
Chapte  4 

Symmet ies 

Symmetry  s an  mportant concept  n phys cs and mathemat cs (and art!). In th s chapter, we 
show how the mathemat cs of symmetry can be used to s mpl fy the analys s of the normal 
modes of symmetr cal systems. 

P eview 

In th s chapter, we  ntroduce the formal concept of symmetry or  nvar ance. 

1. We w ll work out some examples of the use of symmetry arguments to s mpl fy the 
analys s of osc llat ng systems. 

4.1 Symmet ies 

Let us return to the system of two  dent cal pendulums coupled by a spr ng, d scussed  n 
chapter 3,  n (3.78)-(3.93). Th s s mple system has more to teach us. It  s shown  n figure 4.1. 
As  n (3.78)-(3.93), both blocks have mass , both pendulums have length and the spr ng 
constant  s . Aga n we label the small d splacements of the blocks to the r ght, and . 

We found the normal modes of th s system  n the last chapter. But  n fact, we could have 
found them even more eas ly by mak ng use of the symmetry of th s system. If we reflect 
th s system  n a plane m dway between the two blocks, we get back a completely equ valent 
system. We say that the system  s “ nvar ant” under reflect ons  n the plane between the 
blocks. However, wh le the phys cs  s unchanged by the reflect on, our descr pt on of the 
system  s affected. The coord nates get changed around. The reflected system  s shown  n 
figure 4.2. Compar ng the two figures, we can descr be the reflect on  n terms of  ts effect on 
the d splacements, 

(4.1) 

93 
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1 2 

F gure 4.1: A system of coupled pendulums. D splacements are measured to the r ght, as 
shown. 

2 1 

F gure 4.2: The system of coupled pendulums after reflect on  n the plane through between 
the two. 
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In part cular,  f 

(4.2) 

 s a solut on to the equat ons of mot on for the system, then the reflected vector, 

(4.3) 

must also be a solut on, because the reflected system  s actually  dent cal to the or g nal. 
Wh le th s must be so from the phys cs,  t  s useful to understand how the math works. To 
see mathemat cally that (4.3)  s a solut on, define the symmetry matr x, , 

(4.4) 

so that  s related to by matr x mult pl cat on: 

(4.5) 

The mathemat cal statement of the symmetry  s the follow ng cond t on on the and 
matr ces:1 

(4.6) 

and 
(4.7) 

You can check expl c tly that (4.6) and (4.7) are true. From these equat ons,  t follows that  f 
 s a solut on to the equat on of mot on, 

(4.8) 

then  s also. To see th s expl c tly, mult ply both s des of (4.8) by to get 

Then us ng (4.6) and (4.7)  n (4.9), we get 

(4.9) 

1Two matr ces, and , that sat sfy are sa d to “commute.” 

(4.10) 
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The matr x  s a constant,  ndependent of t me, thus we can move  t through the t me der va-

t ves  n (4.10) to get 

(4.11) 

But now us ng (4.5), th s  s the equat on of mot on for , 

(4.12) 

Thus, as prom sed, (4.6) and (4.7) are the mathemat cal statements of the reflect on symmetry 
because they  mply, as we have now seen expl c tly, that  f  s a solut on,  s also. 

Note that from (4.6), you can show that 

(4.13) 

by mult ply ng on both s des by . Then (4.13) can be comb ned w th (4.7) to g ve 

(4.14) 

We w ll use th s later. 
Now suppose that the system  s  n a normal mode, for example 

(4.15) 

Then  s another solut on. But  t has the same t me dependence, and thus the same an-

gular frequency. It must, therefore, be proport onal to the same normal mode vector because 
we already know from our prev ous analys s that the two angular frequenc es of the normal 
modes of the system are d fferent, . Anyth ng that osc llates w th angular frequency, 

, must be proport onal to the normal mode, : 

(4.16) 

Thus the symmetry  mpl es 
(4.17) 

That  s, we expect from the symmetry that the normal modes are also e genvectors of . Th s 
must be true whenever the angular frequenc es are d st nct. In fact, we can see by check ng 
the solut ons that th s  s true. The proport onal ty constant  s just , 

and s m larly 

(4.18) 

(4.19) 
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Furthermore, we can run the argument backwards. If  s an e genvector of the symmetry 
matr x , and  f all the e genvalues of are d fferent, then because of the symmetry, (4.13), 

 s a normal mode. To see th s, cons der the vector and act on  t w th the matr x 
. Us ng (4.14), we see that  f 

(4.20) 

then 
(4.21) 

In words, (4.21) means that  s an e genvector of w th the same e genvalue as . 
But  f the e genvalues of are all d fferent, then must be proport onal to , wh ch 
means that  s a normal mode. Mathemat cally we could say  t th s way. If the e genvectors 
of are w th e genvalues , then 

and are normal modes. (4.22) 

It turns out that for the symmetr es we care about, the e genvalues of are always all d ffer-
2ent.

