Chapter 4

Symmetries

Symmetry is an important concept in physics and mathematics (and art!). In this chapter, we
show how the mathematics of symmetry can be used to simplify the analysis of the normal
modes of symmetrical systems.

Preview
In this chapter, we introduce the formal concept of symmetry or invariance.

1. We will work out some examples of the use of symmetry arguments to simplify the
analysis of oscillating systems.

4.1 Symmetries

Let us return to the system of two identical pendulums coupled by a spring, discussed in
chapter 3, in (3.78)-(3.93). This simple system has more to teach us. It is shown In figure 4.1.
As in (3.78)-(3.93), both blocks have massboth pendulums have lengttand the spring
constant isc. Again we label the small displacements of the blocks to the sighihd .

We found the normal modes of this system in the last chapter. But in fact, we could have
found them even more easily by making use of the symmetry of this system. If we reflect
this system in a plane midway between the two blocks, we get back a completely equivalent
system. We say that the system is “invariant” under reflections in the plane between the
blocks. However, while the physics is unchanged by the reflection, our description of the
system is affected. The coordinates get changed around. The reflected system is shown in
figure[4.2. Comparing the two figures, we can describe the reflection in terms of its effect on
the displacements,

1 — —Ty, Tg— —X71. 4.1
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Figure 4.1: A system of coupled pendulums. Displacements are measured to the right, as
shown.

Figure 4.2: The system of coupled pendulums after reflection in the plane through between
the two.
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In particular, if

z1(t) >
X(t) = 4.2
®) (952(75) (42)
is a solution to the equations of motion for the system, then the reflected vector,
lnd o —wg(t) )
X = , 4.3
®) (561(75) (43)

must also be a solution, because the reflected system is actually identical to the original.
While this must be so from the physics, it is useful to understand how the math works. To
see mathematically that (4.3) is a solution, define the symmetry niatrix,

s::(fi 'Bl>, (4.4)

so thatX (¢) is related taX (¢) by matrix multiplication:
X(t) = (01 _01> (28) — S5X(1). (4.5)

The mathematical statement of the symmetry is the following condition oi/thed K
matricest
MS=SM, (4.6)

and
KS=SK. 4.7)

You can check explicitly that (4.6) and (4.7) are true. From these equations, it follows that if
X (t) is a solution to the equation of motion,

d2
MWX(t) =-KX(), (4.8)
then X(t) is also. To see this explicitly, multiply both sides[of(4.8) by §et

d2
SM 5 X(H) = —SKX(1). (4.9)

Then using (4.6) and (4.7) in (4.9), we get

d2
MS—5X(t) = —K SX(t). (4.10)

1Two matrices A and B, that satisfyAB = BA are said to “commute.”
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The matrixS is a constant, independent of time, thus we can move it through the time deriva-
tives in (4.10) to get
d2

But now using/(4.5), this is the equation of motion/fmt),
d2

M@X’(t) = K X(t). (4.12)

Thus, as promised, (4.6) and (4.7) are the mathematical statements of the reflection symmetry
because they imply, as we have now seen explicitly, tBattf is a solution X (¢) is also.
Note that from/(4.6), you can show that

M1ts=s5M1 (4.13)
by multiplying on both sides by/~!. Then[(4.13) can be combined with (4.7) to give
MKS=SM'K. (4.14)

We will use this later.
Now suppose that the system is in a normal mode, for example

X(t) = A coswyt. (4.15)

ThenX (t) is another solution. But it has the same time dependence, and thus the same an-
gular frequency. It must, therefore, be proportional to the same normal mode vector because
we already know from our previous analysis that the two angular frequencies of the normal
modes of the system are different,# wy. Anything that oscillates with angular frequency,

w1, must be proportional to the normal modeé;

X(t) oc A coswt. (4.16)
Thus the symmetry implies
S A o AL, (4.17)

That is, we expect from the symmetry that the normal modes are also eigenvegtorhisf
must be true whenever the angular frequencies are distinct. In fact, we can see by checking
the solutions that this is true. The proportionality constant isjlist

SAl = (_01 _01> Al=_Al (4.18)

and similarly

S A% = (_01 _01> A% = A2, (4.19)
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Furthermore, we can run the argument backward$idfan eigenvector of the symmetry
matrix S, and if all the eigenvalues Sfare different, then because of the symmetry, (4.13),
A'is a normal mode. To see this, consider the veltot K A and act on it with the matrix
S. Using (4.14), we see that if

SA = (A (4.20)

then
SM'KA=M1KSA=pM'KA. (4.21)

In words, [(4.21) means thad ~' K A is an eigenvector o with the same eigenvalue ds

But if the eigenvalues &f are all different, thed/ —! K A must be proportional td, which
means thatl is a normal mode. Mathematically we could say it this way. If the eigenvectors
of S are A" with eigenvalueg,,, then

SA™ = 3,A" , andf, # Bm for n #m = A™ are normal modes. (4.22)

It turns out that for the symmetries we care about, the eigenval$esrefalways all differ
ent?

