
Chapter 4 

Symmetries 

Symmetry is an important concept in physics and mathematics (and art!). In this chapter, we 
show how the mathematics of symmetry can be used to simplify the analysis of the normal 
modes of symmetrical systems. 

Preview 

In this chapter, we introduce the formal concept of symmetry or invariance. 

1. We will work out some examples of the use of symmetry arguments to simplify the 
analysis of oscillating systems. 

4.1 Symmetries 

Let us return to the system of two identical pendulums coupled by a spring, discussed in 
chapter 3, in (3.78)-(3.93). This simple system has more to teach us. It is shown in figure 4.1. 
As in (3.78)-(3.93), both blocks have mass m, both pendulums have length ` and the spring 
constant is κ. Again we label the small displacements of the blocks to the right, x1 and x2. 

We found the normal modes of this system in the last chapter. But in fact, we could have 
found them even more easily by making use of the symmetry of this system. If we reflect 
this system in a plane midway between the two blocks, we get back a completely equivalent 
system. We say that the system is “invariant” under reflections in the plane between the 
blocks. However, while the physics is unchanged by the reflection, our description of the 
system is affected. The coordinates get changed around. The reflected system is shown in 
figure 4.2. Comparing the two figures, we can describe the reflection in terms of its effect on 
the displacements, 

x1 → −x2 , x2 → −x1 . (4.1) 
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Figure 4.1: A system of coupled pendulums. Displacements are measured to the right, as 
shown. 
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Figure 4.2: The system of coupled pendulums after reflection in the plane through between 
the two. 
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In particular, if 

X(t) = 
µ 

x1(t) 
¶ 

(4.2) 
x2(t) 

is a solution to the equations of motion for the system, then the reflected vector, 
µ −x2(t) 

¶
X̃(t) ≡ , (4.3)−x1(t) 

must also be a solution, because the reflected system is actually identical to the original. 
While this must be so from the physics, it is useful to understand how the math works. To 
see mathematically that (4.3) is a solution, define the symmetry matrix, S, 

µ 
0 −1 

¶
S ≡ , (4.4)−1 0 

so that X̃(t) is related to X(t) by matrix multiplication: 

X̃(t) = 
µ 

0 −1 
¶ µ 

x1(t) 
¶ 

= S X(t) . (4.5)−1 0 x2(t) 

The mathematical statement of the symmetry is the following condition on the M and K 
matrices:1 

M S = S M , (4.6) 

and 
K S = S K . (4.7) 

You can check explicitly that (4.6) and (4.7) are true. From these equations, it follows that if 
X(t) is a solution to the equation of motion, 

d2 

M X(t) = −K X(t) , (4.8)
dt2 

then X̃(t) is also. To see this explicitly, multiply both sides of (4.8) by S to get 

d2 

S M X(t) = −S K X(t) . (4.9)
dt2 

Then using (4.6) and (4.7) in (4.9), we get 

d2 

M S X(t) = −K SX(t) . (4.10)
dt2 

1Two matrices, A and B, that satisfy AB = BA are said to “commute.” 
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The matrix S is a constant, independent of time, thus we can move it through the time deriva-
tives in (4.10) to get 

d2 

M SX(t) = −K SX(t) . (4.11)
dt2 

But now using (4.5), this is the equation of motion for X̃(t), 

˜M
d2 

X(t) = −K X̃(t) . (4.12)
dt2 

Thus, as promised, (4.6) and (4.7) are the mathematical statements of the reflection symmetry 
because they imply, as we have now seen explicitly, that if X(t) is a solution, X̃(t) is also. 

Note that from (4.6), you can show that 

M−1 S = S M−1 (4.13) 

by multiplying on both sides by M−1. Then (4.13) can be combined with (4.7) to give 

M−1K S = S M−1K . (4.14) 

We will use this later. 
Now suppose that the system is in a normal mode, for example 

X(t) = A1 cos ω1t . (4.15) 

Then X̃(t) is another solution. But it has the same time dependence, and thus the same an-
gular frequency. It must, therefore, be proportional to the same normal mode vector because 
we already know from our previous analysis that the two angular frequencies of the normal 
modes of the system are different, ω1 6= ω2. Anything that oscillates with angular frequency, 
ω1, must be proportional to the normal mode, A1: 

