Chapter 6

Continuum Limit and Fourier Series

“Continuous” is in the eye of the beholder. Most systems that we think of as continuous are
actually made up of discrete pieces. In this chapter, we show that a discrete system can look
continuous at distance scales much larger than the separation between the parts. We will also
explore the physics and mathematics of Fourier series.

Preview

In this chapter, we discuss the wave equation, the starting point for some other treatments of
waves. We will get it as natural result of our general principles of space translation invariance
and local interactions applied to continuous systems.

i. We will study the discrete space translation invariant systems discussed in the previous
chapter in the limit that the separation between parts goes to zero. We will argue that
the generic result is a continuous system obeying the wave equation.

ii. The continuum limit of the beaded string is a continuous string with transverse oscil-
lations. We will discuss its normal modes for a variety of boundary conditions. We
will see that the normal modes of a continuous space translation invariant system are
the same as those of a finite system. The only difference is that there are an infinite
number of them. The sum over the infinite number of normal modes required to solve
the initial value problem for such a continuous system is called a Fourier series.

6.1 The Continuum Limit

Consider a discrete space translation invariant system in which the separation between neigh-
boring masses is. If a is very small, the discrete system looks continuou$o understand
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140 CHAPTER 6. CONTINUUM LIMIT AND FOURIER SERIES

this statement, consider the action of fife’! K matrix, (5.8), in the notation of the last
chapter in which the degrees of freedom are labeled by their equilibrium positions. The ma-
trix M 1K acts on a vector to produce another vector. We have replaced our vectors by
functions ofz, soM ~! K is something that acts on a functidiz) to give another function.

Let's call it M 'K A(x). It is easiest to see what is happening for the beaded string, for
which B = C = T'/ma. Then

MK A(z) = <£a> (24(x) — Az +a) — A(x —a)) . (6.1)

So far, [(6.1) is correct for any large or small.

Whenever you say that a dimensional quantity, like the lemgih large or small, you
must specify a quantity for comparison. You must say large or small compared t5 mhat?
this case, the other dimensional quantity in the problem with the dimensions of length is the
wavelength of the mode that we are interested in. Now here is whereentdls. If we are
interested only in modes with a wavelength- 27 /k that is very large compared épthen
ka is a very small dimensionless number at{d + ) is very close tod(x). We can expand
it in a Taylor series that is rapidly convergent. Expanding (6.1) in a Taylor series gives

_Ta 0?A(x)
Ox?

where the - - represent higher derivative terms that are smaller by powers of the small number
ka than the first term in_(6.2)In the limit in which we take: to be really tiny (always
compared to the wavelengths we want to study) we can replgaeby the linear mass
densitypr, or mass per unit length of the now almost continuous string and ignore the higher
order terms. In this limit, we can replace fie ' K matrix by the combination of derivatives

that appear in the first surviving term of the Taylor series, (6.2),

MK A(z) = (6.2)

2
MK — —5; % . (6.3)
Then the equation of motion fory)(x,t) becomes the wave equation
g;@D(x,t) = i aa;w(z, t). (6.4)
The dispersion relation is
W L2 (6.5)
PL

A dimensionless quantity does not require this step. A dimensionless number is large if it is much greater
than one and small if it is much smaller than one.
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This can be seen directly by plugging the normal mgte into (6.4), or by taking the
limit of (5.37)-6.38) asa — 0. Equation (6.5) is the dispersion relation for the ideal
continuous string. The quantity,\/7'/pr,, has the dimensions of velocity. It is called the
“phase velocity”p,,. As we will discuss in much more detail in chapter 8 and following, this
is the speed with which traveling waves move on the string.

We will call the approximation of replacing a discrete system with a continuous system
that looks approximately the same fors> 1/a the continuum approximation. Really, all
of the mechanical systems that we will consider are discrete, at least on the atomic level.
However, if we are concerned only about waves with macroscopic wavelengths, the contin-
uum approximation is a very good one.

6.1.1 Philosophy and Speculation

Our treatment of the wave equation(@4)is a little unusual. In many treatments of wave
phenomena, the wave equation is given a place of honor. In fact, the wave equation is only a
restatement of the dispersion relati(®5), which is usually just an approximation to what

is really going on. Almost all of the systems that we usually treat with the wave equation are
actually discrete at very small distances. We cannot really get all the way to the continuum
limit that gives(6.5). Light waves, which we will study in the chapters to come, for all we
know, may be an exception to this rule, and be completely continuous. However, we don’t
really have the right to assume even that. It could be that at very short distances, far below
anything we can look at today, the nature of light and even of space and time changes in
some way so that space and time themselves have some tiny characteristic length scale
The analysis above shows that this doesn’t matteAs long as we can only look at space

and time at distances much larger thathey look continuous to us. Then because we are
scientists, concerned about how the world looks in our experiments, and not how it behaves
in some ideal regime far beyond what we can probe experimentally, we might as well treat
them as continuous.

