Chapter 13

Interference and Diffraction

A “beam” of light is very familiar. A laser pointer, for example, produces a pattern of light
that is almost like a transverse section of a plane wave. But not quite. The laser beam spreads
as it travels. You might think that this is simply due to the imperfections in the laser. But, in
fact, no matter how hard you try to perfect your laser, you cannot avoid some spreading. The
problem is‘diffraction.”

Interference is a crucial part of the physics of diffraction. We have seen it already in
one-dimensional situations such as interferometers and reflection from thin films. Here we
begin to see what amazing things it does in more than one dimension.

Preview

In this chapter, we show how the phenomena of interference and diffraction arise from the
physics of the forced oscillation problem and the mathematics of Fourier transformation.

i. We begin by discussing interference from a double slit. This is the classic example of
interference. We give a heuristic discussion of the physics, and generalize it to get the
fundamental result of Fourier optics.

ii. We then continue our quantitative analysis of interference and diffraction by discussing
the general problem again as a forced oscillation problem. We show the connection
with making a beam. We find the relevant boundary condition at infinity and express
the solution in the form of an integral.

iii. We show how the integral simplifies in two extreme regions — very close to the source
of the beam, where it really looks like a beam — and very far away, where diffrac-
tion takes over and the intensity of the wave is related to a Fourier transform of the
wave pattern at the source, the same result that we found in our heuristic discussion of
interference.
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370 CHAPTER 13. INTERFERENCE AND DIFFRACTION

iv. We apply these techniques to examples involving beams made with one or more slits
and rectangular regions.

v. We prove a useful result, the convolution theorem, for combining Fourier transforms.

vi. We show how periodic patterns lead to sharp diffraction patterns, and discuss the ex-
ample of the diffraction grating in detail.

vii. We apply the same ideas to the three-dimensional example of x-ray diffraction from
crystals.

viii. We describe a hologram as a rather complicated diffraction pattern.

ix. We discuss interference fringes and zone plates.

13.1 Interference

13.1.1 The Double Slit
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Figure 13.1: The double slit experiment.
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The classic arrangement of the double slit experiment is illustrated infigure 13.1. There
is an opaque screen with two narrow slits in it in4he 0 plane (shown in cross section in
the z-z plane — the slits come out of the paper inghdirection) a small distanceapart.

The opaque screen is illuminated by a “point” source of light. For example, this could be
a light with a clear glass bulb and a colored filter to pick out a narrow frequency range, far
away in the—z direction. A laser beam spread out with a lens would serve just as well. The

important thing is to produce illumination at the opaque screen in which the frequency is in a
narrow range and the phase of the light reaching the two slits is correlated. This will certainly
be true if the illumination for < 0 is nearly a plane wave.

Now an interesting thing happens at the second screen; at. This “screen” could be
a photographic plate, a translucent screen, or even your retina. What appears on this screen
is a series of parallel lines of brightness ingtdirection (parallel to the slits). If one of the
slits is covered up, the lines disappear.

What is going on is interference between the two possible straight-line paths by which the
light can reach the screen. We will give a heuristic, physical discussion of the interference
in this section. Then in the next section, we will derive the same result using the kind of
forced oscillation and boundary condition arguments that you know from our study of one-
dimensional waves.

The physical picture is this. The electric fieldzat Z is a sum of the fields that come
from the two slits. At = 0, in the symmetrical arrangement shown in figure!13.1, the two
possible paths for the light have the same length. Therefore, the two components of the field
have the same phase. Therefore they interfere “constructively” and there is a bright line at
x = 0. Asx changes, at = Z, the relative length of the two paths changes. We will then get
alternating positions of constructive and destructive interference. This gives rise to the bright
lines.

We can understand the effect quantitatively by computing the path length explicitly. Con-
sider a point on the screenzat= X. This is shown in figure 13.2.

The length of the dotted line in figure 13.2 is

VX2 4272, (13.1)

For the upper and lower slits, the path lengths are slightly shorter and longer respectively.
The total difference in path length is

AC=\J(X +5/22 + 22— \J(X — 5/2)2 + 22 (13.2)
For Z > s, we can expand/ in (13.2) in a Taylor series,

NP S (13.3)

TVXI+ 22
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Figure 13.2: Path lengths.

Therefore if the angular wave number of the ligtit, ithephase differencebetween the two

paths is
ksX

VX272

We get an intensity maximum every time the phase is a multigle, afhen

(13.4)

ksX
VX2 + 72

In terms of the wavelength,= 27 /k, this is

=2nm. (13.5)

X A (13.6)

—_— =,
VX272 s

13.1.2 Fourier Optics

Suppose that instead of a simple pattern of two slits, there is some more complicated pattern
on the opaque screen. In general, we can describe the wave disturbance4natmane
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by some function aof andy,*
flz,y). (13.7)
Our strategy will be to think of the wave produced4or 0 by this general function as a
sum of the effects of tiny holes at all the values ahdy for which f(x, y) is nonzero. For
each little piece of the function, we can compute the path length to some point on the screen
at z= Z. Then we can add up all the pieces.
Suppose, for simplicity, thaf(z,y) is only nonzero in some small region around the

origin, so that: andy will be small

Yy <L Z, (13.8)

for all relevant values of andy. Now the path length from the poift, y, 0) on the screen
at z= 0 to the point( X, Y, Z) on the screen at= 7 is

VX —2)2 4+ (Y —y)? + 22 (13.9)
Using (13.8), we can expand this as follows:
R+ Al(z,y)+---, (13.10)
where
R=VX2+Y24 22 (13.11)
and
Al(z,y) = —%. (13.12)
Thus the wave on the path frqm, y,0) to (X,Y, Z) gets a phase of approximately
eR(BAAL) (13.13)

Now we can put the pieces of the wave back together to see how the interference works at
the point(X, Y, Z). We just sum over all values ofandy, with a factor of the phase and the
function, f(z,y). Because: andy are continuous variables, the sum is actually an integral,

/da: /dy flz,y) eR(BHAL) — eikR/dx /dy f(z,y) e H@XHYY)R/R (13.14)

As we will see in more detail below, this is a two-dimensional Fourier transform of the func-
tion, f(x,y).

The equation, (13.14), is the fundamental result of Fourier optics. It contains much of
the physics of diffraction. We have made a number of assumptions in deriving it that need
further discussion. In the next section, we will derive it in a different way, treating the wave
for z > 0 as the result of a forced oscillation, produced by the wave in the0 plane.

This will give us an alternative physical description of diffraction. But it will be useful to
keep the simple picture of adding up all the possible paths in mind as we get deeper into the
phenomena of interference and diffraction.

We are ignoring polarization.
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13.2 Beams

13.2.1 Making a Beam

Consider a system with an opaque barrier inztee 0 plane. If it is illuminated by a plane
wave traveling in the 2tdirection, the barrier absorbs the wave completely. Now cut a hole in
the barrier. You might think that this would produce a beam of light traveling in the direction
of the initial plane wave. But it is not that simple. This is actually the same problem that we
considered in the previous section, (13.7)-(13.14), with the fungtiany), given by

flay)e ™ (13.15)

where

1 inside the opening
f(z,y) = (13.16)

0 outside the opening.

In fact, it will be useful to think about the more general problem, because the the function,
(13.16), is discontinuous. As we will see later, this leads to more complicated diffraction
phenomena than we see with a smooth function. In particular, we will assunfiéthatis
signifigantly different from zero only for smatlandy and goes to zero for largeandy.
Then we can talk about the position of the “opening” that produces the beam ~hAga£ 0.