X̃(t) ∝ A1 cos ω1t . (4.16) 

Thus the symmetry implies 
S A1 ∝ A1 . (4.17) 

That is, we expect from the symmetry that the normal modes are also eigenvectors of S. This 
must be true whenever the angular frequencies are distinct. In fact, we can see by checking 
the solutions that this is true. The proportionality constant is just −1, 

µ 
0 −1 

¶
S A1 = A1 = −A1 , (4.18)−1 0 

and similarly µ 
0 −1 

¶
S A2 = A2 = A2 . (4.19)−1 0 
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Furthermore, we can run the argument backwards. If A is an eigenvector of the symmetry 
matrix S, and if all the eigenvalues of S are different, then because of the symmetry, (4.13), 
A is a normal mode. To see this, consider the vector M−1KA and act on it with the matrix 
S. Using (4.14), we see that if 

SA = βA (4.20) 

then 
S M−1KA = M−1K SA = βM−1KA . (4.21) 

In words, (4.21) means that M−1KA is an eigenvector of S with the same eigenvalue as A. 
But if the eigenvalues of S are all different, then M−1KA must be proportional to A, which 
means that A is a normal mode. Mathematically we could say it this way. If the eigenvectors 
of S are An with eigenvalues βn, then 

SAn = βnAn , and βn 6 for n = m ⇒ An are normal modes. (4.22)= βm 6

It turns out that for the symmetries we care about, the eigenvalues of S are always all differ-
ent.2 

Thus even if we had not known the solution, we could have used (4.20) to determine 
the normal modes without bothering to solve the eigenvalue problem for the M−1K 
matrix! Instead of solving the eigenvalue problem, 

M−1K An = ω2 An , (4.23)n 

we can instead solve the eigenvalue problem 

S An = βn A
n . (4.24) 

It might seem that we have just traded one eigenvalue problem for another. But in fact, 
(4.24) is easier to solve, because we can use the symmetry to determine the eigenvalues, 
βn, without ever computing a determinant. The reflection symmetry has the nice property 
that if you do it twice, you get back to where you started. This is reflected in the property of 
the matrix S, 

S2 = I . (4.25) 

In words, this means that applying the matrix S twice gives you back exactly the vector that 
you started with. Multiplying both sides of the eigenvalue equation, (4.24), by S, we get 

An = I An = S2 An = S βn A
n 

(4.26) 
= βn S An = β2 An ,n 

2See the discussion on page 103. 
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which implies 
β2 = 1 or βn = ±1 . (4.27)n 

This saves some work. Once the eigenvalues of S are known, it is easier to find the eigen-
vectors of S. But because of the symmetry, we know that the eigenvectors of S will also be 
the normal modes, the eigenvectors of M−1K. And once the normal modes are known, it 
is straightforward to find the angular frequency by acting on the normal mode eigenvectors 
with M−1K. 

What we have seen here, in a simple example, is how to use the symmetry of an oscillating 
system to determine the normal modes. In the remainder of this chapter we will generalize 
this technique to a much more interesting situation. The idea is always the same. 

We can find the normal modes by solving the eigenvalue problem for 
the symmetry matrix, S, instead of M−1K. And we can use the sym- (4.28) 
metry to determine the eigenvalues. 

4.1.1 Beats 

... ... .. 
........
.................................................................. ........
................................................................................................................................................................................ 4-1 

The beginnings of wave phenomena can already be seen in this simple example. Suppose that 
we start the system oscillating by displacing block 1 an amount d with block 2 held fixed in 
its equilibrium position, and then releasing both blocks from rest at time t = 0. The general 
solution has the form 

X(t) = A1 (b1 cos ω1t + c1 sin ω1t) + A2 (b2 cos ω2t + c2 sin ω2t) . (4.29) 

The positions of the blocks at t = 0 gives the matrix equation: 

X(0) = 
µ 

d 
¶ 

= A1b1 + A2b2 , (4.30)
0 

or 
d = b1 + b2 d ⇒ b1 = b2 = . (4.31)

0 = −b1 + b2 2 

Because both blocks are released from rest, we know that c1 = c2 = 0. We can see this in 
the same way by looking at the initial velocities of the blocks: 

˙ = ω1A
1X(0) = 

µ 
0 

¶ 

c1 + ω2A
2 c2 , (4.32)

