Chapter 2

Forced Oscillation and Resonance

The forced oscillation problem will be crucial to our understanding of wave phenomena.
Complex exponentials are even more useful for the discussion of damping and forced oscil-
lations. They will help us to discuss forced oscillations without getting lost in algebra.

Preview

In this chapter, we apply the tools of complex exponentials and time translation invariance to
deal with damped oscillation and the important physical phenomenon of resonance in single
oscillators.

1. We set up and solve (using complex exponentials) the equation of motion for a damped
harmonic oscillator in the overdamped, underdamped and critically damped regions.

2. We set up the equation of motion for the damped and forced harmonic oscillator.

3. We study the solution, which exhibits a resonance when the forcing frequency equals
the free oscillation frequency of the corresponding undamped oscillator.

4. We study in detail a specific system of a mass on a spring in a viscous fluid. We give a
physical explanation of the phase relation between the forcing term and the damping.

2.1 Damped Oscillators

Consider first the free oscillation of a damped oscillator. This could be, for example, a system
of a block attached to a spring, like that shown in figure 1.1, but with the whole system
immersed in a viscous fluid. Then in addition to the restoring force from the spring, the block
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38 CHAPTER 2. FORCED OSCILLATION AND RESONANCE

experiences a frictional force. For small velocities, the frictional force can be taken to have
the form
—mlv, (2.1)

wherel' is a constant. Notice that because we have extracted the factor of the mass of the
block in (2.1),1/T has the dimensions of time. We can write the equation of motion of the
system as

d? d 9

ﬁx(t) —i—F%x(t) +wiz(t) =0, (2.2)

wherew, = /K /m. This equation is linear and time translation invariant, like the undamped
equation of motion. In fact, it is just the form that we analyzed in the previous chapter, in
(1.16). As before, we allow for the possibility of complex solutions to the same equation,

d? d
73 20 + T = 2(t) + @ =(t) = 0. (2.3)

Because (1.71) is satisfied, we know from the arguments of of chapter 1 that we can find

irreducible solutions of the form
2(t) = e, (2.4)

wherea (Greek letter alpha) is a constant. Puttingl(2.4) into (2.2), we find
(@®>+Ta+wd)e*=0. (2.5)

Because the exponential never vanishes, the quantity in parentheses must be zero, thus

a=-Ca /T2 (2.6)

From (2.6), we see that there are three region§ fwsmpared tav, that lead to different
physics.
2.1.1 Overdamped Oscillators

If I'/2 > wy, both solutions forv are real and negative. The solution to/(2.2) is a sum of de-
creasing exponentials. Any initial displacement of the system dies away with no oscillation.
This is anoverdamped oscillator

The general solution in the overdamped case has the form,

z(t) = 2(t) = Ape T+t 4 A_e7 -1, (2.7)
where

Iy =—+4/——wd. (2.8)
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t=20 t— t=10s
Figure 2.1: Solutions to the equation of motion for an overdamped oscillator.

An example is shown in figu1. The dotted line is '+t forI' = 1 s ' andwy = .4 s7!.
The dashed line isT-!. The solid line is a linear combinatiam,'+! — 1e~T-t,

In the overdamped situation, there is really no oscillation. If the mass is initially moving
very fast toward the equilibrium position, it can overshoot, as shown in Rdlirdowever,
it then moves exponentially back toward the equilibrium position, without ever crossing the
equilibrium value of the displacement a second time. Thus in the free motion of an over-
damped oscillator, the equilibrium position is crossed either zero or one times.

2.1.2 Underdamped Oscillators

If I'/2 < wy, the expression inside the square root is negative, and the solutienarior
complex conjugate pair, with negative real part. Thus the solutions are products of a decreas-
ing exponentiale /2, times complex exponentials (or sines and cosiies]), where

w?=wi —T%/4. (2.9)

This is anunderdamped oscillator.