We can think of this problem as a forced oscillation problem. It is much easier to an-
alyze the physics if we ignore polarization, so we will discuss scalar waves. For example,
we could consider the transverse waves on a flexible membrane or pressure waves in a gas.
Equivalently, we could consider light waves that depend only on two dimensianslz,
and polarized in thg direction. We will not worry about these niceties too much, because as
usual, the basic properties of the wave phenomena will be determined by translation invari-
ance properties that are independent of what it is that is waving!

13.2.2 Caveats

It is worth noting that there are other approaches to the diffraction problem besides the ones
we discuss here. The physical setup we are considering is slightly different from the standard
setup of Huygens-Fresnel-Kirchhoff diffraction, because we are studying a different problem.
In Huygens-Fresnel-Kirchhoff diffractichyou consider the diffraction of a plane wave from

a finite object, whereas, our opaque screen is infinite ir-thglane. In the Huygens-Fresnel

case, the appropriate boundary condition is that there are no incgphiegcal wavessom-

ing back in from infinity toward the object that is doing the diffracting. The diffraction
produces outgoing spherical waves only. We will not discuss this alternative physical setup

2For example, see Hecht, chapter 10.
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in detail because it leads deeper into Bessel funétitias we (and probably the reader as
well) are eager to go. The advantage of our formulation is that we can set it up entirely with
the plane wave solutions that we have already discussed. We will simply indicate the differ
ences between our treatment and Huygens-Fresnel diffraction. For diffraction in the forward
region, at large and not very far from the axis, the diffraction is the same in the two cases.

The reader should also notice that we have not explained exactly how the oscillation,
(13.15),

f(z,y)e ™t (13.15)

in thez = 0 plane is produced. This is by no means a trivial problem, but we will not discuss
it in detail. We are concentrating on the physicszfar 0. This will be quite interesting
enough.

13.2.3 The Boundary at oo

To determine the form of the waves in the region- 0 (beyond the barrier), we need

boundary conditions both at= 0 and atz = co. At z = 0, there is an oscillating amplitude

given by (13.15%. At z = oo, we must impose the condition that there are no waves traveling

in the — direction (back toward the barrier) and that the solutions are well behaxed at
The normal modes have the form

eiE~F—iwt (1317)
wherek satisfies the dispersion relation
w? =02 k2. (13.18)

Thus given two components bf we can find the third using (13!18). So we can write the
solution as

W 1) = / dkydk, C ks, ky) 7= for 2 > 0 (13.19)

where

ke = \Jw? /02 — k2 — k2. (13.20)

Note that/(13.20) does not determine the sigh.oBut the boundary condition ab does.
If k&, is real, it must be positive in order to describe a wave traveling to the right, away from

the barrier. Ik, is complex, its imaginary part must be positive, otherwi&& would blow
up asz goes too. Thus,

if Im k&, = 0, thenRe k., > 0; otherwiselm k. > 0. (13.21)

3See the discussion starting on page 314.

“Note that in a real physical situation, the boundary conditions are often much more complicated than (13.16),
because the physics of the boundary matters. However, this often means that diffraction in a real situation is even
larger.
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We discussed the physical signifigance of the boundary condition,|(13.21), in our discus-
sion of tunneling starting on page 27#&here is real physics in the boundary condition at
infinity. For example, consider the relation between this analysis and the discussion of path
lengths in the previous section. In the language of the last chapter, we cannot describe the
effects of the waves with imaginaky. However, the boundary condition, (13.21), ensures
that these components of the wave will go to zero rapidly for large

13.2.4 The Boundary atz=0

All we need to do to determine the form of the wavezfor 0 is to findC(k, k,). To do
that, we implement the boundary conditiorz at 0 by using((13.19)

W(F 1) = / dkodky C(ky, ky) eF7=t for 2 > 0 (13.19)

and setting ‘
()] mg = fl,y) e (13.22)
to get (13.15). Taking out the common factor ot this condition is

flz,y) = / dkydk, C kg, ky) ¢ Fat+hum) (13.23)

If f(x,y) is well behaved at infinity (as it certainly is if, as we have assumed, it goes to zero
for largex andy), then only reak, andk, can contribute in (13.23). A compléx would
produce a contribution that blows up eitherfor> +o0o or x — —oo. Thus the integrals in
(23.23) run over red from —oo to co.

(13.23)is just a two-dimensional Fourier transform. Using arguments analogous to those
we used in our discussion of signals, we can invert it todind

C(ky, ky) = 4%2 / dady f(x,y)e  Famhyy) (13.24)

Inserting [(13.24) intc (13.19) with (13.20) ahd (13.21)
ke = \Jw2/v? — k2 — k2 (13.20)
if Im k&, = 0, then Rek, > 0; otherwiselm k., > 0 (13.21)

gives the result for the wave(7, t), for z > 0. This result is really very general. It holds for
any reasonablé(z,y).

13.3 Small and Large =

But what do we do with it? The integral in (13.19) is too complicated to do analytically. Be-
low, we will give some examples of how it works by doing the integral numerically. However,
for smallz and for largez, the integral simplifies in different ways.
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13.3.1 Small z

For sufficiently smalk, we would expect on physical grounds that we really have produced
a beam and projected an image of the functi¢m, y). To see this explicitly, we will use the
fact that for a particular (well behavefi):, v), the Fourier transfor@'(k,, k) is a function

that goes to zero for
k=\/kZ+Ekl>1/L (13.25)

for someL much larger than the wavelength. The distahedetermined by the smoothness

of f(z,y). Typically, L is the size of the smallest important featur¢g (m, y), the smallest
distance over whiclf (z,y) changes appreciably. We saw this in our discussion of Fourier
transforms in connection with signals in Chapter 10. We will see more examples below. We
can expand, z in the exponential in a Taylor expansion,

k,z= z\/w2/v2 — k2 —kzg

2 (12 4 k2
_Ew \/1 _ M (13.26)
v w
~ Zw Zv(kg—f—kg)
v 2w '

Because of (13.25), the largest valug @c + kg that we need in the integrel, (13.19)
W) = / dkydk, C ks, ky) 7= for 2 > 0 (13.19)

is of orderl /L. For much larger values, the integrand is zero. Thus the largest possible value
of the second term in the expansion (13.26) that matters in the integral, (13.19) is of the order

of
A

2wL?”’
Therefore, ifL is finite andz is small & wL?/v), the second term is small and we can keep
only the first termzw/v. Then putting this back into the integral, (13.19), we have

(13.27)

W(Ft) = / dkydky C kg, ky) €70
~ / dk’xdk‘y C(k‘x, ky) ei(kxa:-&-kyy—l—zw/v—wt) (13.28)
= / dkydky, C(ky, ky) eikartkyy) Ji(zw/v—wt) f(z,y) eiw(z—vt) /v

This is just what we expect — a beam with the shape of the original function, propagating in
the z direction with velocityv.
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The result[(13.28) begins to break down when the next term in the Taylor Series, (13.26),
becomes important. That is when

zv (ki +k2) B

~1. (13.29)
w
Thus ) )
sl 2l (13.30)
v A

marks the transition from a simple beam to the onset of important diffraction effects.

If L = 0, which is the situtation in the example of a single slit of witlththat we
will analyze in detail later, important diffraction effects start immediately because the slit
has sharp edges. However, the beam maintains some semblance of its original size until
z = a?/\.