0 

or 
0 = c1 + c2 ⇒ c1 = c2 = 0 . (4.33)

0 = −c1 + c2 

http:sym-(4.28
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Thus 

x1(t) = 
d 

(cos ω1t + cos ω2t)2 (4.34) 

x2(t) = 
d 

(cos ω1t − cos ω2t) .2 

The remarkable thing about this solution is the way in which the energy gets completely 
transferred from block 1 to block 2 and back again. To see this, we can rewrite (4.34) as 
(using (1.64) and another similar identity) 

x1(t) = d cos �t cos δωt 
(4.35) 

x2(t) = d sin �t sin δωt 

where 
ω1 + ω2 ω2 − ω1� = , δω = . (4.36)

2 2 
Each of the blocks exhibits “beats.” They oscillate with the average angular frequency, �, 

πbut the amplitude of the oscillation changes with angular frequency δω. After a time , the2δω 
energy has been almost entirely transferred from block 1 to block 2. This behavior is shown 
in program 4-1 on your program disk. Note how the beats are produced by the interplay 
between the two normal modes. When the two modes are in phase for one of the blocks so 
that the block is moving with maximum amplitude, the modes are 180◦ out of phase for the 
other block, so the other block is almost still. 

The complete transfer of energy back and forth from block 1 to block 2 is a feature both 
of our special initial condition, with block 2 at rest and in its equilibrium position, and of 
the special form of the normal modes that follows from the reflection symmetry. As we will 
see in more detail later, this is the same kind of energy transfer that takes place in wave 
phenomena. 

4.1.2 A Less Trivial Example 

.............................
...............................................................................
........
............................................................................................................................................ 4-2..... ... .. 

Take a hacksaw blade, fix one end and attach a mass to the other. This makes a nice oscillator 
with essentially only one degree of freedom (because the hacksaw blade will only bend back 
and forth easily in one way). Now take six identical blades and fix one end of each at a single 
point so that the blades fan out at 60◦ angles from the center with their orientation such that 
they can bend back and forth in the plane formed by the blades. If you put a mass at the end 
of each, in a hexagonal pattern, you will have six uncoupled oscillators. But if instead you put 
identical magnets at the ends, the oscillators will be coupled together in some complicated 
way. You can see what the oscillations of this system look like in program 4-2 on the program 
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Figure 4.3: A system of six coupled hacksaw blade oscillators. The arrows indicate the 
directions in which the displacements are measured. 

disk. If the displacements from the symmetrical equilibrium positions are small, the system 
is approximately linear. Despite the apparent complexity of this system, we can write down 
the normal modes and the corresponding angular frequencies with almost no work! The trick 
is to make clever use of the symmetry of this system. 

This system looks exactly the same if we rotate it by 60◦ about its center. We should, 
therefore, take pains to analyze it in a manifestly symmetrical way. Let us label the masses 1 
through 6 starting any place and going around counterclockwise. Let xj be the counterclock-
wise displacement of the jth block from its equilibrium position. As usual, we will arrange 
these coordinates in a vector:3 ⎛ 

x1 
⎞ 

x2 

X = 
x3 . (4.37) 
x4 

⎜⎜⎜⎜⎜⎜⎜
x5 

⎟⎟⎟⎟⎟⎟⎟⎝ ⎠ 

x6 

The symmetry operation of rotation is implemented by the cyclic substitution 

x1 → x2 → x3 → x4 → x5 → x6 → x1 . (4.38) 

3From here on, we will assume that the reader is sufficiently used to complex numbers that it is not necessary 
to distinguish between a real coordinate and a complex coordinate. 
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This can be represented in a matrix notation as 

X → S X, (4.39) 

where the symmetry matrix, S, is 
⎛ 

0 1 0 0 0 0 
⎞ 

0 0 1 0 0 0 
0 0 0 1 0 0 

S = . (4.40)
0 0 0 0 1 0 

⎜⎜⎜⎜⎜⎜⎜
0 0 0 0 0 1 

⎟⎟⎟⎟⎟⎟⎟⎝ ⎠
1 0 0 0 0 0 

Note that the 1s along the next-to-diagonal of the matrix, S, in (4.40) implement the substi-
tutions 

x1 → x2 → x3 → x4 → x5 → x6 , (4.41) 

while the 1 in the lower left-hand corner closes the circle with the substitution 

x6 → x1 . (4.42) 