Thus even if we had not known the solution, we could have used (4.20) to determine
the normal modes without bothering to solve the eigenvalue problem for th&/ 'K
matrix! Instead of solving the eigenvalue problem,

MK A" = 2 A", (4.23)
we can instead solve the eigenvalue problem
S A" = B, A" (4.24)

It might seem that we have just traded one eigenvalue problem for another. But in fact,
(4.24)is easier to solve, because can use the symmetry to determine the eigenvalues,
G, without ever computing a determinant.The reflection symmetry has the nice property
that if you do it twice, you get back to where you started. This is reflected in the property of
the matrixs,
S2=1. (4.25)

In words, this means that applying the mafitwice gives you back exactly the vector that
you started with. Multiplying both sides of the eigenvalue equation, (4.24), e §et
A" =T A" = S2 A" = 53, A"
=B S A" = G} A,

(4.26)

2See the discussion on page[103.
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which implies
B =1 or B,==1. (4.27)

This saves some work. Once the eigenvalues afe known, it is easier to find the eigen-
vectors ofS. But because of the symmetry, we know that the eigenvectérsvidf also be
the normal modes, the eigenvectors\df ' K. And once the normal modes are known, it
is straightforward to find the angular frequency by acting on the normal mode eigenvectors
with M~1K.

What we have seen here, in a simple example, is how to use the symmetry of an oscillating
system to determine the normal modes. In the remainder of this chapter we will generalize
this technique to a much more interesting situation. The idea is always the same.

We can find the normal modes by solving the eigenvalue problem for
the symmetry matrix, S, instead of M/ ' K. And we can use thesym- (4.28)
metry to determine the eigenvalues.

4.1.1 Beats

L[l4-1

The beginnings of wave phenomena can already be seen in this simple example. Suppose that
we start the system oscillating by displacing block 1 an ambwith block 2 held fixed in

its equilibrium position, and then releasing both blocks from rest atttim@. The general

solution has the form

X(t) = Al (by coswit + ¢; sin wit) + A? (be coswat + co sinwat) . (4.29)

The positions of the blocks at= 0 gives the matrix equation:

X(0) = (g) = Alby + A%y, (4.30)
of d=bi+b d
=01+ 02 @
O:_b1+b2:>b1—b2—2- (431)

Because both blocks are released from rest, we know;thatc; = 0. We can see this in
the same way by looking at the initial velocities of the blocks:

X(O) = <8> = wi Alep + weA?es (4.32)
or
O0=c1+c2

O:_Cl+62:>61262:0. (433)
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Thus

x1(t) = = (coswit + cos wat)
2 (4.34)

d
xa(t) = B (coswit — coswat) .

The remarkable thing about this solution is the way in which the energy gets completely
transferred from block 1 to block 2 and back again. To see this, we can (@B#pas
(using (1.64)and another similar identity)

x1(t) = dcos Qt cos dwt

(4.35)
xo(t) = dsin Qt sin dwt
where n
Q:MQ”Q, 5w:°"22“1. (4.36)

Each of the blocks exhibits “beats.” They oscillate with the average angular fregQency,

but the amplitude of the oscillation changes with angular frequencifter a timess— , the

energy has been almost entirely transferred from block 1 to block 2. This behavior is shown
in program 4-1 on your program disk. Note how the beats are produced by the interplay
between the two normal modes. When the two modes are in phase for one of the blocks so
that the block is moving with maximum amplitude, the moded &® out of phase for the

other block, so the other block is almost still.

The complete transfer of energy back and forth from block 1 to block 2 is a feature both
of our special initial condition, with block 2 at rest and in its equilibrium position, and of
the special form of the normal modes that follows from the reflection symmetry. As we will
see in more detail later, this is the same kind of energy transfer that takes place in wave
phenomena.