Thus even if we had not known the solution, we could have used (4.20) to dete mine 
the no mal modes without bothe ing to solve the eigenvalue p oblem fo  the 
mat ix! Instead of solv ng the e genvalue problem, 

(4.23) 

we can  nstead solve the e genvalue problem 

(4.24) 

It m ght seem that we have just traded one e genvalue problem for another. But  n fact, 
(4.24)  s eas er to solve, because we can use the symmet y to dete mine the eigenvalues, 

, without eve  computing a dete minant. The reflect on symmetry has the n ce property 
that  f you do  t tw ce, you get back to where you started. Th s  s reflected  n the property of 
the matr x , 

(4.25) 

In words, th s means that apply ng the matr x tw ce g ves you back exactly the vector that 
you started w th. Mult ply ng both s des of the e genvalue equat on, (4.24), by , we get 

(4.26) 

2See the d scuss on on page 103. 
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wh ch  mpl es 
or (4.27) 

Th s saves some work. Once the e genvalues of are known,  t  s eas er to find the e gen-

vectors of . But because of the symmetry, we know that the e genvectors of w ll also be 
the normal modes, the e genvectors of . And once the normal modes are known,  t 
 s stra ghtforward to find the angular frequency by act ng on the normal mode e genvectors 
w th . 

What we have seen here,  n a s mple example,  s how to use the symmetry of an osc llat ng 
system to determ ne the normal modes. In the rema nder of th s chapter we w ll general ze 
th s techn que to a much more  nterest ng s tuat on. The  dea  s always the same. 

We can find the no mal modes by solving the eigenvalue p oblem fo  
the symmet y mat ix, , instead of . And we can use the sym- (4.28) 
met y to dete mine the eigenvalues. 

4.1.1 Beats 

4-1 
The beg nn ngs of wave phenomena can already be seen  n th s s mple example. Suppose that 
we start the system osc llat ng by d splac ng block 1 an amount w th block 2 held fixed  n 
 ts equ l br um pos t on, and then releas ng both blocks from rest at t me . The general 
solut on has the form 

(4.29) 

The pos t ons of the blocks at g ves the matr x equat on: 

(4.30) 

or 

(4.31) 

Because both blocks are released from rest, we know that . We can see th s  n 
the same way by look ng at the  n t al veloc t es of the blocks: 

(4.32) 

or 

(4.33) 

http:sym-(4.28
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Thus 

(4.34) 

The remarkable th ng about th s solut on  s the way  n wh ch the energy gets completely 
transferred from block 1 to block 2 and back aga n. To see th s, we can rewr te (4.34) as 
(us ng (1.64) and another s m lar  dent ty) 

(4.35) 

where 
(4.36) 

Each of the blocks exh b ts “beats.” They osc llate w th the average angular frequency, , 
but the ampl tude of the osc llat on changes w th angular frequency . After a t me , the 
energy has been almost ent rely transferred from block 1 to block 2. Th s behav or  s shown 
 n program 4-1 on your program d sk. Note how the beats are produced by the  nterplay 
between the two normal modes. When the two modes are  n phase for one of the blocks so 
that the block  s mov ng w th max mum ampl tude, the modes are out of phase for the 
other block, so the other block  s almost st ll. 

The complete transfer of energy back and forth from block 1 to block 2  s a feature both 
of our spec al  n t al cond t on, w th block 2 at rest and  n  ts equ l br um pos t on, and of 
the spec al form of the normal modes that follows from the reflect on symmetry. As we w ll 
see  n more deta l later, th s  s the same k nd of energy transfer that takes place  n wave 
phenomena. 