The symmetry requires that the K matrix for this system has the following form: 
⎛ 

E −B −C −D −C −B 
⎞ 

−B E −B −C −D −C 

K = 
−C 
−D 

−B 
−C 

E 
−B 

−B 
E 

−C 
−B 

−D 
−C 

. (4.43) 

⎜⎜⎜⎜⎜⎜⎜⎝ −C 
−B 

−D 
−C 

−C 
−D 

−B 
−C 

E 
−B 

−B 
E 

⎟⎟⎟⎟⎟⎟⎟⎠ 

Notice that all the diagonal elements are the same (E), as they must be because of the sym-
metry. The jth diagonal element of the K matrix is minus the force per unit displacement on 
the jth mass due to its displacement. Because of the symmetry, each of the masses behaves 
in exactly the same way when it is displaced with all the other masses held fixed. Thus all the 
diagonal matrix elements of the K matrix, Kjj , are equal. Likewise, the symmetry ensures 
that the effect of the displacement of each block, j, on its neighbor, j ± 1 (j +1 → 1 if j = 6, 
j − 1 → 6 if j = 1 — see (4.42)), is exactly the same. Thus the matrix elements along the 
next-to-diagonal (B) are all the same, along with the Bs in the corners. And so on! The K 
matrix then satisfies (4.7), 

S K = K S (4.44) 

which, as we saw in (4.13)-(4.12), is the mathematical statement of the symmetry. Indeed, 
we can go backwards and work out the most general symmetric matrix consistent with (4.44) 
and check that it must have the form, (4.43). You will do this in problem (4.4). 
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Because of the symmetry, we know that if a vector A is a normal mode, then the vector 
SA is also a normal mode with the same frequency. This is physically obvious. If the system 
oscillates with all its parts in step in a certain way, it can also oscillate with the parts rotated by 
60◦, but otherwise moving in the same way, and the frequency will be the same. This suggests 
that we look for normal modes that behave simply under the symmetry transformation S. In 
particular, if we find the eigenvectors of S and discover that the eigenvalues of S are all 
different, then we know that all the eigenvectors are normal modes, from (4.22). In the 
previous example, we found modes that went into themselves multiplied by ±1 under the 
symmetry. In general, however, we should not expect the eigenvalues to be real because 

1

2

3

4

5

6 

the modes can involve complex exponentials. In this case, we must look for modes that 
correspond to complex eigenvalues of S,4 

SA = β A . (4.45) 

As above in (4.25)-(4.27), we canfind thepossibleeigenvaluesby usingthesymmetry. Note 

2

3

4

5

6

1 

that because six 60◦ rotations get us back to the starting point, the matrix, S, satisfies 

S6 = I . (4.46) 

Because of (4.46), it follows that β6 = 1. Thus β is a sixth root of one, 

β = βk = e 2ikπ/6 for k = 0 to 5 . (4.47) 

Then for each k, there is a normal mode 

1

S Ak = βk A
k . (4.48) 

Explicitly, 
Ak Ak⎛ ⎞ ⎛ ⎞ 

Ak Ak 

Ak Ak 

Ak Ak 

Ak Ak 

Ak Ak 

If we take Ak 

SAk (4.49)= = βk · . 

⎜⎜⎜⎜⎜⎜⎜⎝ 

⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜⎠ ⎝ 

⎟⎟⎟⎟⎟⎟⎟⎠ 

= 1, we can solve for all the other components, 

Ak
j = (βk)j−1 . (4.50) 

4Even this is not the most general possibility. In general, we might have to consider sets of modes that go 
into one another under matrix multiplication. That is not necessary here because the symmetry transformations 
all commute with one another. 
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Thus ⎛ 
A1 

k ⎞ ⎛ 
1 

⎞ 

Ak 2ikπ/6e2 
Ak 4ikπ/6e3 = . (4.51)
Ak 6ikπ/6e4 

8ikπ/6 

⎜⎜⎜⎜⎜⎜⎜
Ak 

⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜⎜
e

⎟⎟⎟⎟⎟⎟⎟
5

⎝ 

Ak 

⎠ ⎝ 
10ikπ/6 

⎠ 

e6 

Now to determine the angular frequencies corresponding to the normal modes, we have 
to evaluate 