Most of the systems that we think of as oscillators are underdamped. For example, a
system of a child sitting still on a playground swing is an underdamped pendulum that can
oscillate many times before frictional forces bring it to rest.

The decaying exponentialt/2¢~(«t=f) gspjrals in toward the origin in the complex
plane. Its real parg—1*/2 cos(wt — ), describes a function that oscillates with decreasing
amplitude. In real form, the general solution for the underdamped case has the form,

z(t) = Ae T2 cos(wt — ), (2.10)

or
z(t) = e "2 (¢ cos(wt) + d sin(wt)) , (2.12)
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whereA andf are related te andd by (1.97)and(1.98). This is shown in figur@.2 (to be
compared with figurd.9). The upper figure shows the complex plane witht/2¢—#(wt=0)
plotted for equally spaced valuestofThe lower figure is the real patts(wt — ) —, for

the same values ofplotted versug. In the underdamped case, the equilibrium position is
crossed an infinite number of times, although with exponentially decreasing amplitude!

'
o Tt/2,—i(wt—0)

cos(wt — 0) —

Figure 2.2: A damped complex exponential.
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2.1.3 Critically Damped Oscillators

If I'/2 = wo, then(2.4), gives only one solution;~"*/2. We know that there will be two
solutions to the second order differential equat{@r®). One way to find the other solution

is to approach this situation from the underdamped case as a limit. If we write the solutions
to the underdamped case in real form, theyeaté’2 coswt ande /2 sinwt. Taking the

limit of the first asv — 0 givese 1*/2, the solution we already know. Taking the limit of

the second gives 0. However, if we first divide the second solutian ibys still a solution
becauses does not depend anNow we can get a nonzero limit:

L 12

lim —

sinwt = te T2, (2.12)
w—0 w

Thuste T2 is also a solution. You can also check this explicitly, by inserting it back
into (2.2). This is called thecritically damped case because it is the boundary between
overdamping and underdamping.

A familiar system that is close to critical damping is the combination of springs and shock
absorbers in an automobile. Here the damping must be large enough to prevent the car from
bouncing. But if the damping from the shocks is too high, the car will not be able to respond
quickly to bumps and the ride will be rough.

The general solution in the critically damped case is thus

ce M2 pdte T2 (2.13)

This is illustrated in figur2.3. The dotted line ig~'* for I' = 1 s7'. The dashed line is
te~It. The solid line is a linear combinatig, — ¢) e~ 1",

1 1

t=20 t— t=10s

Figure 2.3: Solutions to the equation of motion for a critically damped oscillator.

As in the overdamped situation, there is no real oscillation for critical damping. However,
again, the mass can overshoot and then go smoothly back toward the equilibrium position,
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without ever crossing the equilibrium value of the displacement a second time. As for over-
damping, the equilibrium position is crossed either once or not at all.

2.2 Forced Oscillations

The damped oscillator with a harmonic driving force, has the equation of motion

d? d 9
@x(t)+F%:E(t)+wo z(t) = F(t)/m, (2.14)
where the force is
F(t) = Fycoswgt . (2.15)

Thew,/27 is called the driving frequency. Notice that itist necessarily the same as the
natural frequencyyy/2m, nor is it the oscillation frequency of the free system, (2.9). Itis
simply the frequency of the external force. It can be tuned completely independently of the
other parameters of the system. It would be correct but awkward to refeasathe driving
angular frequency. We will simply call it the driving frequency, ignoring its angular character.

The angular frequenciesy andwg, appear in the equation of motion, (2.15), in com-
pletely different ways. You must keep the distinction in mind to understand forced oscilla-
tion. The natural angular frequency of the system),is some combination of the masses
and spring constants (or whatever relevant physical quantities determine the free oscillations).
The angular frequencyy, enteronly through the time dependence of the driving force. This
is the new aspect of forced oscillation. To exploit this new aspect fully, we will look for a
solution to the equation of motion that oscillates with the same angular frequgnay,the
driving force.