4.1.2 A Less Trivial Example

L[l4-2

Take a hacksaw blade, fix one end and attach a mass to the other. This makes a nice oscillator
with essentially only one degree of freedom (because the hacksaw blade will only bend back
and forth easily in one way). Now take six identical blades and fix one end of each at a single
point so that the blades fan outat angles from the center with their orientation such that

they can bend back and forththe plane formed by the bladeslf you put a mass at the end

of each, in a hexagonal pattern, you will have six uncoupled oscillators. But if instead you put
identical magnets at the ends, the oscillators will be coupled together in some complicated
way. You can see what the oscillations of this system look like in program 4-2 on the program
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T3 x2

5 T6

Figure 4.3: A system of six coupled hacksaw blade oscillators. The arrows indicate the
directions in which the displacements are measured.

disk. If the displacements from the symmetrical equilibrium positions are small, the system
is approximately linear. Despite the apparent complexity of this system, we can write down
the normal modes and the corresponding angular frequencies with almost no work! The trick
is to make clever use of the symmetry of this system.

This system looks exactly the same if we rotate i6@yyabout its center. We should,
therefore, take pains to analyze it in a manifestly symmetrical way. Let us label the masses 1
through 6 starting any place and going around counterclockwise, betthe counterclock-
wise displacement of thgh block from its equilibrium position. As usual, we will arrange

these coordinates in a vector:
X1

T2
T3
T4
L5
L6

(4.37)

The symmetry operation of rotation is implemented by the cyclic substitution

T1 — Tg — T3 — T4 — L5 — Lg — L1 - (4.38)

3From here on, we will assume that the reader is sufficiently used to complex numbers that it is not necessary
to distinguish between a real coordinate and a complex coordinate.
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This can be represented in a matrix notation as

X—-5X, (4.39)
where the symmetry matris, is
01 00 0O
0 01 00O
0 001 00O
§= 0 00010 (4.40)
0 00 0 01
1 0 00 00O

Note that the 1s along the next-to-diagonal of the maitiig (4.40)implement the substi-
tutions
Tl — X2 — X3 — T4 — Ty — Tg, (441)

while the 1 in the lower left-hand corner closes the circle with the substitution
T — T1 - (4.42)
The symmetry requires that t&matrix for this system has the following form:

r -B -C -D -C -B
-B K -B -C -D —-C
- -B F -B —-C -D
K = D -c -B E -B -C|- (4.43)
-c -b -C¢C -B FE -B
-B -C -D -C —-B FE

Notice that all the diagonal elements are the sdfeds they must be because of the sym-
metry. Thejth diagonal element of th€ matrix is minus the force per unit displacement on
the jth mass due to its displacement. Because of the symmetry, each of the masses behaves
in exactly the same way when it is displaced with all the other masses held fixed. Thus all the
diagonal matrix elements of thi€¢ matrix, K;;, are equal. Likewise, the symmetry ensures
that the effect of the displacement of each blgchkn its neighborj +1 (j+1 — 1if j = 6,
j—1—6if j =1— see(4.42)),is exactly the same. Thus the matrix elements along the
next-to-diagonal B) are all the same, along with ti#s in the corners. And so on! Tlé
matrix then satisfies (4.7),

SK=KS (4.44)

which, as we saw i(4.13)-4.12), is the mathematical statement of the symmetry. Indeed,
we can go backwards and work out the most general symmetric matrix consist€At4«ith
and check that it must have the form, (4.42)u will do this in problem (4.4).
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Because of the symmetry, we know that if a veetas a normal mode, then the vector
SAis also a normal mode with the same frequency. This is physically obvious. If the system
oscillates with all its parts in step in a certain way, it can also oscillate with the parts rotated by
60°, but otherwise moving in the same way, and the frequency will be the same. This suggests
that we look for normal modes that behave simply under the symmetry transformation S. In
particular, if we find the eigenvectors 8fand discover that the eigenvaluesSare all
different, then we know that all the eigenvectors are normal modes,(#@2). In the
previous example, we found modes that went into themselves multiplied lyder the
symmetry. In general, however, we should not expect the eigenvalues to be real because
the modes can involve complex exponentials. In this case, we must look for modes that
correspond to complex eigenvaluesSgt

SA=pBA. (4.45)

As abovein (4.25-(4.27), we canfind the possibleeigervaluesby usingthe symmetry Note
that because siB0° rotations get us back to the starting point, the mattisatisfies

Se=1. (4.46)
Because of (4.46), it follows thaf = 1. Thus gis a sixth root of one,
B=0=e"fork=0to5. (4.47)

Then for eaclt, there is a normal mode

S Ak = g, AF . (4.48)
Explicitly,
Al A
Ak Ak
Ak Ak
E_ N . 3
Ag AL
A Af

If we takeA’f = 1, we can solve for all the other components,

Al = (B (4.50)