For z larger thanwL? /v, the k, and k, dependence from the*=* factor cannot be
ignored. In general, the evaluation of the integral, (13.19), is very hard. However, for very
largez, z > L, we can use a physical argument to find the result of the intégral,/ (13.19).

13.3.2 Large z
Suppose that you are very far away, at a pﬁiﬁi (XY, Z),
(z,y,2) = (X,Y, Z) for Z > wL?/v. (13.31)

Then you cannot see the details of the shape of the opening or other detailsyof only
its position. The wave you detect at some far-away point must have come from the opening
and if you are far enough away, it is almost a plane wave. This is called “Fraunhofer” or
“far-field” diffraction. If this condition is not satisfied, the problem is called “Fresnel” or
“near-field” diffraction. For the light to actually reach your eye in the far-field situation,
the propagation vector must point from the opening to you. The situation is depicted in the
diagram in figure 13.3. In the near-field region, the spreading due to diffraction is of the same
order as the size of the opening. For much laigen the far-field region, thie vector must
point back to the opening.

Thus the only contribution to the integral, (13.19),

WP t) = / dkodky C(ky, ky) F7=t for 2 > 0 (13.19)

that counts is that proportional 0 F wherek points from the opening to your eyBe-
cause the integrand in(13.19) has a factor @f(k,, k,), the amplitude of the wave is
proportional to C(k,, k,) where

(ko by ) = (k ey, \J? [0 — k:2> ~ (X,Y,2). (13.32)
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far-field
diffraction
(Fraunhofer)

near-field
diffraction
(Fresnel)

Figure 13.3: The basic diffraction problem — making a beam.

The amplitude is also inversely proportional to
X24+Y2+ 272, (13.33)

because the intensity must fall off Bs2, as in a spherical wave, by energy conservation.
There are other factors that contribute to the variation of the amplitude besides, )
(we will see one below). However, typically, all the other factors are very slowly varying and
can be ignored. Thus we expect that the intensity for l&ngeapproximately
Cky, ky)|?
[C ez, ky) I 7 v , (13.34)

wherek andR are related by (13.32).

(ko by i) = <kxky Ny k:?) ~ (X,Y,Z) (13.32)

which implies

ke ky k. k w/u
XY Z B R (13.33)
of kX kY
hy = 0 gy = 13.36
R Y R ( )
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Now here is the point!inserting (13.36) intd (13.24)
C(ks, ky) /dwdyf x, y)e R thyy) (13.24)

gives the integral in (13.14) that came from our physical argument about interference!

/dl‘ /dyf x y zk (R+AYL) sz/d:L, /dyf x y —i(zX+yY)k/R (1314)

Thus our description of the wave for> 0 as a forced oscillation problem contains the same
factor that describes the interference of all the paths that the wave can take from the opening
to R. The advantage of our present approach is that it is a real derivation.
We can also write this result in terms of angles:
X kgo

sinf, = — = —, sinf, =
R w '’ 4

Y  kyv
— = 13.37
=, ( )
whered, andd, are the angles of the vectdifrom theX = y = 0 line in thez andy
directions. Or equivalently,
Z ky Z

X = i , Y= Ry . (13.38)

\/wQ/UQ—k%—kg \/wQ/UQ—kg—kg

This is illustrated in the diagram in figure 13.4.

13.3.3 * Stationary Phase
Mathematically,/(13.32)

(ks iy, ) = <kx,ky, Ny k:2) ~ (X,Y.Z) (13.32)
arises for larg&Z because the phase of the exponential in (13.19)

W7, 1) = / dhydky, C(ky, ky) €F 7= for 2 > 0 (13.19)
is very rapidly varying as a function éf andk, except for special values ok, and k,

where the derivatives of the phase with respect th, and k, vanish. If the function is
centered at = y = 0 and is smootA,the k derivatives ofC(k,, k,) are of ordet and are

®See, however, the discussion on fage 383.
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9)
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Figure 13.4:
irrelevant. Thus the contribution comes frém k,, such that
Z ks
0 (X kot Yhy+ Z\Jw?/02 — k2 —k2) = X — =0
Ok Y w?/v? — k2 — k:g
0 Zk
_— 2/0m2 _ 1.2 _ 1.2\ —V _ y _
oy (X ko + Yy + Z \Ju?/02 — k2~ k2) =¥ Ve 0

(13.39)
which is equivalent t013.3§. A careful evaluation of the integral, taking account ofithe
andk, dependence in the neighborhood of the critical value determin&®8i8§(yields an
additional factor in the amplitude of the wave of

Z _ cost (13.40)

r2 r

whered is the angle of the vectaito thez axis. We expected the/r factor because of the
spreading of the diffracted wave with distance. The factoo<f is actually the only place
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where the details of the boundary condition at infinity, (13.21), enter into our expression for
the diffracted wave. This factor guarantees that the diffracted wave vanishes as we go to the
surface of the opaque screen far from the opening. This is analogous to the “obliquity” factor
(1 4+ cos®)/2, in the Fresnel-Kirchhoff diffraction theory. The difference between the two

is due to the different boundary conditions (our infinite flat barrier versus the lack of incom-
ing spherical waves). We will usually ignore this factor, and indeed it generally does not
make much difference where diffraction is important in the forward direction. The important
thing is that everything else about the diffraction in the far-field region is determined just by
linearity, translation invariance and local interactions.

13.3.4 Spot Size

A useful way to think about the transition from near-field (Fresnel) to far-field (Fraunhofer)
diffraction is to consider the size of the spot formed by the beam of figure 13.3 as a function
of z. This is a competition between two effects. Increasing the size of the opening makes the
spot size larger at small However, decreasing the size of the opening increases the spread
in k., thus increasing the diffraction, and making the spot size larger at:laFge a given

z, the best you can do is to choose the size of your opening so that these two effects are of
the same order of magnitude. Suppose that the size of your opehinihen the spread in

k. is of order2wr/¢. At largez, the beam spreads into a cone with an opening angle of order

S
%

(13.41)

~| >

Thus when

| >
Q
SN

, (13.42)

the spreading of the spot due to diffraction is of the same order of magnitude as the size of
the opening. We conclude that to minimize the spot size for a gjwgu should choose an
opening of size

=~z (13.43)

The relation,[(13.41), up to factorsmfis what defines the region of Fresnel diffraction
in figure 13.3. Another way of summarizing the result of this discussion is that for

52
X )
the spreading due to diffraction is much larger than the spreading due to the size of the
opening. This defines the region of far-field, or Fraunhofer diffraction.

Z> (13.44)
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13.3.5 Angles

What happens if the plane wavelin (13.15) is coming in toward the opaque barrier at an angle,
rather than head on? To be specific, suppose th&tubetor of the wave makes an angle
with the perpendicular in the-z plane, so that

k,=kcos@, k,==ksinf. (13.45)

Then it is reasonable to assume that the analog of (13.15), the amplitude of the wave in the
z = 0 plane, i8 o
fo(z,y) = f(z,y) e™hsin? (13.46)

where the additionat dependence has simply been inherited fromrtdependence of the
incoming wave. We can write the Fourier transfornf,oih terms of that off as follows:

fe(m7 y) = / dkx dky C(kJ:’ kjy) ei(kszFkyy) eimksin@
| (13.47)
= [ b iy Ol — ksin, ) 6+

which implies

Co(ky, ky) = C(ky — ksinb, ky) . (13.48)
This is entirely reasonable. If the maximumcif,, k,) occurs ak, ~ 0, the maximum of
Cy(k,, ky) occurs ak, = ksinf. Thus the diffraction pattern appears where a line through
the opening in the direction of the incoming plane wave crosses the screen, just as we would
expect from a skew beam.