We can relate (2.14) to an equation of motion with a complex driving force

2
%z(t) —i—l“%z(t) b2 a() = F(t)/m, (2.16)
where
F(t) = Fye ™t (2.17)

This works because the equation of motion, (2.14), does not invekgicitly and because
Re F(t) = F(t). (2.18)

If z(t) is a solution to[(2.16), then you can prove th@) = Re z(¢) is a solution((2.14) by
taking the real part of both sides of (2.16).

The advantage to the complex exponential force, in(2.16), is that it is irreducible, it
behaves simply under time translations. In particular, we can find a steady state solution
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proportional to the driving force; ™!, whereas for the real driving force, thes wyt and
sin wgt forms get mixed up. That is, we look for a steady state solution of the form

2(t) = Ae it (2.19)

The steady state solution, (2.19), is a particular solution, not the most general solution to
(2.16). As discussed in chapter 1, the most general solution of (2.16) is obtained by adding
to the particular solution the most general solution for the free motion of the same oscillator
(solutions of[(2.3)). In general we will have to include these more general contributions to
satisfy the initial conditions. However, as we have seen above, all of these solutions die away
exponentially with time. They are what are called “transient” solutions. It is only the steady
state solution that survives for a long time in the presence of damping. Unlike the solutions to
the free equation of motion, the steady state solution has nothing to do with the initial values
of the displacement and velocitl.is determined entirely by the driving force, (2.17). You
will explore the transient solutions in problem (2.4).

Putting (2.19) and (2.17) intd (2.16) and cancelling a facter &fi* from each side of
the resulting equation, we get

F
(—w? — iTwg+wi) A= =2, (2.20)
m

or
Fy/m
w2 —ilTwy — w2’
0 d d

A= (2.21)

Notice that we got the solution just using algebra. This is the advantage of starting with
the irreducible solution, (2.19).

The amplitude, (2.21), of the displacement is proportional to the amplitude of the driving
force. This is just what we expect from linearity (see problem (2.2)). But the coefficient of
proportionality is complex. To see what it looks like explicitly, multiply the numerator and
denominator of the right-hand side lof (2.21)8y+ iTw, — w3, to get the complex numbers
into the numerator

wWE 4+ iTwg — w?) Fy/m

G . ‘;2 d)2°2/ . (2.22)

(wg —wg)” +Twj

The complex numbed can be written ad + ¢B, with A and Breal:
(w§ — wi) Fo/m

A= 5 VERTICE (2.23)

(wf —wg)” + Mwj

T

B wa Fo/m (2.24)

(o —wd)® + T2
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Then the solution to the equation of motion for the real driving farce,/ (2s14),
z(t) = Re z(t) = Re (.Ae_iwdt> = Acoswgt + Bsinwgt . (2.25)

Thus the solution for the real force is a sum of two terms. The term proportiohas o

phase with the driving force (aB80° out of phase), while the term proportionalBds 90°

out of phase. The advantage of going to the complex driving force is that it allows us to get
both at once. The coefficientd,and B are shown in the graph in figi2ed forl’ = wq/2.

Fo
mwo

0 Wqg — Wy 2wo

Figure 2.4: The elastic and absorptive amplitudes, plotted vegsuBhe absorptive ampli-
tude is the dotted line.

The real part of A, A = Re A, is called the elastic amplitudendthe imaginary part
of A, B = Im A, is called the absorptive amplitude. The reason for these names will
become apparent below, when we consider the work done by the driving force.

2.3 Resonance

The (wZ — w?)” term in the denominator ¢2.22)goes to zero favy = wy. If the damping
is small, this behavior of the denominator gives rise to a huge increase in the response of the
system to the driving force at; = wy. The phenomenon is called resonance. The angular
frequencywy is the resonant angular frequency. Whgn=uuvg, the system is said to be “on
resonance”.

