathbf{x}^{t} \boldsymbol{\eta} \mathbf{x}$ of a 4 -vector is Lorentz-invariant.
- It can be positive or negative
- For events \mathbf{x}_{1} and \mathbf{x}_{2}, their Lorentz-invariant separation is defined as

$$
\Delta \sigma^{2} \equiv \Delta \mathbf{x}^{t} \boldsymbol{\eta} \Delta \mathbf{x}=\Delta x^{2}+\Delta y^{2}+\Delta z^{2}-(c \Delta t)^{2}
$$

- A separation $\Delta \sigma^{2}=0$ is called null
- A separation $\Delta \sigma^{2}>0$ is called spacelike, and

$$
\Delta \sigma \equiv \sqrt{\Delta \sigma^{2}}
$$

is called the proper distance (the distance measured in a frame where the events are simultaneous)

- A separation $\Delta \sigma^{2}<0$ is called timelike, and

$$
\Delta \tau \equiv \sqrt{-\Delta \sigma^{2}}
$$

is called the proper time interval (the time interval measured in a frame where the events are at the same place)

- More generally, any 4-vector is either null, spacelike of timelike.
- The velocity 4 -vector \mathbf{U} is always timelike.

Transforming a wave vector

- A plane wave

$$
\begin{equation*}
E(\mathbf{x})=\sin \left(k_{x} x+k_{y} y+k_{z} z-\omega t\right) \tag{1}
\end{equation*}
$$

is defined by the four numbers

$$
\mathbf{K} \equiv\left(\begin{array}{c}
k_{x} \\
k_{y} \\
k_{z} \\
\omega / c
\end{array}\right) .
$$

- If the wave propagates with the speed of light c (like for an electromagnetic or gravitational wave), then the frequency is determined by the 3D wave vector $\left(k_{x}, k_{y}, k_{z}\right)$ through the relation $\omega / c=k$, where $k \equiv \sqrt{k_{x}^{2}+k_{y}^{2}+k_{z}^{2}}$
- How does the 4 -vector \mathbf{K} transform under Lorentz transformations? Let's see.
- Using the Minkowski matrix, we can rewrite equation (1) as

$$
E(\mathbf{X})=\sin \left(\mathbf{K}^{t} \boldsymbol{\eta} \mathbf{X}\right) .
$$

- Let's Lorentz transform this: $\mathbf{X} \rightarrow \mathbf{X}^{\prime}, \mathbf{K} \rightarrow \mathbf{K}^{\prime}$. Using that $\mathbf{X}^{\prime}=\mathbf{\Lambda} \mathbf{X}$, let's determine \mathbf{K}^{\prime}.
$E^{\prime}=\sin \left(\mathbf{K}^{\prime t} \boldsymbol{\eta} \mathbf{X}^{\prime}\right)=\sin \left(\mathbf{K}^{\prime t} \boldsymbol{\eta} \boldsymbol{\Lambda} \mathbf{X}\right)=\sin \left[\left(\boldsymbol{\Lambda}^{-1} \mathbf{K}^{\prime}\right)^{t}\left(\boldsymbol{\Lambda}^{t} \boldsymbol{\eta} \boldsymbol{\Lambda}\right) \mathbf{X}\right]=\sin \left[\left(\boldsymbol{\Lambda}^{-1} \mathbf{K}^{\prime}\right)^{t} \boldsymbol{\eta} \mathbf{X}\right]$.
- This equals E if $\boldsymbol{\Lambda}^{-1} \mathbf{K}^{\prime}=\mathbf{K}$, i.e., if the wave 4 -vector transforms just as a normal 4-vector:

$$
\mathbf{K}^{\prime}=\mathbf{\Lambda} \mathbf{K}
$$

- This argument assumed that $E^{\prime}=E$. Later we'll see that the electric and magnetic fields do in fact change under Lorentz transforms, but not in a way that spoils the above derivation (in short, the phase of the wave, $\mathbf{K}^{t} \boldsymbol{\eta} \mathbf{X}$, must be Lorentz invariant)
- So a plane wave \mathbf{K} in S is also a plane wave in S^{\prime}, and the wave 4 -vector transforms in exactly the same way as \mathbf{X} does.

Aberration and Doppler effects

- Consider a plane wave propagating with speed c in the frame S :

$$
\mathbf{K}=k\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta \\
1
\end{array}\right)
$$

where $c k$ is the wave frequency and the angles θ and ϕ give the propagation direction in polar coordinates.

- Let's Lorentz transform this into a frame S^{\prime} moving with speed v relative to S in the z-direction: $\mathbf{k}^{\prime}=\mathbf{\Lambda} \mathbf{k}$, i.e.,

$$
\begin{aligned}
\mathbf{K}^{\prime} & =k^{\prime}\left(\begin{array}{c}
\sin \theta^{\prime} \cos \phi^{\prime} \\
\sin \theta^{\prime} \sin \phi^{\prime} \\
\cos \theta^{\prime} \\
1
\end{array}\right)=k\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \gamma & -\gamma \beta \\
0 & 0 & -\gamma \beta & \gamma
\end{array}\right)\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta \\
1
\end{array}\right) \\
& =k\left(\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\gamma(\cos \theta-\beta) \\
\gamma(1-\beta \cos \theta)
\end{array}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
\phi^{\prime} & =\phi \\
\cos \theta^{\prime} & =\frac{\cos \theta-\beta}{1-\beta \cos \theta} \\
k^{\prime} & =k \gamma(1-\beta \cos \theta)
\end{aligned}
$$