13.4 Examples

13.4.1 The Single Slit

Suppose

1 for —a<z<a
fx,y) = (13.49)
0 for |z| > a

independent of. This is really a two-dimensional problem, because we canigeeq and
ignore it (except for a factor @fr, that we won't worry about) by dropping thg integral
from (13.19).1(13.24)

1 4
Clks,ky) = 5 / dady f(z,y)e  Farthyy) (13.24)

8Again, this is simplistic, ignoring complications from the boundaries in the same way as (13.15).
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becomes (with ther corrected to make it one-dimensiodal)

1 }
C(ky) = — dx f(z) e e
L e 2m /<>f (13.50)

= — dpe ket — = —ikex|® _ S ks
21 J_q —2imky

—-a kg
Thus we expect that the intensity of the wave at larigeproportional tdC'(k,)|?,

sin?(k,a)

I(z,y) < —3 (13.51)
where L L
X x T
T 13.52
r  k  wfv ( )
or "
ky=——. (13.53)
vr

Thus if we measure the intensity of the diffracted beam, a distainom the opening, the

intensity goes as follow’:

sin?(2rax /1))
$2

where \is the wavelength of the light. A plot éfas a function of is shown in figure 13.5.

This is called a diffraction pattern. In the important case of light passing through a small

aperture, the diffraction pattern can be easily observed by projecting the diffracted beam onto

a screen. The features of this pattern worth noting are the large maximuem 8t with

twice the width of all the other maxima, and the periodic zeros fernr\/2a. Note also

that as the widthy of the slit decreases, the size of the diffraction pattern increases.

I(z,y) (13.54)

Moral: This inverse relation between the size of the slit and the size of the diffraction
pattern is another illustration of the general feature of Fourier transforms discussed in
Chapter 10.

13.4.2 Near-field Diffraction

We will pause here to discuss the region for intermediatéresnel diffraction, where the
diffraction problem is complicated. All we can do is to evaluate the integral, (13.19),-numer
ically, by computer, and find the intensity approximately at various valueg-of example,

suppose that we take

1
= —OO , (13.55)
c A a

w_27r

"Note thatsin ka/k is well-defined £ a) at k= 0.
8Here we are assuming small angles, sodhed ~ tan 6. In our discussion of diffraction gratings below,
we will see what happens when the difference in important.
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rA  TA

r— 0 2a a

Figure 13.5: The intensity of the diffraction pattern as a functian of

corresponding to a rather small slit, with a width of aorlg/x ~ 32 times the wavelength

of the wave. We will then ug@3.19)to calculate the intensity of the wave at various values
of z, in units ofa. For smallz, the result is shown in figu®3.6. You can see that the
basic beam shape is maintained for a while, as we expecte1f8a28). However, wiggles
develop immediately. The rather large wiggly diffraction is due to the sharp edges. Below,
we will give another example in which the diffraction is much gentler. For intermegdiate
shown in figuré 3.7,the wiggles begin to coalesce and dramatically change the overall shape
of the beam. At the same time, the beam begins to spread out.

! A

J

PP Vi N
A
2 T =

a \_

0 ,

—5a —3a —a a 3a 5Ha

Figure 13.6: The intensity of a wave passing through a slit, for small

Finally, in figure13.8, we show the approach to the largeegions, where diffraction
takes over completely and the far field diffraction pattérn, (13gppears.
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20a

15a J
Sa 1

0

—5a —3a —a a 3a ba
Figure 13.7: The intensity of a wave passing through a slit, for intermediate

1

2:\/\/—\

100a /\/\/\
I EBTAN,
AN

25a T

0 f
—5a —3a —a a 3a  5a

Figure 13.8: The intensity of a wave passing through a slitgass large.

One more example may be interesting. Suppose that instead of being a simple hole in the
opaque screen, the opening is shaded in such a way that the wave disturbaace las
the form
f(z,y) = eIt/ (13.56)

The Fourier transform here was done in Chapter 1009)-(10.58 Substitutingy — k,
and I'— 1/a in (10.56)gives

1 a

C(k:c) =

This determines the intensity distribution at largeHowever, unlike the previous example,



13.4. EXAMPLES 387

this pattern gives very gentle diffraction. For smalthe intensity pattern is shown in fig-
ure/13.9. The sharp point ir{13.56)disappears, but otherwise the change is very gradual
because the initial pattern is very smooth except-at0. For intermediate and large the
intensity patterns are shown in figiré. 10and figurel3.11.

1
z A
3a 1

N

Figure 13.9: The intensity distribution from (13.560) small .

20a —”’/\K
15a ——/k
10a ﬁ
52 | J \\

—5a —3a —a a 3a ba

N —

Figure 13.10: The intensity distribution from (13.56) for intermediate
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100a

75a M\/\\A
50a M//\\M
25a ‘—"f/\x
0 //

—5a —3a —a a 3a ba

Figure 13.11: The intensity distribution from (13.56) for lazge

13.4.3 The Rectangle

Suppose

1 for —a, <z <ayand —ay, <y <ay,
f(x,y) = (13.58)

0 otherwise.

This is the product of a single slit patternzirwith a single slit pattern ig. The Fourier
transform is the product of the one-dimensional Fourier transforms

1 Qg . a .
Clky, ky) = / dxe_m”/ ’ dy e~y

o 47772 —ag ay
sin(kzaz) sin(kyay) (13.59)

kg T ky
Thus the intensity looks approximately like

sin?(2ma,x/rA) sin?(2ra,y/r))

. (13.60)

I
(z,y) o 2 ”

Of course, once again, because of the general properties of the Fourier transform, if the
rectangle is narrow im, the diffraction pattern is spread outkipn and similarly fory.

13.4.4 6 “Functions”

As the slitin(13.49)gets narrower, the diffraction pattern spreads out. Of course, the intensity
also decreases. The intensitycat= 0 is related to the Fourier transform &t zero, which
is just the integral off over allx. As the slit gets narrower, this integral decreases. But
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suppose that we increase the intensity of the incoming beamdasreases, to keep the
intensity of the maximum of the diffraction pattern fixed. Ignoringittdependence, we
require

1
— for —a<z<a,

fa(z) =4 20 (13.61)
0 for |z| > a.

The limit of f, asa — 0 doesn't really exist as a function. It is zero everywhere except
x = 0. But it goes tox very fast atc = 0, so that

lir% dx fo(x) =1. (13.62)

It is extraordinarily convenient to invent an object with these properties, calieftiaction”.
That is,é(z) has the property that it is zero except at 0, and that

/ drs(z) = 1. (13.63)

In fact, this object makes a kind of mathematical sense, so long as yoa stpuare it.o-
functions can be manipulated like ordinary functions, added together, multiplied by constants
or smooth functions —6-functions of different variables can even be multiplied — just don’t
square them! For example, a delta function can be multiplied by an ordinary continuous
function:

fx)d(x) = f(0)d(x) (13.64)

where the equality follows because the delta function vanishes exaept @t so that only
the value off at 0 matters.

Now it should be clear frorf13.63)and(13.64)that the Fourier transform éfx) is just
a constant:

C(k) = % / da ek §(z) = % (13.65)

The diffraction pattern for this thing is thus very boring. There is uniform illumination at all
angles.