The phenomenon of resonance is both familiar and spectacularly important. It is familiar
in situations as simple as building up a large amplitude in a child’s swing by supplying a
small force at the same time in each cycle. Yet simple as it is, it is crucial in many devices
and many delicate experiments in physics. Resonance phenomena are used ubiquitously to
build up a large, measurable response to a very small disturbance.
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Very often, we will ignore damping in forced oscillations. Near a resonance, this is not a
good idea, because the amplitude, (2.22), goes to infinity-as0 for wgy = wp. Infinities
are not physical. This infinity never occurs in practice. One of two things happen before the
amplitude blows up. Either the damping eventually cannot be ignored, so the response looks
like (2.22) for nonzerd’, or the amplitude gets so large that the nonlinearities in the system
cannot be ignored, so the equation of motion no longer looks like (2.16).

2.3.1 Work

It is instructive to consider the work done by the external force inl (ZT@&)o this we must

use the real force,[(2.14), and the real displacement (2.25), rather than their complex
extensions, because, unlike almost everything else we talk about, the work is a nonlinear
function of the force. The power expended by the force is the product of the driving force
and the velocity,

P(t) = F(t) %x(t) = — FywgA cos wyt sinwgt + FowyB cos® wgt . (2.26)

The first term in[(2.26) is proportional #n 2wyt. Thus it is sometimes positive and
sometimes negative. It averages to zero over any complete half-period of oscillation, a time
7 /wq, because

to+m/wq 1
/ dt sin 2wgt = —5 cos det\ingﬂ/wd =0. (2.27)
to
This is whyA is called the elastic amplitude. Afdominates, then energy fed into the system
at one time is returned at a later time, as in an elastic collision in mechanics.
The second term in (2.26), on the other hand, is always positive. It averages to

1
Payerage = iFOWdB . (2.28)

This is whyB is called the absorptive amplitude. It measures how fast energy is absorbed by
the system. The absorbed powElyerage, reaches a maximum on resonanceyat= wq.

This is a diagnostic that is often used to find resonances in experimental situations. Note that
the dependence @ onw, looks qualitatively similar to that @f,yerage, Which is shown in

figure 2.5 forl’ = wy /2. However, they differ by a factor af;. In particular, the maximum

of B occurs slightly below resonance.

2.3.2 Resonance Width and Lifetime

Both the height and the width of the resonance curve in figure 2.5 are determined by the
frictional term,T", in the equation of motion. The maximum average power is inversely
proportional td”,
Fg
2mI

(2.29)
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g
2mlI’

|

P, average

0 t
0 Wwqg — wo 2w

Figure 2.5: The average power lost to the frictional force as a functigpfof I' = wg /2.

The width (for fixed height) is determined by the ratid @ wy. In fact, you can check that
the values ofu,; for which the average power loss is half its maximum value are

/ rz r

Thel is the “full width at half-maximum?” of the power curve. In figiZ.€ and figure2.7,we
show the average power as a functiowofor I' = wy /4 andl’ = wy. The linear dependence
of the width orT" is clearly visible. The dotted lines show the position of half-maximum.

2ml /\
P, average |  [7¢
T
—
0
0 Wwqg — wo 2wo

Figure 2.6: The average power lost to the frictional force as a functigpfof I' = wy /4.
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Figure 2.7: The average power lost to the frictional force as a functigpfof I' = wy.

This relation is even more interesting in view of the relationship betiwew the time
dependence of the free oscillation. The lifetime of the state in free oscillation is of drder
In other words, the width of the resonance peak in forced oscillation is inversely proportional
to the lifetime of the corresponding normal mode of free oscillation. This inverse relation
is important in many fields of physics. An extreme example is particle physics, where very
short-lived particles can be described as resonances. The quantum mechanical waves associ-
ated with these particles have angular frequencies proportional to their energies,

E =hw (2.31)
whereh is Planck’s constant divided I2yr,
ha~6.626 x 10734 Js. (2.32)

The lifetimes of these particles, some as shorba$* seconds, are far too short to measure
directly. However, the short lifetime shows up in the large width of the distribution of energies
of these states. That is how the lifetimes are actually inferred.

