
Chapter 6 

Continuum Limit and Fourier Series 

“Continuous” is in the eye of the beholder. Most systems that we think of as continuous are 
actually made up of discrete pieces. In this chapter, we show that a discrete system can look 
continuous at distance scales much larger than the separation between the parts. We will also 
explore the physics and mathematics of Fourier series. 

Preview 

In this chapter, we discuss the wave equation, the starting point for some other treatments of 
waves. We will get it as natural result of our general principles of space translation invariance 
and local interactions applied to continuous systems. 

i. We will study the discrete space translation invariant systems discussed in the previous 
chapter in the limit that the separation between parts goes to zero. We will argue that 
the generic result is a continuous system obeying the wave equation. 

ii. The continuum limit of the beaded string is a continuous string with transverse oscil-
lations. We will discuss its normal modes for a variety of boundary conditions. We 
will see that the normal modes of a continuous space translation invariant system are 
the same as those of a finite system. The only difference is that there are an infinite 
number of them. The sum over the infinite number of normal modes required to solve 
the initial value problem for such a continuous system is called a Fourier series. 

6.1 The Continuum Limit 

Consider a discrete space translation invariant system in which the separation between neigh-
boring masses is a. If a is very small, the discrete system looks continuous. To understand 
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this statement, consider the action of the M−1K matrix, (5.8), in the notation of the last 
chapter in which the degrees of freedom are labeled by their equilibrium positions. The ma-
trix M−1K acts on a vector to produce another vector. We have replaced our vectors by 
functions of x, so M−1K is something that acts on a function A(x) to give another function. 
Let’s call it M−1KA(x). It is easiest to see what is happening for the beaded string, for 
which B = C = T/ma. Then 

M−1KA(x) = 
µ 

T 
¶ 

(2A(x) − A(x + a) − A(x − a)) . (6.1) 
ma

So far, (6.1) is correct for any a, large or small. 
Whenever you say that a dimensional quantity, like the length a, is large or small, you 

must specify a quantity for comparison. You must say large or small compared to what?1 In 
this case, the other dimensional quantity in the problem with the dimensions of length is the 
wavelength of the mode that we are interested in. Now here is where small a enters. If we are 
interested only in modes with a wavelength λ = 2π/k that is very large compared to a, then 
ka is a very small dimensionless number and A(x + a) is very close to A(x). We can expand 
it in a Taylor series that is rapidly convergent. Expanding (6.1) in a Taylor series gives 

Ta ∂2A(x)
M−1K A(x) = − + · · · (6.2) 

m ∂x2 

where the · · · represent higher derivative terms that are smaller by powers of the small number 
ka than the first term in (6.2). In the limit in which we take a to be really tiny (always 
compared to the wavelengths we want to study) we can replace m/a by the linear mass 
density ρL, or mass per unit length of the now almost continuous string and ignore the higher 
order terms. In this limit, we can replace the M−1K matrix by the combination of derivatives 
that appear in the first surviving term of the Taylor series, (6.2), 

T ∂2 

M−1K → − . (6.3)
ρL ∂x2 

Then the equation of motion for ψ(x, t) becomes the wave equation: 

ρL 

∂2 T 
∂t2 ρL 

ψ(x, t) = 
∂2 

∂x2 ψ(x, t) . (6.4) 

The dispersion relation is 

ω2 = 
T 

k2 . (6.5) 

1A dimensionless quantity does not require this step. A dimensionless number is large if it is much greater 
than one and small if it is much smaller than one. 
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ikxThis can be seen directly by plugging the normal mode e into (6.4), or by taking the 
limit of (5.37)-(5.38) as a → 0. Equation (6.5) is the dispersion relation for the ideal 
continuous string. The quantity, 

p
T/ρL, has the dimensions of velocity. It is called the 

“phase velocity”, vϕ. As we will discuss in much more detail in chapter 8 and following, this 
is the speed with which traveling waves move on the string. 

We will call the approximation of replacing a discrete system with a continuous system 
that looks approximately the same for k À 1/a the continuum approximation. Really, all 
of the mechanical systems that we will consider are discrete, at least on the atomic level. 
However, if we are concerned only about waves with macroscopic wavelengths, the contin-
uum approximation is a very good one. 