“4Even this is not the most general possibility. In general, we might have to consider sets of modes that go
into one another under matrix multiplication. That is not necessary here because the symmetry transformations
all commute with one another.
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Thus
Ak 1
Ab o2ikr/6
Ak oAikm/6
A% = | Gikn/6 | - (4.51)
Ak (Bikm/6
Ak (L0ikm/6

Now to determine the angular frequencies corresponding to the normal modes, we have
to evaluate
MIKAF = 2Ak (4.52)

Since we already know the form of the normal modes, this is straightforward. For example,
we can compare the first components of these two vectors:

W2 = (E _ Be2ikT/6 _ (ipdik/6 _ ) bikn/6 _ i Sikm/6 _ BelOilmr/G) /m
(4.53)
E B k C 2k D
=2 97 cos 9 cos 2T (—1)F=.
m m 3 m 3 m
Notice thatv? = w2 andw3 = w?. This had to be the case, because the corresponding normal

modes are complex conjugate pairs,

Ad =AY, At =A%, (4.54)

Any complex normal mode must be part of a pair with its complex conjugate normal mode

at the same frequency, so that we can make real normal modes out of them. This must be
the case because the normal modes describe a real physical system whose displacements are
real. The real modes are linear combinations (see (1.19)) of the complex modes,

AR+ AR and (AR — AR /i for k=1or2. (4.55)

These modes can be seen in program 4-2 on the program disk. See appendix A and your
program instruction manual for details.

Notice that the real solution@l.55),are not eigenvectors of the symmetry matsixThis
is possible because the angular frequencies are not all different. However, the eigenvalues of
S are all different, from(4.47). Thus even though we can construct normal modes that are
not eigenvectors aof, it is still true thatll the eigenvectors ofS are normal modes.This
is what we use in (4.48)-(4.50) to determine Mfe

We note thaf4.55)is another example of a very important principlg117)that we
will use many times in what follows:

If AandA’ are normal modes of a systevith the same an-
gular frequency, w, then any linear combinatioh4 + cA’, is (4.56)
also a normal mode with the same angular frequency.
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Normal modes with the same frequency can be linearly combined to give new normal modes
(see problem 4.3). On the other hand, a linear combination of two normal modd#fesith
entfrequencies gives nothing very simple.

The technigues used here could have been used for any humber of masses in a similar
symmetrical arrangement. Witk masses and symmetry under rotatior2of N radians,
the Nth roots of 1 would replace the 6th roots of one in our example. Symmetry arguments
can also be used to determine the normal modes in more interesting situations, for example
when the masses are at the corners of a cube. But that case is more complicated than the
one we have analyzed because the order of the symmetry transformations matters — the
transformations do not commute with one another. You may want to look at it again after you
have studied some group theory.

Chapter Checklist
You should now be able to:

1. Apply symmetry arguments to find the normal modes of systems of coupled oscillators
by finding the eigenvalues and eigenvectors of the symmetry matrix.

Problems

4.1 Show explicitly that[(4.7) is true for thE€ matrix, (4.43, of system of figure 4.3
by findingSK and K S

4.2 Consider a system of six identical masses that are free to slide without friction on
a circular ring of radius R and each of which is connected to both its nearest neighbors by
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identical springs, shown below in equilibrium:

a. Analyze the possible motions of this system in the region in which it is linear (note
that this is not quite just small oscillations). To do this, define appropriate displacement
variables (so that you can use a symmetry argument), find the form of the K matrix and then
follow the analysis in (4.37)-(4.55). If you have done this properly, you should find that one
of the modes has zero frequency. Explain the physical significance of this lfintde.Do

not attempt to find the form of thi€ matrix directly from the spring constants of the spring

and the geometry. This is a mess. Instead, figure out what it has to look like on the basis of
symmetry arguments. You may want to look at appendix c.

b. If att = 0, the masses are evenly distributed around the circle, but every other mass
is moving with (counterclockwise) velocitywhile the remaining masses are at rest, find and
describe in words the subsequent motion of the system.

4.3

a. Prove(4.56).

b. Prove that ifA and A’ are normal modes correspondinglifierent angular frequen-
cies,w andw’ respectively, where? # w'?, thenbA + cA’ is not a normal mode unlessr

cis zero.Hint: You will need to use the fact that bothand 4 are nonzero vectors.

4.4 Show that/(4.43) is the most general symmeitric6 matrix satisfying((4.44).
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