2.3.3 Phase Lag

We can also write (2.2%)s
x(t) = Rcos(wqt — 0) (2.33)

for
R=+vVA?2+B?, 0=arg(A+iB). (2.34)
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The phase angl€), measures thphase laghetween the external force and the system’s
response. The actual time lagjsv,. The displacement reaches its maximum a tithe;
after the force reaches its maximum.

Note that as the frequency increagemcreases and the motion lags farther and farther
behind the external force. The phase arjles determined by the relative importance of the
restoring force and the inertia of the oscillator. At low frequencies (compas&gl, imertia
(an imprecise word for thewa term in the equation of motion) is almost irrelevant because
things are moving very slowly, and the motion is very nearly in phase with the force. Far
beyond resonance, the inertia dominates. The mass can no longer keep up with the restoring
force and the motion is nearlg0° out of phase with the force. We will work out a detailed
example of this in the next section.

The phase lag goes througli2 at resonance, as shown in the graph in fi@uéor
I' = wp/2. A phase lag of-/2 is another frequently used diagnostic for resonance.

T -

B

0 + |
0 wo 2w

Figure 2.8: A plot of the phase lag versus frequency in a damped forced oscillator.

2.4 An Example
2.4.1 Feeling It In Your Bones

L0l2-1

We will discuss the physics of forced oscillations further in the context of the simple system
shown in figuré.S. The block has mass. The block moves in a viscous fluid that provides

a frictional force. We will imagine that the fluid is something like a thick silicone oil, so that
the steady state solution is reached very quickly. The block is attached to a cord that runs
over a pulley and is attached to a spring, as shown. The spring has spring dénstaat
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dg cos wgt

—

Figure 2.9: An oscillator that is damped by moving in a viscous fluid.

hold on to the other end of the spring and move it back and forth with displacement
dy cos wgt . (2.35)

In this arrangement, you don’t have to be in the viscous fluid with the block — this makes it
a lot easier to breathe.

The question is, how does the block move? This system actually has exactly the equation
of motion of the forced, damped oscillator. To see this, note that the change in the length of
the spring from its equilibrium length is the difference,

x(t) — dy coswgt . (2.36)

Thus the equation motion looks like this:

2

m % z(t) +ml % x(t) = =K [z(t) — dop coswgt] . (2.37)

Dividing by m and rearranging terms, you can see that this is identical to (2.14) with
Fo/m = K do/m = widy . (2.38)

Moving the other end of the spring sinusoidally effectively produces a sinusoidally varying
force on the mass.

Now we will go over the solution again, stressing the physics of this system as we go.
Try to imagine yourself actually doing the experiment! It will help to try to feel the forces
involved in your bones. It may help to check out program 2-1 on the supplementary programs
disk. This allows you to see the effect, but you should really tigetdt!
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The first step is to go over to the complex force, as inl(2.16). The result looks like

inertial frictional spring driving
—— —— = ——

d? d ,
p7e] z(t)+T p 2(t) + wd 2(t) = widg e ™at | (2.39)

We have labeled the terms in (2.39) to remind you of their different physical origins.
The next step is to look for irreducible steady state solutions of the form of (2.19):

2(t) = Ae ™t (2.40)
Inserting (2.40) into (2.39), we get
|—wd — iTwg + wf| AeT0t = w3dg et (2.41)

What we will discuss in detail is the phase of the quantity in square brackets on the left-
hand side of (2.41). Each of the three terms, inertial, frictional and spring, has a different
phase. Each term also depends on the angular frequeriaya different way. The phase of
A depends on which term dominates.

For very smallvg, in particular for

wg <K wo, I, (2.42)

the spring term dominates the sum. Théis in phase with the driving force. This has a
simple physical interpretation. If you move the end of the spring slowly enough, both friction
and inertia are irrelevant. When the block is moving very slowly, a vanishingly small force
is required. The block just follows along with the displacement of the end of the spring,
A = dy. You should be able to feel this dependence in your bones. If you move your hand
very slowly, the mass has no trouble keeping up with you.