6.2 Fourier series
6.2.1 The String with Fixed Ends

Oe1
If we stretch our continuous string between fixed walls sout@t = ¢ (¢) = 0, the modes
are given by5.33)and(5.34),just as for the discrete system. The only difference is that now
n runs from 1 toxo, or at least to such largethat the wavelengthr /k = 2¢/n is so small
that the continuum approximation breaks down. This follows ff@28),which becausé
is real here becomes
T T
a a

: (6.6)
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As a — 0 the allowed range df increases to infinity.

These standing wave modes are animated in program 6-1 on the program disk, assuming
the dispersion relatior, (6.5).

We can now discuss the physical basis of the Fourier seri€8.7[f)in chapter 3, we
showed that the normal modes for a discrete system are linearly independent and complete.
That means that any displacement of the discrete system can be written as a unigue linear
combination of the normal modes. Physically, this must be so to allow us to solve the initial
value problem. Our picture of the continuous string is a limit of the beaded string in which
the number of bead®/, goes to infinity and the beads get infinitely close together. For each
N, the most general displacement of the system can be expanded as a linear combination of
the N normal modes. If the limilv — oo is reasonably well behaved, we might expect that
the most general displacement of the limiting continuous string could be expanded in terms
of the infinite number of normal modes of the continuous system. This expansion is a Fourier
series. The displacement of the continuous system is described by a function of the position
along the string. If the function is not too discontinuous, the expansion in normal modes
works fine.

Consider the continuous string, stretched between fixed watls=ah andx = ¢. The
transverse displacement of this system at any time is described by a continuous function of
x, P(x) with

$(0) = ¥(0) =0. (6.7)
Thus we expect from the argument above that we can express any function that is not too
discontinuous and satisfies (6a8 a sum of the normal modes given by (5.33) and (5.34),

P(x) = Z Cn SiDL,Z:C. (6.8)

n=1
The constants;,, are called the “Fourier coefficients.” They can be found using the following
identity:

¢ / 0/2if n =n'
/ de sin L sin T / (6.9)
0 ¢ ¢ 0if n #n’
so that ,
Cn = 2/ de sin 2% P(x). (6.10)
¢ Jo 14

This is just the method of normal coordinates adapted to the continuous situation.

6.2.2 Free Ends

be-2
Equation(6.8) is called the Fourier series for a function satisfy6d). Other boundary
conditions yield different series. For example, consider a string with thé end fixed at
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frictionless rod—

massless rinK

fixed end “free” end

oY
©

=0 x=1/
Figure 6.1: A continuous string with one end free to oscillate in the transverse direction.

z = 0. Suppose that the other endgat ¢ is attached to a massless ring that is free to slide
along a frictionless rod in the direction, as shown in figure 6.1Ve say that this system
has one “free end” because the end at / is free to slide in the transverse direction, even
though it is fixed in the direction.

Because the rod is frictionless, the force on the ring due to the rod must have no com-
ponent in ther direction. But because the ring is massless, the total force on the ring must
vanish. Therefore, the force on the ring due to the string must have no component in the
direction. That implies that the string is horizontakat ¢. But the shape of the string at
any given time is given by the graph of the transverse displacesr{ent) versusz.? Thus
the slope of)(x, t) atz = ¢ must vanish. Therefore, the appropriate boundary conditions for
the displacement is

v0,.0=0, et =0. (6.11)
This implies that the normal modes also satisfy similar boundary conditions:

A (0)=0, A (0)=0. (6.12)
The first condition implies that the solution must have the form
Ap(x) o sin kpx (6.13)

for somek,. The second condition determines the possible valués.olt implies that
sin k,x must have a maximum or minimumaat= ¢ which, in turn, implies that
s

knl = 5 + nmw (6.14)

2This is why transverse oscillations are easier to visualize than longitudinal oscillations — compare with (7.5).
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wheren is a nonnegative integer (nonnegative because we can choose fg)l the) in
(6.13)— negative values just change the sig/dgfz) and do not lead to new solutions).
The solutions have the form

sin ((Zn—iz-gl)mc) for n = 0 to oco. (6.15)

These normal modes are animated in program 6-2. With these normal modes, we can de-
scribe an arbitrary function;(x), satisfying the boundary conditions for this systégrlL1).