6.1.1 Philosophy and Speculation 

Our treatment of the wave equation in (6.4) is a little unusual. In many treatments of wave 
phenomena, the wave equation is given a place of honor. In fact, the wave equation is only a 
restatement of the dispersion relation, (6.5), which is usually just an approximation to what 
is really going on. Almost all of the systems that we usually treat with the wave equation are 
actually discrete at very small distances. We cannot really get all the way to the continuum 
limit that gives (6.5). Light waves, which we will study in the chapters to come, for all we 
know, may be an exception to this rule, and be completely continuous. However, we don’t 
really have the right to assume even that. It could be that at very short distances, far below 
anything we can look at today, the nature of light and even of space and time changes in 
some way so that space and time themselves have some tiny characteristic length scale a. 
The analysis above shows that this doesn’t matter! As long as we can only look at space 
and time at distances much larger than a, they look continuous to us. Then because we are 
scientists, concerned about how the world looks in our experiments, and not how it behaves 
in some ideal regime far beyond what we can probe experimentally, we might as well treat 
them as continuous. 

6.2 Fourier series 

6.2.1 The String with Fixed Ends 

. 

....................................................................

......
........
.............................................................................
...................................................................................................... ... . 6-1 

If we stretch our continuous string between fixed walls so that ψ(0) = ψ(`) = 0, the modes 
are given by (5.33) and (5.34), just as for the discrete system. The only difference is that now 
n runs from 1 to ∞, or at least to such large n that the wavelength 2π/k = 2`/n is so small 
that the continuum approximation breaks down. This follows from (5.28), which because k 
is real here becomes 

− 
π 

< k ≤ 
π 

. (6.6) 
a a 
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As a → 0 the allowed range of k increases to infinity. 
These standing wave modes are animated in program 6-1 on the program disk, assuming 

the dispersion relation, (6.5). 
We can now discuss the physical basis of the Fourier series. In (3.77) in chapter 3, we 

showed that the normal modes for a discrete system are linearly independent and complete. 
That means that any displacement of the discrete system can be written as a unique linear 
combination of the normal modes. Physically, this must be so to allow us to solve the initial 
value problem. Our picture of the continuous string is a limit of the beaded string in which 
the number of beads, N , goes to infinity and the beads get infinitely close together. For each 
N , the most general displacement of the system can be expanded as a linear combination of 
the N normal modes. If the limit N →∞ is reasonably well behaved, we might expect that 
the most general displacement of the limiting continuous string could be expanded in terms 
of the infinite number of normal modes of the continuous system. This expansion is a Fourier 
series. The displacement of the continuous system is described by a function of the position 

X 

along the string. If the function is not too discontinuous, the expansion in normal modes 
works fine. 

Consider the continuous string, stretched between fixed walls at x = 0 and x = `. The 
transverse displacement of this system at any time is described by a continuous function of 
x, ψ(x) with 

ψ(0) = ψ(`) = 0 . (6.7) 

Thus we expect from the argument above that we can express any function that is not too 
discontinuous and satisfies (6.7) as a sum of the normal modes given by (5.33) and (5.34), 

∞ nπx 
ψ(x) = sin (6.8)cn . 

` 
n=1 

The constants, cn, are called the “Fourier coefficients.” They can be found using the following 
identity: ⎧

⎪⎨
⎪

Z 0`/2 if n = n ` nπx n0πx 
dx sin sin (6.9)= 

` ` 0 if n 6 0= n0 ⎩ 

so that Z2 ` nπx 
dx sin ψ(x) . (6.10)

` 
cn = 

` 0 

This is just the method of normal coordinates adapted to the continuous situation. 

6.2.2 Free Ends 

.............................
...............................................................................
........
................................................................................................................................................. ... .. 6-2 

Equation (6.8) is called the Fourier series for a function satisfying (6.7). Other boundary 
conditions yield different series. For example, consider a string with the x = 0 end fixed at 
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Figure 6.1: A continuous string with one end free to oscillate in the transverse direction. 

z = 0. Suppose that the other end, at x = ` is attached to a massless ring that is free to slide 
along a frictionless rod in the z direction, as shown in figure 6.1. We say that this system 
has one “free end” because the end at x = ` is free to slide in the transverse direction, even 
though it is fixed in the x direction. 

