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Department of Physics 

Physics 8.033 Out: Friday 6 October 2006 
Due: Friday 20 October 2006 

Problem Set 5

Due: Friday 20 October 2006 at 4:00PM. Please deposit the problem set in the appropriate 8.033 bin, 
labeled with name and recitation section number and stapled as needed (3 points). 

Readings: Relativistic Dynamics Chapters in Resnick and French. 

Problem 1: “The Great Neutron Shootout” (3+3+3+3+3 points) 

Sue and Jim are two experimenters at rest with respect to one another at different points in space. 
They “fire” neutrons at each other, each neutron leaving its “gun” with a relative speed of 0.60c. 
Jim makes five observations about what is going on: (a) “My separation from Sue is 10 km.” 
(b) “The speed of ‘my’ neutron is 0.60c.” (c) “Two of our neutrons have collided; relativistic 
momentum and kinetic energy are conserved.” (d) “After this collision, one of the neutrons was 
scattered through an angle of 30◦.” (e) “I am firing neutrons at the rate of 10,000 s−1.” 

For each of these observations, state the corresponding observation that would be reported by a 
third person (Sam, say), who is in a frame S chosen so that Sue’s neutrons are at rest in it. 

Problem 2: “A Ton of Sunlight” (3 points) 

The Sun radiates energy at the rate of 4.0×1026 W. How many “tons of sunlight” (mass equivalent) 
does the Earth intercept each day? 

Problem 3: “An Enormous Source of Energy” (3 points) 

Quasars are thought to be the nuclei of active galaxies in the early stages of their formation. A 
typical quasar radiates energy at the rate of 1041 W. At what rate is the mass of this quasar being 
reduced to supply this energy? Express your answer in solar mass units per year, where one solar 
mass unit, (smu=2 × 1030 kg), is the mass of our sun. 

Problem 4: (9 points) “Relativistic Transformation of Acceleration”: Starting from the definition of 
acceleration, a = du/dt, derive the x and y components of acceleration in an arbitrary inertial 
frame S� moving with speed v along the x-axis of S. The answers are: 

ax = 
a�x , (4.1)

γ3(1 + vu�x/c2)3 

a�y
ay = , (4.2)

γ2(1 + vu�x/c2)2 

where the expression for ay is valid only for the case where either u�y = 0 or a�x = 0. In general, 
the transformation of ay is rather messy. 

Problem 5: “Constant Acceleration”: (6 points) French, problem #7-8, Chapter 7, page 226. Hint: 
You should end up solving d(γu)/dt = g to find u(t); then integrate udt = dx to find x(t). 

Problem 6: “Relativistic Rocket Problem”: (3+3+6+6+3 points) 

(a). Show that in the rest frame of the rocket, for non-relativistic dynamics: 

ΔM0Vex = −M0Δu� (6.1) 
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or equivalently 

dM0 du0 
dt� 

Vex = −M0 dt� 
, (6.2) 

where M0 is the rest mass of the rocket, ΔM0 is the differential mass loss in the exhaust, Vex 

is the speed of the rocket exhaust (in the rocket’s frame, S�), and Δu� is the change in the 
rocket’s speed after ejecting ΔM0. This is correct unless Vex is comparable with the speed of 
light. 

(b). Consider first non-relativistic motion of the rocket in a fixed (stationary frame). Note that 
in the non-relativistic case a = a� and F = F �. Thus, the rocket equation in S is: 

dM0 du 
dt

Vex = −M0 dt
. (6.3) 

If the rate of mass loss in the exhaust is known as a function of time, then the above expression 
can be directly integrated to find u(t) since M0(t) is known. Whether or not the rate of 
exhaust ejection is known, the dt’s can be canceled on both sides and the equation integrated 
to find u as a function of the initial and final masses of the rocket. Show that this leads to: 

u = Vex ln (Minitial/Mfinal) . (6.4) 

(c). Suppose that the rocket in part (b) is firing its engine vertically in a gravitational field. 
Further assume that the atmospheric drag is negligible (not the case in the Earth’s atmo
sphere, but okay on the Moon), and that the rocket motor is on while the rocket covers a 
distance that is relatively short compared with the radius of the gravitating body—such that 
the acceleration due to gravity, g, can be taken to be approximately constant. Show that if 
the rocket starts from rest, and ejects its exhaust uniformly in time (i.e., dM0/dt = Ṁ0 = 
constant, and M0 = M0,initial + Ṁ0t), the rocket equation becomes: 

du 
= − 

VexṀ (6.5)
dt ˙Minitial + Mt 

− g. 