Of course, in physics, we can't makdunctions. However, i, in (13.61)is much
smaller than the wavelength of the wave, then it might as welldbimction, because it
only matters what'(k,,) is for k, < k = 27/\. Largerk, correspond to exponential waves
that die off rapidly withz. But for suchk,, the produck,.a is very small, thus

1 sink,a 1

kya)? 1
C(k:x):% T —><1—< )+>z27r (13.66)

2 6

and we still get uniform diffraction over all angles.
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Moral: é-functions are simply a convenience. When physicists talk aboutafunction,
they mean (or at least they should mean) a function liké, (x), wherea is smaller than
any physical distance that is important in the problem. Once gets that small, it is often
easier to keep track of the math when you go all the way to the unphysical limit,= 0.

13.4.5 Some Properties of)-Functions
The Fourier transform of &function is a complex exponential:
if f(z) =6(z — a) then k) = e~k (13.67)
The Fourier transform of a complex exponential ésfanction:
if f(z) =e " thenC (k) = d(k — {). (13.68)

A J-function can be reached as a limit in a variety of different ways. For example, from
(13.68), we would expect that as— oo, the Fourier transform of (13.49) should approach a

d-function: -
lim o2 5k, (13.69)

—
a—00 T

13.4.6 One Dimension from Two

Usingd-functions, we can say more elegantly what is meant by the statement we made above
that if f(z,y) does not depend an the problem is one-dimensional. If we look at the limit
of (13.58) as, — oo, it goes over inta (13.49). In other words, when a rectangle is infinitely
long, it is a slit. In this limit, the Fourier transform, (13.59) goes into

sintkeae) g ). (13.70)
kg
This is the real meaning of (13!50). It is one-dimensional in the sendg, tisastuck at 0.
There is no diffraction in the direction.

13.4.7 Many Narrow Slits

An interesting application a¥-functions is to the diffraction pattern for several narrow slits.
We will use this later in various ways. Consider a functfdm, y) of the form

|
—

s 5(z — jb) (13.71)
0

.
Il
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ol

bk, [k

Figure 13.12: If bk/k = nA, the interference is constructive.

—

-3 0 3 6 9
bk, —

Figure 13.13: The diffraction pattern for three narrow slits.

This describes a serieswharrow slitS atz = 0, x = b, z = 2b, etc, up tox = (n — 1)b.
The Fourier transform dfL3.71)is a sum of contributions from the individugfunctions,

%“Narrow” here means narrow compared to the wavelength of the light — see the moral above.
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[

P

—

-3 0 3 6 9
bk, —

Figure 13.14: The diffraction pattern for 6 narrow slits.

from (13.67)and (13.68)

1 n—1 -
o ky) = — —ijbha 13.72
Cl(ks, ky) 5(l<:y)27rjz:%e (13.72)
But the sum is a geometric series that can be done explicitly:
n—1 —inbky
Z o—idbke _ 1 — etk
; 1 — eibka
. =0 . (13.73)
B efznbkz/Q (eznbkz/Z _ efznbkz/2) ine1)bka/2 sin nbkm/Q
T ke 2 (gibka/2 _ o—ibho/2) sinbky /2
Thus the diffraction pattern intensity is proportional to
i 02
S MORe/ % 2”“%/ 2 (13.74)
sin” bk, /2
Forn = 2, (13.74)is just
o bky
4 cos 5 = 2(1 + cos bky,) . (13.75)

This is the problem with which we started the chapter. V8hgn= 2mr for integerm, then
the wave from one slit travels farther than the wave from the othen\bwhere\ = 27 /k

is the wavelength. Thus fék, = 2mm the interference is constructive, as illustrated in
figure13.12.

For largern, we still get constructive interference fgr, = 2mm, but the maxima are
sharper, because with more slits, there are more possibilities for destructive interference at
other angles. In figure 13.8H%d figurell3.14,we plot(13.74)versushk, from (—m to 3w so
that you can see two full periods) for= 3 and 6. Notice the appearancenof 2 secondary
maxima between the primary maxima of the intensity. We will return to these relations when
we discuss diffraction gratings.
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13.5 Convolution

There is a rather simple theorem, know as the convolution theorem, that is extremely useful
in dealing with Fourier transforms. Suppose that we have two functfpfs, and fa(z).
Define the functioryf; o f> as follows:

fiofala) = [ O; dy f1(z — ) Fa(y) (13.76)

This integral will be well defined if(z) and f2(x) fall off fast enough at infinity (and
certainly if they are nonzero only in a finite regione:pf Note thatf; o f5 is a function of a

single variable. It is also symmetric under the exchange of the two functions, because by a
simple change of variableg (& = — v)

frof@ = [ dufie—u) v = [ dyhio) hla—9) = foo hile). @377

Now the theorem is that the Fourier transform of the convolutidn ténes the product of
the Fourier transforms of the two functions. The proof is immediate (all integrals run from
—00 to 0):

Cpon(®) = o [ e fio o(z)

1 (13.78)
ikx
= o [ dze® [ dyfia -y £,
Now we substitute — y + = and write the integral overand 7
1 .
=5 [ dze ) [y fie - ) o)
2 (13.79)

1 . -
=5 / dz e f(2) / dy ™ fo(y) = 27 Cp, (k) Cp, (k).

The two-dimensional analog (#3.79)is a straightforward extension. The two-dimensional
convolution is

fuofalesy) = [ o'y fule — o'y — o) falal ) (13.80)

Chiofs (ks ky) = 412 Oy, (b, ky) Oy (K, Ky) - (13.81)

13.5.1 Repeated Patterns

The convolution theorem can be used to understand many interesting situations. Consider the
following very instructive pattern of two wide slits:

1 for —a<x<a
flr,y)=4 1 for —a<z—-b<a (13.82)

0 otherwise
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for b > 2a. A piece of the pattern is shown in figure 13.15 fer 3.5a.

Figure 13.15: A piece of the opaque barrier with two wide slits.

This can be regarded as the convolution of two functions:

=1/ iofe (13.83)
where
1 for —a<z<a
fila,y) = _ (13.84)
0 otherwise
and
fo(z,y) = 0(z) 6(y) + d(x — b) 3(y) - (13.85)
The corresponding Fourier transforms are, from (13.70)
Cy, (ks k) = sin(kya) 5(ky) (13.86)
kg
and from((13.73)
1 kz  _ipk, /2
Cry (ks by) = 5 cos =" e /2. (13.87)

Now applying the convolution theorem gives

Cflon(kgj7 ky) = COS % e_ibkz/2 M 5(ky) . (1388)

kg
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Becauseé > 2a, this describes a pattern that oscillates rapidly on the scale $é,hyith
an amplitude that varies with the single slit diffraction pattern characterized hy giZ€he
intensity pattern on a distant screen is shown in fitir&6,for b = 3.5a The dotted line is
the pattern for a single wide slit (compaire (13.5)).

rA rA
0 % =

Figure 13.16: The diffraction pattern for two wide slits.