Because the rod is frictionless, the force on the ring due to the rod must have no com-
ponent in the z direction. But because the ring is massless, the total force on the ring must 
vanish. Therefore, the force on the ring due to the string must have no component in the z 
direction. That implies that the string is horizontal at x = `. But the shape of the string at 
any given time is given by the graph of the transverse displacement, ψ(x, t) versus x.2 Thus 
the slope of ψ(x, t) at x = ` must vanish. Therefore, the appropriate boundary conditions for 
the displacement is 

∂ 
ψ(0, t) = 0 , ψ(x, t)| = 0 . (6.11)x=` ∂x 

This implies that the normal modes also satisfy similar boundary conditions: 

An(0) = 0 , A0 (`) = 0 . (6.12)n

The first condition implies that the solution must have the form 

An(x) ∝ sin knx (6.13) 

for some kn. The second condition determines the possible values of kn. It implies that 
sin knx must have a maximum or minimum at x = ` which, in turn, implies that 

π 
kn ̀  = + nπ (6.14)

2 
2This is why transverse oscillations are easier to visualize than longitudinal oscillations — compare with (7.5). 
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where n is a nonnegative integer (nonnegative because we can choose all the kn > 0 in 
(6.13) — negative values just change the sign of An(x) and do not lead to new solutions). 
The solutions have the form 

sin 
µ 

(2n + 1)πx
¶ 

for n = 0 to ∞. (6.15)
2` 

These normal modes are animated in program 6-2. With these normal modes, we can de-
scribe an arbitrary function, ψ(x), satisfying the boundary conditions for this system, (6.11). 

ψ(0) = 0 , ψ0(`) = 0 . (6.16) 

Thus for such a function, we can write 

∞
sin 

µ 
(2n + 1)πx

¶
ψ(x) = 

X 
cn (6.17)

2` 
n=1 

where 
`2 

Z 
dx sin 

µ 
(2n + 1)πx

¶
cn = ψ(x) . (6.18)

` 0 2` 

6.2.3 Examples of Fourier Series 

.........................................................................................
.............................

...............................................................................
........
........................................................ ... .. 6-3 

Let us find the Fourier coefficients for the following function, defined in the interval [0,1]: 
⎧ 

x for x ≤ w , 
⎪⎪⎪⎪⎨

ψ(x) = (6.19) 
w(1 − x) 

for x > w . 
⎪⎪⎪⎪⎩ 

1 − w 

For definiteness, we will take w = 0.75, so the function ψ(x) has the form shown in fig-
ure 6.2. 

We compute the Fourier coefficients using (6.10). Because ̀ = 1, this has the following 
form (see problem (6.2)): 

Z 1 
cn = dx sin nπx ψ(x) 

0 

w w 
Z 1 

= 
Z 

dx x sin nπx + dx (1 − x) sin nπx (6.20) 
0 1 − w w 

sin nπw 
= 

(1 − w)n2π2 . 
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Figure 6.2: The function ψ(x) for w = 0.75. 
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Figure 6.3: The first term in the Fourier series for ψ(x). The dotted line is ψ(x). 

We can reconstruct the function, ψ(x), as a sum over the normal modes of the string. Let 
us look at the first few terms in the series to get a feeling for how this works. The first term 
in the sum, for w = 0.75, is shown in figure 6.3. This is a lousy approximation, necessarily, 
because the function is not symmetrical about x = 1/2, while the first term in the sum is 
symmetrical. The first two terms are shown in figure 6.4. This looks much better. 

The first six terms are shown in figure 6.5. This is now a pretty good approximation 
except where the function has a kink. 