4.1.2 A Less T ivial Example 

4-2 
Take a hacksaw blade, fix one end and attach a mass to the other. Th s makes a n ce osc llator 
w th essent ally only one degree of freedom (because the hacksaw blade w ll only bend back 
and forth eas ly  n one way). Now take s x  dent cal blades and fix one end of each at a s ngle 
po nt so that the blades fan out at angles from the center w th the r or entat on such that 
they can bend back and forth in the plane fo med by the blades. If you put a mass at the end 
of each,  n a hexagonal pattern, you w ll have s x uncoupled osc llators. But  f  nstead you put 
 dent cal magnets at the ends, the osc llators w ll be coupled together  n some compl cated 
way. You can see what the osc llat ons of th s system look l ke  n program 4-2 on the program 
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F gure 4.3: A system of s x coupled hacksaw blade osc llators. The arrows  nd cate the 
d rect ons  n wh ch the d splacements are measured. 

d sk. If the d splacements from the symmetr cal equ l br um pos t ons are small, the system 
 s approx mately l near. Desp te the apparent complex ty of th s system, we can wr te down 
the normal modes and the correspond ng angular frequenc es w th almost no work! The tr ck 
 s to make clever use of the symmetry of th s system. 

Th s system looks exactly the same  f we rotate  t by about  ts center. We should, 
therefore, take pa ns to analyze  t  n a man festly symmetr cal way. Let us label the masses 1 
through 6 start ng any place and go ng around counterclockw se. Let be the counterclock-

w se d splacement of the th block from  ts equ l br um pos t on. As usual, we w ll arrange 
these coord nates  n a vector:3 

(4.37) 

The symmetry operat on of rotat on  s  mplemented by the cycl c subst tut on 

(4.38) 

3From here on, we w ll assume that the reader  s suffic ently used to complex numbers that  t  s not necessary 
to d st ngu sh between a real coord nate and a complex coord nate. 
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Th s can be represented  n a matr x notat on as 

where the symmetry matr x, ,  s 

(4.39) 

(4.40) 

Note that the 1s along the next-to-d agonal of the matr x, ,  n (4.40)  mplement the subst -

tut ons 
(4.41) 

wh le the 1  n the lower left-hand corner closes the c rcle w th the subst tut on 

(4.42) 

The symmetry requ res that the matr x for th s system has the follow ng form: 

(4.43) 

Not ce that all the d agonal elements are the same ( ), as they must be because of the sym-

metry. The th d agonal element of the matr x  s m nus the force per un t d splacement on 
the th mass due to  ts d splacement. Because of the symmetry, each of the masses behaves 
 n exactly the same way when  t  s d splaced w th all the other masses held fixed. Thus all the 
d agonal matr x elements of the matr x, , are equal. L kew se, the symmetry ensures 
that the effect of the d splacement of each block, , on  ts ne ghbor, (  f , 

 f — see (4.42)),  s exactly the same. Thus the matr x elements along the 
next-to-d agonal ( ) are all the same, along w th the s  n the corners. And so on! The 
matr x then sat sfies (4.7), 

(4.44) 

wh ch, as we saw  n (4.13)-(4.12),  s the mathemat cal statement of the symmetry. Indeed, 
we can go backwards and work out the most general symmetr c matr x cons stent w th (4.44) 
and check that  t must have the form, (4.43). You w ll do th s  n problem (4.4). 

http:4.13)-(4.12
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Because of the symmetry, we know that  f a vector  s a normal mode, then the vector 
 s also a normal mode w th the same frequency. Th s  s phys cally obv ous. If the system 

osc llates w th all  ts parts  n step  n a certa n way,  t can also osc llate w th the parts rotated by 
, but otherw se mov ng  n the same way, and the frequency w ll be the same. Th s suggests 

that we look for normal modes that behave s mply under the symmetry transformat on S. In 
part cular,  f we find the e genvectors of and d scover that the e genvalues of are all 
d fferent, then we know that all the e genvectors are normal modes, from (4.22). In the 
prev ous example, we found modes that went  nto themselves mult pl ed by under the 
symmetry. In general, however, we should not expect the e genvalues to be real because 
the modes can  nvolve complex exponent als. In th s case, we must look for modes that 

4correspond to complex e genvalues of , 

(4.45) 

As above  n (4.25)-(4.27), we can find the poss ble e genvalues by us ng the symmetry. Note 
that because s x rotat ons get us back to the start ng po nt, the matr x, , sat sfies 

(4.46) 

Because of (4.46),  t follows that . Thus  s a s xth root of one, 

(4.47) 

Then for each , there  s a normal mode 

(4.48) 

Expl c tly, 

(4.49) 

If we take , we can solve for all the other components, 

(4.50) 

4Even th s  s not the most general poss b l ty. In general, we m ght have to cons der sets of modes that go 
 nto one another under matr x mult pl cat on. That  s not necessary here because the symmetry transformat ons 
all commute w th one another. 