$(0)=0, ¥'(6)=0. (6.16)

Thus for such a function, we can write

e . ((2n+ D)mx
Y(x) = p sin | ———— (6.17)
(x) nZ::l Cp S ( 57 )
where o e 2n +1)
Cn = Z/o dx sin <2£> P(x). (6.18)

6.2.3 Examples of Fourier Series

be-3
Let us find the Fourier coefficients for the following function, defined in the interval [0,1]:

x for z <w,

i) = (6.19)
w(l —z)

for z>w.
1—w

For definiteness, we will take = 0.75, so the function)(x) has the form shown in fig-
urel6.2.

We compute the Fourier coefficients us{fgl0). Because = 1, this has the following
form (see problem (6.2)):

1
Cn :/ dz sinnmwz(x)
0

w 1
= / dx xsinnrx + 1L/ dz (1 — z)sinnnrz (6.20)
0 — W Jw

sin nrw
(1 —w)n2n2’
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0

0 D 1
Figure 6.2: The functiog(x) for w = 0.75.

1

0

0 D 1
Figure 6.3: The first term in the Fourier seriesifor). The dotted line ig(z).

We can reconstruct the functiaf(z), as a sum over the normal modes of the string. Let
us look at the first few terms in the series to get a feeling for how this works. The first term
in the sum, forw = 0.75, is shown in figur®.3. This is a lousy approximation, necessarily,
because the function is not symmetrical about 1/2, while the first term in the sum is
symmetrical. The first two terms are shown in fighude This looks much better.

The first six terms are shown in figues. This is now a pretty good approximation
except where the function has a kink.

What is going on here is that if we include terms in the Fourier series onlyhup 1,
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0 * : \
0 .0 1

Figure 6.4: The sum of the first two terms in the Fourier serieg(for. The dotted line is

().

0 . \
0 .5 1

Figure 6.5: The sum of the first six terms in the Fourier serieg(for. The dotted line is

().

the truncated Fourier series N
P(x) = Z Cp Sinnwx (6.21)
n=1

does not include any modes with very small wavelengths. The smallest wavelength that
appears (for the highest angular wave numbex) s (no dimensions here because we took

a = 1). Thus while the Fourier series can describe any features of the shape of the function
that are larger tha2y N, there is no way that it can pick up features that are much smaller. In
this example, because the function has an infinitely sharp kink, the Fourier series never gets
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very good neat = w. However, eventually the discrepancy is squeezed into such a small
region around the kink that the result will look OK to the naked eye.

1

Figure 6.6: The first two terms in the

Fourier series/fiar) and their sum.

You can see how this works in more detail by studying fi§u€e The curve of long

dashes is the first term in the Fourier series.
dotted triangle), for large and greater than(z)
second term in the Fourier series, the curve

Evidently, it is less than the fup¢tipiithe
for smallz. The sign and magnitude of the
of short dashes ingi@uikechosen to make

up for this discrepancy, so that the sum (the solid curve) is much closer to the actual function.

The same process is repeated over and ove
Fourier series.

r again as you go to higher order in the truncated

You can play with the truncated Fourier series for the funetian in program 6-3. This
program allows you to vary the parameterand also the number of terms in the Fourier
series. You should look at what happens neaf 1. You might think that this would cause
problems for the Fourier series because thew) in the denominator 6.20)goes to zero.
However, the limit is actually well behaved becasisenmw also goes to zero as — 0.

Nevertheless, the Fourier series has to work

hara ferl to reproduce a function that does

not go to zero for = 1 as a sum of sine functions, each of which do vanish=atl. This

difficulty is reflected in the wiggles near= 1
Fourier series.

for any reasonable number of terms in the
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6.2.4 Plucking a String

L16-4
Let us now use this mathematics to solve a physics problem. We will solve the initial value
problem for the string with fixed end for a particular initial shape. The initial value problem
here is almost exactly like that discussed in chapt€B.98)-(3.100, for a system with a
finite number of degrees of freedom. The only difference is that now, because the number of
degrees of freedom is infinite, the sum over modes runs to infinity. You shouldn’t worry about
the fact that the number of modes is infinite. What that “infinity” really means is “larger than
any number we are going to care about.” In practice, as we saw in the examples above, the
higher modes eventually don’t make much difference. They are associated with smaller and
smaller features of the shape. When we say that the system is continuous and that it has an
infinite number of degrees of freedom, we are actually assuming that the smallest features
that we care about in the waves are still much larger than the distance between pieces of the
system, so that we can truncate our Fourier series far below the limit and still have a good
approximate description of the motion.

