8.03 Lecture 8

This is what we have done:
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And we go from N coupled equations of motion to and infinite number of coupled equations of
motion. Idea: we can make use of the “Space Translation Invariance”. This symmetry can be
translated into mathematics: A" = SA such that A} = A; 14

If A is an eigenvector of S:

SA=pA
Al = BAj = Ajn
Aj = ﬁjA() X ,Bj

Consider 8 = e*® (Recall: we need |3 = 1 so that A; does not go to oo when j — o)
We get A; elika
Let’s consider this example:
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A lot of point-like massive particles connected by a massless string, separated a distance a. These
particles can only move up and down. We have constant tension 7" and small vibrations. Question:
what will be the resulting motion of the system?

Force diagram:
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Assume y; << a = (01,62) <<1

Horizontal direction: m; = —1 cos 6 + T cos 03
Vertical direction: mgj; = —1'sinf; — T'sin 0

Since 67 and 05 are small = cosf ~ 1 and sinf =~ 6

mi; =—T+T =0 (No motion in the horizontal direction)
my; = =T (sin 0y + sin 63)

~ 7T(yj —Yi—1 i Yi — Z/j+1)
a a
mj = —(yj-1 = 2y; + Yj+1)

Normal modes: y; =Re[ Ajei(wt+¢)]
4;

From the S matrix, the eigenvectors are A =
A

j _ ijka
Ajox ! =e"

Reminder: a is the distance between particles in the # direction. To get M~k matrix:

m 0 0 1 oo T

a a a
M=0 m 0 k= 0 _T o T
0 0 a a a

0 0 '

S

1 ma ma ma
M k: 0 _l 27 _l



To get w, since M 'k and S share the same eigenvectors:
Calculate M~'kA = w?A. The jth term:

T
Wiy = ——(=Aj1+ 245 = Aj)
T . .
szj _ 714]‘(—6_“% +24+ ezka
ma
T
w?=—(2 —2coska)

ma
= 2w3(1 — cos ka)

k
w? = 4w? sin® (;)

Where we have defined w? = T/ma. This is almost the same result that we got from last lecture!
w = w(k), or w is a function of k. This is known as a “dispersion relation.” When & (the wavenumber
k =2m/)) is given then w (the angular frequency) is determined.

Our normal modes are standing waves:
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Oscillating at frequency w as determined by k

This system is infinitely long. All possible k values (wavelengths) are allowed. Each k value
corresponds to a different normal mode with angular frequency given by w(k).

Now we still try to solve a finite system using the solution for the infinite system. Consider the
following boundary condition:

(1) Fixed end:

2, a
™ N 5

& — .. - —— —

U v o A

Boundary conditions: yo =0 yny4+1 =0
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What are the normal modes that satisfy the boundary conditions? There are two values of k£ which
give the same w

w(k) = w(—k)

Therefore: linear combinations of 7% and e~“*2 are also normal modes. Guess:
yj = Re [ei(wt—i—(b) (aeijka + Be—ijka)}

Where o and 3 are constants. Use the boundary conditions:
Y=0=a+=0 = a=-0

yvi1=0 = « (e“NH)ka n e—i(N—H)ka) 0

2isin(N + 1)ka =0 = ka= N”: :
Where n is a positive integer less than N
(More examples:)
(2) Open end:
massless v "j
J cun SA'J’ ur
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Boundary conditions: y1 = yo YnN+1 = YN

From first boundary condition we get:

a+ B = ae 4 Beika
a(l _ eika) — 5(6_“% _ CL)

Second boundary condition:
aeiNka 4 ge—iNka _ o i(N+Dka o go—i(N+1)ka
aeiNka(l o eika) _ ﬂe—iNka(e—ika o 1)

Dividing the first condition by the second condition:

eiNka — efiNka

:> BQiNk(l — 1

g 2nw nw
a=—=—

2N N



/B _ aeika
yj = a(eijka _I_e—i(j—l)ka)
— qeika/2(gil-1/2ka y o=i(i=1/2)ka)

x cos(ka(j —1/2))
(3)

e - —< )/M’ A\ cos Wyt

Boundary conditions: yo =0 yny1+1 = Acoswgt

Need to find the “particular solution”
y; must be oscillating at a frequency wy
What is the corresponding kg which gives wq? Use w(k):

w3 = 202 (1 — cos kqa)

2
Solve to get kga = cos™! ( “Jd>

B ng
Guess:
y; = Re [eiwdt(aeijkda + /Be—z'jkda)}

Use the boundary condition at j = 0:
w=0= a+=0 = f=—a«a
y; = Re [2716“’th sinjkda}
Use the boundary condition at j = N + 1:

yn+1 = Z coswgt = Re[Ae™@d!]
= A =2iAsin(N + 1)kqa
A
~ 2isin(N + 1)kqa

Asin jkga
sin(N + 1)kqa
Assin jkgqa

= _— !
sin(NV + 1)kqa o8

= y;j = Re wat


yunpeng
Rectangle


Which explodes when kja = ;77!! (When the driving force matches the normal mode frequency)

Summary:

1. Symmetry + does not explode at the edge of the universe choose = 3 = e+

2. Equation of motion can be derived from physical laws
3. Dispersion relation w(k) can be derived from items 1 and 2

4. The allowed k value is determined by boundary conditions. The full solution is a linear
combination of normal modes

5. Use initial conditions to determine unknowns

Now make it continuous!!!
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jth term of
MkA = WA= %(—Aj_l +24; — Ajt1)
In the continuous limit this equation transforms into:
MUkA = WA(z) = %(—A(:ﬁ ~a) +24(z) — Az + a))
If we Taylor Expand:

Az —a) = A(x) — aA'(:c) + %azA”(x) 4.

Az +a) = A(z) + ad'(z) + %aQA”(x) L

2
= —Alx—a)+2A(z) - Alx+a) = —85?1;(2@@2 +
—1 . _£82A(x) 2
M~ kA(x) = a2 ¢

In the a << wavelength we can ignore the a® and higher order terms. We define p;, = = and M Y
becomes an “operator”:

T 02

—1 - Y

Mk — oL 022
N(x,t) T 0(a,t)

ot? N PL Ox?
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In the last equation we plug in the normal mode e***¢i?
Dispersion relation:
T
2 — 7]{:2
PL
w T

Yo =
ko pL

w

Where v, is the phase velocity, w is the angular frequency and k is the wave number.
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