Show that if the rocket is fired for a total time T , the above equation is easily integrated to 
yield u(t): � � � � 

u(T ) = Vex ln 
Minitial 

˙ − gT = Vex ln 
Minitial − gT. (6.6)

Minitial + MT Mfinal 

(d). Next, consider the case where the rocket motion is at least somewhat relativistic, but the ex
haust velocity is not. Then, the equation in part (a) tells us that in S� the rocket acceleration 
is: 

a� = 
d
d
u

t�

� 
= − 

M

Vex

0 

d
d
M

t� 
0 
. (6.7) 

Now, transform the acceleration to the S frame to find: 

a = 
d
d
u

t 
= − 

γ

1 
3 M

Vex

0 

d
d
M

t� 
0 
. (6.8) 

From time dilation show that: 
du 1 Vex dM0 

dt 
= − 

γ2 M0 dt
. (6.9) 

Finally, cancel the dt’s and integrate to find: � �2V/c 
Mi 

u 
= � 

Mf 
− 1 

, (6.10)�2V/c c Mi + 1 Mf 

where V , Mi, and Mf are shorthand for Vex, Minitial, and Mfinal, respectively. 
(e). Relating the answers from parts (b) and (d): Show that for exhaust speeds much lower than 

c, the answer from part (d) matches the non-relativistic expression in part (b). Show that 
unless Vex is a substantial fraction of the speed of light, the rocket will never attain truly 
relativistic speeds. 
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Optional Problem 7: “Human Power Output Per Unit Mass vs. That of the Sun”: Suppose that a 
“typical” person of mass ∼ 60 kg, puts out 60 Watts of power while at rest. By contrast, the Sun 
has a luminosity (power output) of 4 × 1026 Watts, and mass of 2 × 1030 kg. Compare the power 
generated per unit mass of the Sun and a person. How do you make sense of this result? 

Optional Problem 8: “Powering the Sun by Gravitational Potential Energy”: Suppose that the lu
minosity of the Sun were powered by the release of gravitational potential energy only. Its power 
output is 4 × 1026 

to half that value, how long would the contraction have to last in order to supply the observed 
Watts. If the Sun contracted from its current radius of R = 7 × 108 m, 

M = 2 × 1030 kg, and R is the radius at any given time. 

2power output? Assume that the gravitational potential energy of the Sun is , where GM /R∼ � 

Optional Problem 9: “Snell’s Law Derived From Fermat’s Principle”: Fermat’s Principle states that 
the path of a light ray from one point to another is that which requires the least time. Suppose 
that light is emitted by a source at (x = 0, y = y0) in air, heads in the direction of a semi-infinite 
slab of glass located at y = 0, and enters the glass such as to reach the point (x = x0, y = −y0). 
The geometry is shown in the diagram. Take the speed of light to be c in air, and c/n in glass, 
where n is called the “index of refraction”, and is typically a number in the range of 1.4-1.6. 

Assume, from Fermat’s Principle, the obvious result that within any given medium (i.e., of fixed n) 
light travels in a straight line. Then use Fermat’s Principle to prove Snell’s law: sin θi = n sin θt. 
You need not bother with the calculus of variations for this problem. 

Hint: take the distances traveled to be y0/ cos θi and y0/ cos θt in the air and glass, respectively. 
Then note that x0 = y0(tan θi + tan θt), which defines the constraint between θi and θt. 

Optional Problem 10: “Lagrange’s Equations of Motion”: Marion & Thornton’s book on “Classical 
Dynamics” introduces Lagrangian mechanics with the following two instructive statements: 

1. “Minimal principles in physics have a long and interesting history.	 The search for such prin
ciples is predicated on the notion that nature always minimizes certain important quantities 
when a physical process takes place.” 

2. In two papers in 1834 and 1835, Hamilton announced the dynamical principle on which it is 
possible to base all of mechanics and, indeed, most of classical physics. Hamilton’s Principle 
may be stated as follows: “Of all the possible paths along which a dynamical system may move 
from one point to another within a specified time interval (consistent with any constraints), 
the actual path followed is that which minimizes the time integral of the difference between 
the kinetic and potential energies.” 
Let’s use this principle and the Euler equations for extremizing path integrals to derive 
Lagrange’s equations of motion and solve a couple of simple mechanics problems. First, 
identify the “Lagrangian” as the difference between the kinetic and potential energies: 

L ≡ K − V,	 (10.1) 

where K and V are the kinetic and potential energies, respectively. Show that if K and V 
depend on coordinates qk, then the equations that satisfy Hamilton’s principle are: 

∂L d ∂L 
∂qk 

− 
dt ∂q̇

= 0.	 (10.2) 
k 

(a). As a first illustrative mechanics problem, consider a mass M suspended (in gravity) on a 
spring with a spring constant k. Call the vertical direction z. Take the position of the mass 
to be z = 0 when the spring is neither stretched nor compressed. What is the potential energy 
as a function of z. Write down the kinetic energy in terms of ż. Use Lagrange’s equation to 
find the equation of motion of the mass. How does the equation compare with that found by 
starting with F = ma? 

(b). As a second illustrative problem, consider a pendulum consisting of a mass, M , suspended 
on a string of length l. Dispace the pendulum by an angle φ with respect to the vertical and 
release the mass. Use Lagrange’s equation to describe the subsequent motion of the mass. 
The problem is effectively one-dimensional in that a complete description of the motion is 
given in terms of a single dependent variable (φ) and its derivative ( φ̇). Simple analytic 
solutions to this equation are found by making a small-angle approximation, i.e., sin φ ≈ φ. 
You also made the same approximation in the 8.01 version of this problem. 
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Feedback: Roughly how much time did you spend on this problem set? 
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