- This matches equations (1)-(4) in the Weiskopf et al ray tracing handout
- The change in the angle θ is known as aberration
- The change in frequency $c k$ is known as the Doppler shift - note that since $k=2 \pi / \lambda$, we have $\lambda^{\prime} / \lambda=k / k^{\prime}$.
- If we instead take the ratio $\sqrt{{k^{\prime}}_{x}^{2}+k^{\prime 2}}{ }_{y} / k_{z}^{\prime}$ above, we obtain the mathematically equivalent form of the aberration formula given by Resnick (2-27b):

$$
\tan \theta^{\prime}=\frac{\sin \theta}{\gamma(\cos \theta-\beta)}
$$

- Examine classical limits
- Transverse Doppler effect: $\cos \theta=0$ gives $\omega^{\prime}=\omega \gamma$, i.e., simple time dilation (classically, $\omega^{\prime}=\omega$, i.e., no transverse effect)
- Longitudinal doppler effect: $\cos \theta=1$ gives

$$
\frac{\omega^{\prime}}{\omega}=\gamma(1-\beta)=\sqrt{\frac{1-\beta}{1+\beta}}
$$

- For comparison, classical physics, moving observer:

$$
\frac{\omega^{\prime}}{\omega}=1-\beta
$$

- For comparison, classical physics, moving source:

$$
\frac{\omega^{\prime}}{\omega}=\frac{1}{1+\beta}
$$

Accelerated motion \& proper time

- Consider a clock moving along a curve $\mathbf{r}(t)$ though spacetime, as measured in a frame S. During an infinitesimal time interval between t and $t+d t$, it moves with velocity $\mathbf{u}(t)=\dot{\mathbf{r}}(t)$ and measures a proper time interval

$$
d \tau=\frac{d t}{\gamma_{u}}=\sqrt{1-\frac{|\dot{\mathbf{r}}(t)|^{2}}{c^{2}}} d t .
$$

- The proper time interval (a.k.a. wristwatch time) measured by the clock as it moves from event A to event B along this path is

$$
\Delta \tau=\int_{t_{A}}^{t_{B}} d \tau=\int_{t_{A}}^{t_{B}} \sqrt{1-\frac{|\dot{\mathbf{r}}(t)|^{2}}{c^{2}}} d t
$$

- If the two events are at the same position in S, i.e., if $\mathbf{r}\left(t_{A}\right)=\mathbf{r}\left(t_{B}\right)$, then the path $\mathbf{r}(t)$ between the two events that maximizes $\Delta \tau$ is clearly the straight line $\mathbf{r}(t)=\mathbf{r}\left(t_{A}\right)$ where the clock never moves, giving $\mathbf{u}=\mathbf{0}$ and $\Delta \tau=\Delta t=t_{B}-t_{A}$.
- For any two events with timelike separation, the proper time is again maximized when the path between the two points is a straight line though spacetime.
Proof: Lorentz transform to a frame S^{\prime} where A and B are at the same position, conclude the the path is a straight line in S^{\prime} and use the fact that the Lorentz transform of a straight line through spacetime is always a straight line through spacetime.
- One can also deduce this with calculus of variations, which is overkill for this simple case.

Calculus of variations

- The much more general optimization problem of finding the path $x(t)$ that minimizes or maximizes a quantity

$$
S[x] \equiv \int_{t_{0}}^{t_{1}} f[t, x(t), \dot{x}(t)] d t
$$

subject to the constraints that $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{1}\right)=x_{1}$ reduces to solving the differential equation known as the Euler-Lagrange equation:

$$
\frac{\partial f}{\partial x}-\frac{d}{d t} \frac{\partial f}{\partial \dot{x}}=0
$$

- Here the meaning of $\frac{\partial f}{\partial \dot{x}}$ is simply the partial derivative of f with respect to its third argument, i.e., just treat \dot{x} as a variable totally independent of x when evaluating this derivative.

Metrics and geodesics

- In an n-dimensional space, the metric is a (usually position-dependent) $n \times n$ symmetric matrix \mathbf{g} that defines the way distances are measured. The length of a curve is $\int d \sigma$, where

$$
d \sigma^{2}=d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}
$$

and \mathbf{r} are whatever coordinates you're using in the space. If you change coordinates, the metric is transformed so that $d \sigma$ stays the same ($d \sigma$ is invariant under all coordinate transformations).

- Example: 2D Euclidean space in Cartesian coordinates.

$$
\begin{gathered}
\mathbf{g}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
d \sigma^{2}=d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}=\left(\begin{array}{ll}
d x & d y
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{d x}{d y}=d x^{2}+d y^{2} \\
\int d \sigma=\int \sqrt{d \mathbf{r}^{t} \mathbf{g} d \mathbf{r}}=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+y^{\prime}(x)^{2}} d x
\end{gathered}
$$

Applying the Euler-Lagrange equation to this shows that the shortest path between any two points is a straight line.

- Example: 4D Minkowski space in Cartesian coordinates $(c=1$ for simplicity)

$$
\mathbf{g}=\boldsymbol{\eta}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

$$
\begin{aligned}
d \tau^{2} & =-d \sigma^{2}=d \mathbf{x}^{t} \mathbf{g} d \mathbf{x}= \\
& =\left(\begin{array}{llll}
d x & d y & d z & d t
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
d x \\
d y \\
d z \\
d t
\end{array}\right) \\
& =d t^{2}-d x^{2}-x y^{2}-d z^{2}
\end{aligned}
$$

$$
\begin{aligned}
\Delta \tau & =\int d \tau=\int \sqrt{d t^{2}-d x^{2}-d y^{2}-d z^{2}}=\int \sqrt{1-\dot{x}^{2}-\dot{y}^{2}-\dot{z}^{2}} d t \\
& =\int \sqrt{1-u^{2}} d t=\int \frac{d t}{\gamma} .
\end{aligned}
$$

Applying the Euler-Lagrange equation to this shows that the extremal interval between any two events is a straight line though spacetime.