13.6 Periodic f(z,y)
Supposef (z, y) is periodic inz with perioda. That is

flx+ay)=f(zy). (13.89)

ThenC(k,, k) can only be nonzero if

ky = 2T (13.90)
a
To see this, insert (13.89) info (13.24),
1 .
Clks, ky) = ﬁ/ dz dy f(x + a,y) eFemthey) (13.91)
7

If we change variables from— = — a, (13.91) is
1 ) .
Clkasky) = 1 / dudy f(x,y) Vet Reatht) = o=t Ok, ky) - (13.92)
7

because the constant phase factor can be taken outside the ifigq@él)follows because
(13.92) implies that eithe® (k,, k,) = 0 or e~ = 1.
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An example of this general principle is (13.74). In the limit that oo, (13.74) goes to
0 except fork,, = 27mm /b for integerm (where it is infinite). This example is simple because
the slits are narrow, so the intensity is independent.dflowever, with repeated wide slits,
or some more complicated pattern, we could use the convolution theorem and (13.74) to see
that (13.90) emerges as— oo. The details of the pattern of each slit will then determine
the relative intensity of the diffraction pattern at different
Thus any infinite regular pattern produces a discrete sequercg dfor example, a
transmission diffraction grating, that consists of lots of equally spaced linesyiditeetion
with  separatiorn on a transparent substrate, producéf/a,, k, ) that is nonzero only for
k, = 0 (because there is nodependence at all) ag = 2nm/a. Then|(13.19) becomes

Z c, ei@nma/atzy/w? [v2—(2nT/a)? —wt) (13.93)

This describes a linear superposition of plane waves fanning out at angles idinbtion
given by

sing, — 27U _ nA (13.94)

aw a

as shown in figure 13.17.

Typically, for a transmission grating, most of the light goes into the central line, which
is to say that you can see right through the grating. Note that the even spadirt, im
(13.94)corresponds to an increasing spacing of the lines projected onto a screen at fixed large
z (for example, a screen like your retina!) because the distance along the screen is determined
by

ni
Va2 —n2X\2’
There is a maximum value af above which no propagating wave is produced (because it
corresponds tgin # > 1 and thus imaginary.,).

Note also the dependence of (13.94) on wavelength. The larger the wavelength of the
light, the larger the angles in the pattern from the diffraction grating. This, of course, is why
the diffraction grating is useful. It can separate light of different frequencies. The different
colors of the rainbow are spread out along a line, for each vabue Tiis is illustrated in
the figure _13.18, for three frequencies, blue light with wavelength i&3g@een light with
wavelength 5200 A and red light with wavelength 6300 A, incident on a diffraction grating
with 10,000 lines per inch. We have shown (13.95pfer —3 to 3 and labeled the colors for
then = 1 secondary maximum. As you see, in a realistic grating, the angles of diffraction
can be large, and it is a very bad idea to use a small angle approximation.

tan 6, = (13.95)

13.6.1 Twisting the Grating

Some interesting examples of the effects discussed in (13.48) occur when the incoming light
wave comes at the grating at an angle with respect to the perpendicular. Starting with the
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Figure 13.17: A transmission diffraction grating splits a beam of a single frequency.

blue green red
\ AR IIERN
-1 tanf — 0 1

Figure 13.18: The pattern of three frequencies of light from a grating.

grating lines in the direction and the grating in they plane, there are two different effects.
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1. Twisting Around the y Axis

Suppose that the light comes in at an afiglérom the perpendicular in thez plane. Then
from (13.48),
Co,, (kz, ky) = C(ky — ksinbin, ky) (13.96)

whereC' is Fourier transform for the perpendicular grating,

2mn

Clky ky) £0 for ky=0, ky= —2. (13.97)
a
Thus
Cy, (ko ky) #£0  for
_ o (13.98)
ky =0, ky = ksin0;, + Y

or I \

sinf = - — sin By, + 2 (13.99)

k a
In other wordssin @ is simply displaced byin 6;,. For example, this means thatdif=
7 /a, the pattern is exactly the same, but the central maximum has moved over, as shown in
figure[13.19.

2: Twisting Around the x Axis

Suppose that the light comes in at an addl®m the perpendicular in thez plane. Then
from (13.48).

Co,, (ky, ky) = C(kg, ky — ksinbyy,). (13.100)
Now instead of being @&, is fixed atk sin 6;,
2
ky = ksinfn, ky= ——. (13.101)
a

Now the diffracted waves make nontrivial angles from the perpendicular hetmnid in y

ky k sin 6,

. _ _ Y _
Sin Hy = \/kz + k,g = \/kj2 — k% - /71 — 7'[,2)\2/(12 (13102)
and
Sing. — k. B ke o nA
TUTVEAR T ook ook (13.103)

Again, as in((13.95), what we see if we project the pattern onto a perpendicular screen at
fixed z are the tangents,
(%, Y)screen = 2 (tan b, tanf,), (13.104)
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m=2

m=1

m=0
m=—1

m=—

Figure 13.19: The pattern for a beam at an afigles arcsin \/a.

where

tand, = %, tanf, = % (13.105)

Thus the diffraction pattern appears curved. What one sees on a screen or a retina is the colors
of the rainbow spread out along a curved line. This is shown in fidgu2€),where we plot

tan 6, versustan ¢, for a light source and grating as(i8.18),above, but witlsin ¢;,, = 0.5.

Note that the pattern has not only curved, it has spread out, comp&t&di&). Here you

really see the three-dimensiokavector in action. Asan 8, increases, for fixed,, tan 6,

increases as well, becausedecreases.

13.6.2 Resolving Power

The discussion so far has assumed that the diffraction grating is truely periodic. But this is
only possible if the grating is infinite! In a finite grating, only the middle is periodic. The
edges break the periodicity. In a grating consisting of only a finite number of grapties,
diffraction peaks are not infinitely sharp. They are not delta functions. However, as discussed
at the beginning of this section, we actually already know what they look like in the finite
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1 -+ sinfy, = 0.5
\ \
| ||
oo 1
tan6y, T
0 : <
-1 tanf, — 0 1

Figure 13.20: The diffraction pattern from a twisted grating.

case because we have solved the problem of diffraction+iresenly spaced narrow slits,

in (13.74). In the general situation faridentical grooves, the intensity looks like (13.74)
multiplied by some slowly varying function that depends on the shape of the grooves (by
the convolution theorem, (13./79)). The important consequence of this is that the shape of a
diffraction peak for am-slit grating is roughly given by (13.74).

The shape of the diffraction peak is important for the following practical question. Sup-
pose that you have a beam of light that consists of a superposition of light of two different
frequencies. How close together do the frequencies have to be before their nontrivial diffrac-
tion peaks melt together, so that you cannot use your diffraction grating to distinguish them?
The larger the number of grooves in the grating, the sharper the diffraction peaks and the
easier it is to distinguish different frequencies.

Rayleigh’s criterion is an historically important way of answering this question. Rayleigh
assumed that it would be possible to distinguish the diffraction maxima from equally intense
waves of slightly different wavelengths if the maximum of one frequency coincides with the
first minimum of the other. For a grating of 6 lines, this criterion is illustrated in figure 13.21.
The solid line is the total intensity of a wave consisting of two slightly different frequencies.
The contributions from the separate frequency components are indicated by the dotted and
dashed lines.

Any such fixed criterion for resolving power should be regarded not as a fact about nature,
but as a conventional definition that facilitates communication between experimenters. It is
always possible to do better than any given definition by accumulating accurate data on the
line shape and modeling the details.
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Figure 13.21: Rayleigh’s criterion for a grating with 6 lines.

13.6.3 Blazed Gratings

As a spectroscope, the transmission diffraction grating has a disadvantage compared to a
prism. The difficulty is that, as we noted above, most of the light impinging on the grating
goes right through and is not split into its component frequencies. This is a very serious
problem in devices in which the total amount of light is limited. It is often important to
have the bulk of the light going into a singlenzero value ofn in (13.94). Then nearly

all of the photons can be used for the measurement, rather than being wasted in @he
maximum (which carries no information about the frequency). As we argued above, there is
no theoretical reason why such a thing cannot be done. The general principles of translation
invariance and local interactions determine the possible angles of diffraction, but not how
much light goes to which angle.