M−1KAk = ωk
2Ak . (4.52) 

Since we already know the form of the normal modes, this is straightforward. For example, 
we can compare the first components of these two vectors: 

ω2 
³ 
E − Be2ikπ/6 − Ce4ikπ/6 − De6ikπ/6 − Ce8ikπ/6 − Be10ikπ/6 ́

 
/m= k 

(4.53) 
E B kπ C 2kπ 

= − 2 cos − 2 cos − (−1)k D . 
m m 3 m 3 m 

Notice that ω2 = ω2 and ω2 = ω2 . This had to be the case, because the corresponding normal1 5 2 4 
modes are complex conjugate pairs, 

A5 = A1∗ 
, A4 = A2∗ 

. (4.54) 

Any complex normal mode must be part of a pair with its complex conjugate normal mode 
at the same frequency, so that we can make real normal modes out of them. This must be 
the case because the normal modes describe a real physical system whose displacements are 
real. The real modes are linear combinations (see (1.19)) of the complex modes, 

Ak + Ak∗ 
and (Ak − Ak∗ 

)/i for k = 1 or 2 . (4.55) 

These modes can be seen in program 4-2 on the program disk. See appendix A and your 
program instruction manual for details. 

Notice that the real solutions, (4.55), are not eigenvectors of the symmetry matrix, S. This 
is possible because the angular frequencies are not all different. However, the eigenvalues of 
S are all different, from (4.47). Thus even though we can construct normal modes that are 
not eigenvectors of S, it is still true that all the eigenvectors of S are normal modes. This 
is what we use in (4.48)-(4.50) to determine the An . 

We note that (4.55) is another example of a very important principle of (3.117) that we 
will use many times in what follows: 

If A and A0 are normal modes of a system with the same an-
gular frequency, ω, then any linear combination, bA + cA0, is (4.56) 
also a normal mode with the same angular frequency. 
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Normal modes with the same frequency can be linearly combined to give new normal modes 
(see problem 4.3). On the other hand, a linear combination of two normal modes with differ -
ent frequencies gives nothing very simple. 

The techniques used here could have been used for any number of masses in a similar 
symmetrical arrangement. With N masses and symmetry under rotation of 2π/N radians, 
the N th roots of 1 would replace the 6th roots of one in our example. Symmetry arguments 
can also be used to determine the normal modes in more interesting situations, for example 
when the masses are at the corners of a cube. But that case is more complicated than the 
one we have analyzed because the order of the symmetry transformations matters — the 
transformations do not commute with one another. You may want to look at it again after you 
have studied some group theory. 

Chapter Checklist 

You should now be able to: 

1. Apply symmetry arguments to find the normal modes of systems of coupled oscillators 
by finding the eigenvalues and eigenvectors of the symmetry matrix. 

Problems 

4.1. Show explicitly that (4.7) is true for the K matrix, (4.43), of system of figure 4.3 
by finding SK and KS. 

4.2. Consider a system of six identical masses that are free to slide without friction on 
a circular ring of radius R and each of which is connected to both its nearest neighbors by 
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identical springs, shown below in equilibrium: 
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a. Analyze the possible motions of this system in the region in which it is linear (note 
that this is not quite just small oscillations). To do this, define appropriate displacement 
variables (so that you can use a symmetry argument), find the form of the K matrix and then 
follow the analysis in (4.37)-(4.55). If you have done this properly, you should find that one 
of the modes has zero frequency. Explain the physical significance of this mode. Hint: Do 
not attempt to find the form of the K matrix directly from the spring constants of the spring 
and the geometry. This is a mess. Instead, figure out what it has to look like on the basis of 
symmetry arguments. You may want to look at appendix c. 

b. If at t = 0, the masses are evenly distributed around the circle, but every other mass 
is moving with (counterclockwise) velocity v while the remaining masses are at rest, find and 
describe in words the subsequent motion of the system. 

4.3. 

a. Prove (4.56). 

b. Prove that if A and A0 are normal modes corresponding to different angular frequen-
cies, ω and ω0 respectively, where ω2 6= ω02, then bA + cA0 is not a normal mode unless b or 
c is zero. Hint: You will need to use the fact that both A and A0 are nonzero vectors. 

4.4. Show that (4.43) is the most general symmetric 6 × 6 matrix satisfying (4.44). 
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