Suppose we pluck the string. Specifically, suppose that the string has linear mass density
pL, tensionl’, and fixed ends at = 0 and/. Suppose further that at time= 0 the string is
at rest, but pulled out of its equilibrium position into the shagpe), given by(6.19). If the
string is then released @at= 0, we can find the subsequent motion by summing over all the
normal modes with fixed coefficients multiplied &y w,,t and/orsin w,t, wherew,, is the
frequency of the modén “7* with k£ = “F (the frequency is given by (6.5))

wn:,/zknz Lo (6.22)
PL pr 4

In this case, only theos w,t terms appear, because the velocity is zero=atd). Thus we
can write

o0
P(z,t) = nz::l Cn, sin? coswpt . (6.23)
This satisfies the boundary conditiong at 0, by virtue of the Fourier serie6.8). The
disadvantage of6.23)is that we are left with an infinite sum. For the simple dispersion
relation,(6.5), there are other ways to solve this problem that we will discuss later when we
learn about traveling waves. However, the advantage of the sal6i%)is that it does not
depend on the dispersion relation.

We can solve the problem approximately ug6@3) by adding up only the first few
terms of the series. The computer can do this quickly. In program 6-4, the first twenty terms
of the series are shown for = 1/2 (and the dispersion relation still given {8.5)). The
result is amazingly simple. Check it out! Program 6-5 is the same idea, but allows you to
vary w and the number of terms in the Fourier series. Tryuott 0.75 and compare with
figures6.3:6.5
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Chapter Checklist
You should now be able to:

i. Take the limit of a space translation invariant discrete system as the distance between
the parts goes to zero, interpret the physics of the resulting continuous system, and find
its dispersion relation;

ii. Use the Fourier series to set up and solve the initial value problem for a massive string
with various boundary conditions.

Problems

6.1 Consider the continuous string 0f (6.7)-(6.10) as the continuum limit of a beaded
string with¥ beads a8V’ — co. Write the analog of (6.8) and (6.10) for finit& Show that

the limit asiW — oo yields (6.10).Hint: This is an exercise in the definition of an integral
as the limit of a sum. But to do the first part, you will either need to use normal coordinates,

or prove the identity
ﬁ": sin nkm sin nkn
= W +1 W+1

b if n=n"#0
0 if n#n" andn,n >0

for a constank and find b.

6.2 Do the integrals in (6.20Hint: Use integration by parts and watch for miraculous
cancellations.

6.3 Find the normal modes of the string with two free ends, shown in figure 6.7.

6.4 Fun with Fourier Series and Fractals
In this problem you will explore the Fourier series for an interesting set of functions.
Consider a function of the following form, defined on the interval [0,1]:

flt) = i B g(frac(27t)).

=0
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<~——  frictionless rods ———

massless rings
/ \
\ “free” ends /

o

N,
Dy

oY
©

z=0 z=/

Figure 6.7: A continuous string with both ends free to oscillate in the transverse direction.

where
lfor0<t<w

g(t) =% Oforw<t<l—w
lforl—w<t<1

andfrac(z) denotes the fractional parg. frac(4.39) = 0.39. f(t) thus depends on the two
parameterd andw, where0 < h < 1 and0 < w < 1/2. For example, foh = 1/2 and
w = 1/4, the # term is shown in figuré.g.

0
0 t— 1

Figure 6.8: The iterm in f(t) for h = 1/2 and w= 1/4.

If we add in theh! term we get the picture in figufegS.

Adding theh? term gives the picture in figuf10, and so on.

The final result is a very bumpy function, called a “fractal.” You cannot compute this
function exactly, but you can include enough terms to get to any desired accuracy. Because


http:frac(4.39
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0 1
0 t— 1

Figure 6.9: The first two terms jf(¢) for h = 1/2 andw = 1/4.

0

0 t— 1

Figure 6.10: The first three termsfi¢) for h = 1/2 and w= 1/4.

the function is symmetric abotit= 1/2, it is really only necessary to plot it from 01¢2.
Also because of the symmetry, it can be expressed in terms of a Fourier series of cosines,

f(t) = Z by, cos 27kt .
k=0

Show that the Fourier coefficients are given by

2 g(k) ) )
b, = — (2h) sin(2mkw/27)
k o
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for k # 0, and

2w
D=1
where the function(k) is the number of times 2 appears as a factdr. oThusé(0) =
§(1) = €(3) = 0,¢(2) =1, £(4) = 2, etc.
Write a program to display and print the fractal for some set of parametansl w.
Also, display the truncated Fourier series,

m—1

fm(t) = Z by cos 2wkt
k=0

with m terms, form = 5, 10, and 20 (or more if you have a fast computer).
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