In fact, there is a practical and widely used method in reflection gratings. A reflecting
surface with a series of evenly spaced parallel lines scored into it acts as a reflection grating, as
illustrated in figurd 3.22.This shows a reflection grating in which the predominant reflection
of a beam coming in perpendicular to the plane of the grating is also perpendicular. What we
want instead is shown in figui8.23.To construct such a grating, you can shape the grooves
in the grating so that the specular reflection from the individual grooves directs the beam into
the nontrivial diffraction maximum, as shown in figli®24.

To do this, you can choose the angle of the blaze to be half the angle of the first maximum,
01 = 27v/aw, in (13.94), as shown in the blow-up of a groove in fidlB&5.

13.7 * X-ray Diffraction

A beautiful three-dimensional example of diffraction from a periodic function is x-ray diffrac-
tion from crystals. A crystal is a regular array of atoms whose positions can be described by



402 CHAPTER 13. INTERFERENCE AND DIFFRACTION

\

Y
A

Figure 13.22: A reflection diffraction grating splits a beam of a single frequency.

a periodic function
()= f(r+a) (13.106)

whered is any vector from one point on the lattice to another. Mathematically, we can define
the lattice as the set of all such vectors. Note that the lattice always includes the zero vector,
the point at the origin. The three-dimensional Fourier transforfitigfis nonzeroonly for

wave number vectors of the form

3
2 > nyl (13.107)
j=1

wherel; are the basis vectors for ttdual” or “reciprocal” lattice that satisfies
a- Fj = integer, for alla . (13.108)

The idea here is the same as the one-dimensional discussion of the diffraction grating, that
k., = 2mn/a, (13.90).The derivation of (13.1071} precisely analogous to that of (13.90).

We can visualize the relation between the lattice and the dual lattice more easily for two-
dimensional “crystals.” For example, consider a lattice of the form

a = NgazT + nyayy (13.109)
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Figure 13.23: A blazed grating directs the beam into a nontrivial diffraction maximum.

shown in figure 13.26 (far, = 2a,).
It is clear that vectors of the form
- 1 ~ 1 N
51 = —x, 62 =Y, (13.110)
Qg Ay

satisfy (13.108). Furthermore, a little thought will convince you that these are the shortest
pair of linearly independent vectors with this property. Thus we can(i18kE10)to be the
basis vectors for the dual lattice, so that the dual lattice looks like

dy = (m””x + myy> (13.111)
Gy ay

as shown in figurd3.27. Note that the long and short axes are interchanged, as usual in a
diffraction process.
Now suppose that there is a plane wave passing through the infinite lattice,

eIkt (13.112)
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Figure 13.24: The grooves of a blazed grating.

Figure 13.259 ~ 60, /2.
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Figure 13.26: A crystal lattice.

Figure 13.27: The dual lattice.

The wave that results from the interaction of the plane wave with the lattice then has the form

R =it () (13.113)
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whereg(7) is a periodic function, likg () in (13.106). To find the possible refracted waves,
we must write this in the form:

eil;-v?fiwt Q(F) — Z C,, eiEa-Ff'iwt ] (13.114)
diffracted

waves , o

But we also know from the discussion above that the Fourier transfayns obnzero only
for values ofk of the form[(13.107). Thus (13.114) takes the form

Rl R O R S (13.115)
U

Therefore, thé,, in (13.114) must have the form

ko =k+21Y n;l;. (13.116)
J

But this is only possible %, satisfies the dispersion relation in the material, which means, if
the material is rotation invariant so th&t depends only ofk|?, that

k| = K. (13.117)

Thus we get a diffracted wave only fof such that'(13.117) is satisfied. X-ray diffraction
from a crystal, therefore, can provide direct information about the dual lattice and thus about
the crystal lattice itself.

There is a more physical way of thinking about the dual lattice. Consider any vector in
thedual lattice that is not a multiple of another,

d=>" nil;. (13.118)
J

Now look at the subset of vectors on kattice that satisfy
d-a=0. (13.119)

This subset is the set of lattice points that lie in the plﬁné‘,: 0, that is the plane perpen-
dicular tod passing through the origin. Now consider the subset

d-a=1. (13.120)

This sgbset is the set of lattice points that lie in the pl&ne”, =1, that is parallel to the
planed - ¥ = 0, in the lattice. This plane is also perpendiculad Bmd passes through the
point (which may not be a lattice point)
d
=i (13.121)
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Therefore, the perpendicular distance (that is inftdieection) between the two planes is

. 1
d i =—. (13.122)
|d|

We can continue this discussion to conclude that the subset of lattice points satisfying

—

d - a = m for integerm = —oo to oo (13.123)

is the set of lattice points lying on parallel planes perpendlculd,r woth adjacent planes
separated by/|d|. But this set must be all the lattice pointsIThis is true becauseé- @ is

an integer for all lattice points by the definition of the dual lattice. Thus all lattice points lie
in one of the planes in (13.123).

Figure 13.28: A vector in the dual lattice.

These considerations are illustrated in the two-dimensional crystal in the pictures below.
If the vectord in the dual lattice is as shown in figure 13.28, then the perpendicular planes in
the lattice are shown in figure 13.29.

Now suppose that is one of the special points in the dual lattice that gives rise to a
refracted wave, so that

[k +2rd|? = kP = d- (k+xd) =0. (13.124)

This relation is shown in figure 13/3This shows that th& vector of the refracted wave,
k + 2md, is justk reflected in a plane perpendiculardto We have seen that there are an
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Figure 13.29: The corresponding planes in the lattice.

k k+md k+2nd

4

Figure 13.30: The Bragg scattering condition.
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infinite number of such planes in the lattice, separatedi/pi}. The contribution to the
scattered wave from each of these planes eddstructively to the refracted wave. To see
this, consider the phase difference between the incoming whdei~t and the diffracted
waveeika ™t for k. = & 4+ 27d. Evidently, the phase difference at any poiis

-

ond - 7. (13.125)
This phase difference is an integral multipleefon all the planes
d- = m for integerm = —oo t0 oo . (13.126)

Thus the contribution to scattering from all of the planes of lattice points adds constructively,
because the phase relation between the incoming and diffracted wave is the same on all of
them. Conversely, i #* k + 2rd, then the contribution from different planes will interfere
destructively, and no diffracted wave will result.

This physical interpretation goes with the name “Bragg scattering.” The planes, (13.123)
(or (13.126)) are the Bragg planes of the crystal. Note that as the Jéctdre dual lattice
gets longer, the corresponding Bragg planes get closer together, but they are also less dense,
cgntaining fewer scattering centers per unit area. Generally the scattering is weaker for large
|d].

13.8 Holography

Nothing prevents us from doing the analysis of a diffraction pattern from a more complicated
function, f(z, y), than that discussed in (13.16). A hologram is just such a diffraction pattern.
One of the simplest versions of a hologram is one in which an object is illuminated by a
laser, that provides essentially a plane wave. The reflected light, and a part of the laser
beam (extracted by some beam splitting technique) are incident on a photographic plate at
slightly different angles, as shown schematically in figure 13T8& wave incident on the
photographic plate has the form

et <e““+ / dk dk:yC(k:x,k:y)eiE'F) (13.127)

where
k=lkl=w/v. (13.128)

(13.127)describes the two coherent parts of the light wave incident on the photographic
plate. For simplicity, we will assume that the signal in which we are actually interested, the
reflected wave with Fourier transfor@k,, k,), is small compared to the reference wave

e*%_ This signal is what we would see if the photographic plate were removed and we placed
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reference reflected
beam wave
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Figure 13.31: Making a hologram.

our eyes in the path of the reflected wave, but out of the path of the laser beam, as shown in
figure[13.32.