For very largevy, that is for

wq > wo, I, (2.43)

the inertial term dominates the sum. The displacement isl#&nout of phase with the
driving force. It also gets smaller and smallewgéncreases, going like

An =0 4,. (2.44)

Again, this makes sense physically. When the angular frequency of the driving force gets
very large, the mass just doesn’t have time to move.

In between, at least two of the three terms on the left-hand side of (2.41) contribute
significantly to the sum. At resonance, the inertial term exactly cancels the spring term,
leaving only the frictional term, so that the displacemef®isout of phase with the driving
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force. The size of the damping force determines how sharp the resonance is.mtich
smaller tharnwy, then the cancellation between the inertial and spring terms in (2.39) must
be very precise in order for the frictional term to dominate. In this case, the resonance is
very sharp. On the other handl'if> wg, the resonance is very broad, and the enhancement
at resonance is not very large, because the frictional term dominates for a large tange of
around the point of resonancg, = wy.

Try it! There is no substitute for actually doing this experiment. It will really give you
a feel for what resonance is all about. Start by moving your hand at a very low frequency,
so that the block stays in phase with the motion of your hand. Then very gradually increase
the frequency. If you change the frequency slowly enough, the contributions from the tran-
sient free oscillation will be small, and you will stay near the steady state solution. As the
frequency increases, you will first see that because of friction, the block starts to lag behind
your hand. As you go through resonance, this lag will increase and go thtSudtinally at
very high frequency, the block will H80° out of phase with your hand and its displacement
(the amplitude of its motion) will be very small.

Chapter Checklist
You should now be able to:

1. Solve for the free motion of the damped harmonic oscillator by looking for the irre-
ducible complex exponential solutions;

2. Find the steady state solution for the damped harmonic oscillator with a harmonic
driving term by studying a corresponding problem with a complex exponential force
and finding the irreducible complex exponential solution;

3. Calculate the power lost to frictional forces and the phase lag in the forced harmonic
oscillator;

4. Feel it in your bones!

Problems
2.1 Prove that an overdamped oscillator can cross its equilibrium position at most once.
2.2 Prove, just using linearity, without using the explicit solution, that the steady state

solution to (2.16) must be proportional fp.
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2.3 For the system with equation of motion (2.14), suppose that the driving force has
the form
fo coswot cos ot

where
0wy and T'=0.

As é — 0, this goes on resonance. What is the displacementifonzero tdeading order
in /wo? Write the result in the form

a(t) coswot + B(t) sinwpt

and finda(t) and(t). Discuss the physics of this resudtint: First show that

1 . .
cos wot cos 0t = 3 Re (e‘l(wo+5)t 4 @—Z(wo—é)t) '

2.4 For the system shown in figure 2.9, suppose that the displacement of the end of the
wire vanishes fot < 0, and has the form

dosinwgt for t>0.

a. Find the displacement of the block for- 0. Write the solution as the real part of
complex solution, by using a complex force and exponential solutions. Do not try to simplify
the complex numberslint:  Use (2.23),[(2.24) and (2.6). If you get confused, go on to part
b.

b. Find the solution whei® — 0 and simplify the result. Even if you got confused by
the complex numbers i, you should be able to find the solution in this limit. When there
is no damping, the “transient” solutions do not die away with time!

2.5 For the LC circuit shown in figure 1.10, suppose that the inductor has nonzero re-
sistance R. Write down the equation of motion for this system and find the relation between
friction term,mI’, in the damped harmonic oscillator and the resistafddat completes the
correspondence of (1.105). Suppose that the capacitors have capa€itan0d)0667 . F,

the inductor has inductanck,~ 150pH and the resistanc&® ~ 15¢2. Solve the equation

of motion and evaluate the constants that appear in your solution in units of seconds.
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