What is going on here is that if we include terms in the Fourier series only up to n = N , 
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Figure 6.4: The sum of the first two terms in the Fourier series for ψ(x). The dotted line is 
ψ(x). 
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Figure 6.5: The sum of the first six terms in the Fourier series for ψ(x). The dotted line is 
ψ(x). 

the truncated Fourier series 
N

ψ(x) = 
X 

cn sin nπx (6.21) 
n=1 

does not include any modes with very small wavelengths. The smallest wavelength that 
appears (for the highest angular wave number) is 2/N (no dimensions here because we took 
a = 1). Thus while the Fourier series can describe any features of the shape of the function 
that are larger than 2/N , there is no way that it can pick up features that are much smaller. In 
this example, because the function has an infinitely sharp kink, the Fourier series never gets 
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very good near x = w. However, eventually the discrepancy is squeezed into such a small 
region around the kink that the result will look OK to the naked eye. 
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Figure 6.6: The first two terms in the Fourier series for ψ(x) and their sum. 

You can see how this works in more detail by studying figure 6.6. The curve of long 
dashes is the first term in the Fourier series. Evidently, it is less than the function, ψ(x) (the 
dotted triangle), for large x and greater than ψ(x) for small x. The sign and magnitude of the 
second term in the Fourier series, the curve of short dashes in figure 6.6, is chosen to make 
up for this discrepancy, so that the sum (the solid curve) is much closer to the actual function. 
The same process is repeated over and over again as you go to higher order in the truncated 
Fourier series. 

You can play with the truncated Fourier series for the function ψ(x) in program 6-3. This 
program allows you to vary the parameter w, and also the number of terms in the Fourier 
series. You should look at what happens near w = 1. You might think that this would cause 
problems for the Fourier series because the (1 − w) in the denominator of (6.20) goes to zero. 
However, the limit is actually well behaved because sin nπω also goes to zero as w → 0. 
Nevertheless, the Fourier series has to work hard for w = 1 to reproduce a function that does 
not go to zero for x = 1 as a sum of sine functions, each of which do vanish at x = 1. This 
difficulty is reflected in the wiggles near x = 1 for any reasonable number of terms in the 
Fourier series. 
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6.2.4 Plucking a String 

.............................
...............................................................................
........
............................................................................................................................................ 6-4..... ... .. 

Let us now use this mathematics to solve a physics problem. We will solve the initial value 
problem for the string with fixed end for a particular initial shape. The initial value problem 
here is almost exactly like that discussed in chapter 3, (3.98)-(3.100), for a system with a 
finite number of degrees of freedom. The only difference is that now, because the number of 
degrees of freedom is infinite, the sum over modes runs to infinity. You shouldn’t worry about 
the fact that the number of modes is infinite. What that “infinity” really means is “larger than 
any number we are going to care about.” In practice, as we saw in the examples above, the 
higher modes eventually don’t make much difference. They are associated with smaller and 
smaller features of the shape. When we say that the system is continuous and that it has an 
infinite number of degrees of freedom, we are actually assuming that the smallest features 
that we care about in the waves are still much larger than the distance between pieces of the 
system, so that we can truncate our Fourier series far below the limit and still have a good 
approximate description of the motion. 

Suppose we pluck the string. Specifically, suppose that the string has linear mass density 
ρL, tension T , and fixed ends at x = 0 and ̀ . Suppose further that at time t = 0 the string is 
at rest, but pulled out of its equilibrium position into the shape, ψ(x), given by (6.19). If the 
string is then released at t = 0, we can find the subsequent motion by summing over all the 
normal modes with fixed coefficients multiplied by cos ωnt and/or sin ωnt, where ωn is the 

nπfrequency of the mode sin nπx with k = (the frequency is given by (6.5))` ` s 
T 

s 
T nπ 

ωn = kn = . (6.22)
ρL ρL ` 

In this case, only the cos ωnt terms appear, because the velocity is zero at t = 0. Thus we 
can write ∞ nπx 

ψ(x, t) = 
X 

cn sin cos ωnt . (6.23)
` 

n=1 

This satisfies the boundary conditions at t = 0, by virtue of the Fourier series, (6.8). The 
disadvantage of (6.23) is that we are left with an infinite sum. For the simple dispersion 
relation, (6.5), there are other ways to solve this problem that we will discuss later when we 
learn about traveling waves. However, the advantage of the solution (6.23) is that it does not 
depend on the dispersion relation. 