http:4.25)-(4.27
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Thus 

(4.51) 

Now to determ ne the angular frequenc es correspond ng to the normal modes, we have 
to evaluate 

(4.52) 

S nce we already know the form of the normal modes, th s  s stra ghtforward. For example, 
we can compare the first components of these two vectors: 

(4.53) 

Not ce that and . Th s had to be the case, because the correspond ng normal 
modes are complex conjugate pa rs, 

(4.54) 

Any complex normal mode must be part of a pa r w th  ts complex conjugate normal mode 
at the same frequency, so that we can make real normal modes out of them. Th s must be 
the case because the normal modes descr be a real phys cal system whose d splacements are 
real. The real modes are l near comb nat ons (see (1.19)) of the complex modes, 

(4.55) 

These modes can be seen  n program 4-2 on the program d sk. See append x A and your 
program  nstruct on manual for deta ls. 

Not ce that the real solut ons, (4.55), are not e genvectors of the symmetry matr x, . Th s 
 s poss ble because the angular frequenc es are not all d fferent. However, the e genvalues of 

are all d fferent, from (4.47). Thus even though we can construct normal modes that are 
not e genvectors of ,  t  s st ll true that all the eigenvecto s of a e no mal modes. Th s 
 s what we use  n (4.48)-(4.50) to determ ne the . 

We note that (4.55)  s another example of a very  mportant pr nc ple of (3.117) that we 
w ll use many t mes  n what follows: 

If and are normal modes of a system with the same an-
gula  f equency, ,  s (4.56) 
also a normal mode w th the same angular frequency. 

, then any l near comb nat on, 

http:4.48)-(4.50
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Normal modes w th the same frequency can be l nearly comb ned to g ve new normal modes 
(see problem 4.3). On the other hand, a l near comb nat on of two normal modes w th diffe -
ent frequenc es g ves noth ng very s mple. 

The techn ques used here could have been used for any number of masses  n a s m lar 
symmetr cal arrangement. W th masses and symmetry under rotat on of rad ans, 
the th roots of 1 would replace the 6th roots of one  n our example. Symmetry arguments 
can also be used to determ ne the normal modes  n more  nterest ng s tuat ons, for example 
when the masses are at the corners of a cube. But that case  s more compl cated than the 
one we have analyzed because the order of the symmetry transformat ons matters — the 
transformat ons do not commute w th one another. You may want to look at  t aga n after you 
have stud ed some group theory. 

Chapte  Checklist 

You should now be able to: 

1. Apply symmetry arguments to find the normal modes of systems of coupled osc llators 
by find ng the e genvalues and e genvectors of the symmetry matr x. 

P oblems 

4.1. Show expl c tly that (4.7)  s true for the matr x, (4.43), of system of figure 4.3 
by find ng and . 

4.2. Cons der a system of s x  dent cal masses that are free to sl de w thout fr ct on on 
a c rcular r ng of rad us R and each of wh ch  s connected to both  ts nearest ne ghbors by 
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 dent cal spr ngs, shown below  n equ l br um: 

a. Analyze the poss ble mot ons of th s system  n the reg on  n wh ch  t  s l near (note 
that th s  s not qu te just small osc llat ons). To do th s, define appropr ate d splacement 
var ables (so that you can use a symmetry argument), find the form of the K matr x and then 
follow the analys s  n (4.37)-(4.55). If you have done th s properly, you should find that one 
of the modes has zero frequency. Expla n the phys cal s gn ficance of th s mode. Hint: Do 
not attempt to find the form of the matr x d rectly from the spr ng constants of the spr ng 
and the geometry. Th s  s a mess. Instead, figure out what  t has to look l ke on the bas s of 
symmetry arguments. You may want to look at append x c. 

b. If at , the masses are evenly d str buted around the c rcle, but every other mass 
 s mov ng w th (counterclockw se) veloc ty wh le the rema n ng masses are at rest, find and 
descr be  n words the subsequent mot on of the system. 

4.3. 

a. Prove (4.56). 

b. Prove that  f and are normal modes correspond ng to diffe ent angular frequen-

c es, and respect vely, where , then  s not a normal mode unless or 
 s zero. Hint: You w ll need to use the fact that both and are nonzero vectors. 

4.4. Show that (4.43)  s the most general symmetr c matr x sat sfy ng (4.44). 

http:4.37)-(4.55
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