We can solve the problem approximately using (6.23) by adding up only the first few 
terms of the series. The computer can do this quickly. In program 6-4, the first twenty terms 
of the series are shown for w = 1/2 (and the dispersion relation still given by (6.5)). The 
result is amazingly simple. Check it out! Program 6-5 is the same idea, but allows you to 
vary w and the number of terms in the Fourier series. Try out w = 0.75 and compare with 
figures 6.3-6.5. 
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Chapter Checklist 

You should now be able to: 

i. Take the limit of a space translation invariant discrete system as the distance between 
the parts goes to zero, interpret the physics of the resulting continuous system, and find 
its dispersion relation; 

ii. Use the Fourier series to set up and solve the initial value problem for a massive string 
with various boundary conditions. 

Problems 

6.1. Consider the continuous string of (6.7)-(6.10) as the continuum limit of a beaded 
string with W beads as W →∞. Write the analog of (6.8) and (6.10) for finite W . Show that 
the limit as W → ∞ yields (6.10). Hint: This is an exercise in the definition of an integral 
as the limit of a sum. But to do the first part, you will either need to use normal coordinates, 

X 
or prove the identity 

W nkπ n0kπ 
sin sin 

W + 1 W + 1 

= 

⎧
⎪

⎩
⎨
⎪

k=1 

b if n = n0 6= 0 

0 if n 6= n0 and n, n0 > 0 

X 

for a constant b and find b. 

6.2. Do the integrals in (6.20). Hint: Use integration by parts and watch for miraculous 
cancellations. 

6.3. Find the normal modes of the string with two free ends, shown in figure 6.7. 

6.4. Fun with Fourier Series and Fractals 
In this problem you will explore the Fourier series for an interesting set of functions. 

Consider a function of the following form, defined on the interval [0,1]: 

∞
f(t) = hj g(frac(2j t)) . 

j=0 
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Figure 6.7: A continuous string with both ends free to oscillate in the transverse direction. 

where ⎧ 
1 for 0 ≤ t ≤ w⎪⎪⎪⎪⎨

g(t) = 0 for w < t < 1 − w ⎪⎪⎪⎪ 1 for 1 − w ≤ t ≤ 1⎩ 

and frac(x) denotes the fractional part, i.e. frac(4.39) = 0.39. f(t) thus depends on the two 
parameters h and w, where 0 < h < 1 and 0 < w < 1/2. For example, for h = 1/2 and 
w = 1/4, the h0 term is shown in figure 6.8. 
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0 t → 1 

Figure 6.8: The h0 term in f(t) for h = 1/2 and w = 1/4. 

If we add in the h1 term we get the picture in figure 6.9. 
Adding the h2 term gives the picture in figure 6.10, and so on. 
The final result is a very bumpy function, called a “fractal.” You cannot compute this 

function exactly, but you can include enough terms to get to any desired accuracy. Because 

http:frac(4.39
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0 t → 1 

Figure 6.9: The first two terms in f(t) for h = 1/2 and w = 1/4. 
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Figure 6.10: The first three terms in f(t) for h = 1/2 and w = 1/4. 

the function is symmetric about t = 1/2, it is really only necessary to plot it from 0 to 1/2. 
Also because of the symmetry, it can be expressed in terms of a Fourier series of cosines, 

∞
f(t) = 

X 
bk cos 2πkt . 

k=0 

Show that the Fourier coefficients are given by 

2 
ξ(k)

bk = 
X 

(2h)j sin(2πkw/2j )
πk 

j=0 
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for k 6= 0, and 
2w 

b0 = 
1 − h 

where the function, ξ(k) is the number of times 2 appears as a factor of k. Thus ξ(0) = 
ξ(1) = ξ(3) = 0, ξ(2) = 1, ξ(4) = 2, etc. 

Write a program to display and print the fractal for some set of parameters, h and w. 
Also, display the truncated Fourier series, 

m−1

fm(t) = 
X 

bk cos 2πkt 
k=0 

with m terms, for m = 5, 10, and 20 (or more if you have a fast computer). 
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