The photographic plate (we'll assume it'szat 0) records only the intensity of the total
wave, proportional to

1+ 2Re / dky, dky C(ky, ky)etFesthoy) L O(C2) . (13.129)

We will drop the terms of order?, assuming that' is small, although we will be able to see
later that they will not actually not make any difference evéniff large. If we now make a
positive slide from the plate and shine through it a laser beam with the same freguérey,

wave “gets through” where the light intensity on the plate was large and is absorbed where
the intensity was small. Thus we have a forced oscillation problem of exactly the sort that
we discussed above, with (13.129) playing the rolg(of y). The solution foe > 0 (from
(13.19)-(13.29) is

et (ek + / dley dky C(ky, ky) €7 + c.c.) (13.130)
where c.c. is the complex conjugate wave obtained by taking the complex conjugate of the

signal and changing the sign of thdependence to get a wave traveling in thalirection.
The important thing to note about the complex conjugate wave is that it represents a
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beam wave
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Figure 13.32: Viewing the object.

beam traveling in a different direction from either the signal or the reference beam
because the complex conjugation has changed the sigreofik,,.

The resulting system is shown schematically in figure 1388ir eye sees a recon-
structed version of the reflected wave that you would have seen without the photographic
plate, as in (13.32). Note that neither the reference beam nor the complex conjugate beam get
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Figure 13.33: Viewing the holographic image.

in the way of your viewing, because they go off at slightly different angles. This is a holo-
gram. Because it is not a picture but a reconstruction of the actual wave that you would have
seen in(13.32),it has the surprising property of three-dimensionality that makes a hologram
striking.

One might wonder why we choose the angle between the reference beam and the signal
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to be small. A large angle would have the advantage of getting the reference beam farther
out of the way, but it would have an important disadvantage. Consider the intensity pattern
on the photographic plate that records the hologram. It is an oscillating pattern with a typical
wave number given by the typical valuekgfor k,. These are of ordér sin ¢, whered is

the angle between the reference beam and the signal. But the distance between neighboring
maxima on the photographic plate is therefore of order

2w B A
ksinf  sin6

wherel is the wavelength of the light. Singés a very small distance, it pays to pickmall
to spread out the pattern on the photographic plate.

Note, also, that the ord€éi” terms that we dropped really don’t do any harm even if
is not small. Because theirandy dependence is proportional to that of the signal times its
complex conjugate, the typical andk, for these terms is zero and they travel roughly in
the direction of the reference beam. They don't reach your eye in|(13.33).

(13.131)

13.9 Fringes and Zone Plates

13.9.1 The Holographic Image of a Point

One of the simplest of holographic images is the image of a single point. If a plane wave
encounters a very small object in its path, the object will produce a spherical wave. If the
plane wave and the spherical wave then are absorbed by a photographic plate, as shown in
figure/ 13.34, an interference pattern is produced in the form of concentric circles, or fringes.
Specifically, suppose that the plane wave is propagating in theection, the photo-
graphic plate is in the-y plane at: = zg and we put the origin of our coordinate system at
the position of the source of the spherical wave, as shown in figure Tha4.the linear
combination of plane wave plus spherical wave has the form (ignoring polarization)

. B .
Aett® 4 762’“‘ , (13.132)

wherer = /22 + y? + 22. We will assume, for simplicity, that and B are real which
means that the two waves are in phase at the object. The intensity of the wavexton
the photographic plate is therefore

B* 24AB
A% + ) + " cos[k(rg — z0)] (13.133)
0 0

wherery is the distance from the object for a point in the z; plane,

ro =/ + R? (13.134)
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incoming
plane wave

Figure 13.34: Fringes.

and

R=\/22+y2 (13.135)

is the distance from theaxis in thex-y plane. The intensity depends only Bnas it must
because of the symmetry of the system under rotations aroundxie

Usually, we are interested in the region,> R, because, as we will see, the intensity
pattern is most interesting for sm&ll In this region, the distancs, is very nearly equal to
zo. We can ignore the variation gf in the amplitudeB/ry. However, there is interesting
dependence in the cosine term(18.133).In this term, we can expang in a Taylor series

aroundR = zgq, )
1R
_ 2/,2 _ -
ro—zm/l—i—R/zO—zo—i-zzo + . (13.136)

Putting all this together, the intensity is given approximatelyfos R by

B? 2AB  kR?
AP+ =+ Z—cos —. (13.137)
Z() 20 22’0
The intensity pattern(13.137),describes concentric circular “zones” of intensity varia-
tion. The zones can be labeled by the maxima and minima of the cosine, at

KR

— =n7 (13.138)
220
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or
R%? = n)\z (13.139)

wherel is the wavelength of the wave. Foeven, the cosine has a maximum andfodd,
a minimum. The intensity variation is greatest if the plane wave and the spherical wave have
approximately the same amplitude at the plate,

—=A. (13.140)

<0
Then the amplitude actually goes to zero at the minima. The intensity distribution as a func-
tion of R is shown in figurél3.35. The positions of the maxima and minima, or “zones,”
are shown on th& axis. On the photographic plate, this intensity distribution gives rise to
circular fringes.

0 R/VAzo—+v2 V4 V6
Figure 13.35: The intensity distribution.

If the plate is developed and illuminated by a plane wave, the original spherical wave is
reproduced along with another spherical wave moving inward toward a point eraxise
a distancezy beyond the plate, as shown in figir@.36. This wave is the real image of
figurel13.33.When a plane wave (dotted lines) illuminates the photographic plate produced
in figure13.34,diverging (dotted lines) and converging (solid lines) spherical waves are pro-
duced.

13.9.2 Zone Plates

The hologram of figur&3.34can be used to bring part of plane wave to a focus. The con-
verging spherical wave shown in figut8.36is much stronger than the rest of the wave
disturbance at the focus,= 2z, x = y = 0, because the amplitude of this part of the wave
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Figure 13.36: A plane wave illuminating the photographic plate.

increases as it approaches the focus. It has the form

1 .
Pe“" (13.141)

where
v = (2~ 220)2 + 22 + 2. (13.142)

The same effect can be produced with a cartoon version of the photographic plate made
by taking a transparent plate and blacking out the zones for negati&3.138) where the
intensity distribution is less than half the maximum. For example, the first negative zone is
the region\zy/2 < R% < 3)\z/2. The second is the regiizg/2 < R? < TAz/2, etc.

The result is a “zone plate.” An example, produced by blacking out the first 4 negative zones
is shown in figurd3.37. These things are quite useful, because they can be easily produced
and tailored to any wavelength.

Chapter Checklist

You should now be able to:

i. Be able to set up a diffraction problem as a forced oscillation problem and write the
diffracted wave as a Fourier integral;
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Figure 13.37: A zone plate.

ii. Interpretthe Fourier integral in the far-field region and find the diffraction pattern;

iii. Analyze the diffraction patterns in beams made with one or more slits and rectangles;
iv. Use the convolution theorem to simplify the calculation of Fourier transforms;

v. Analyze the scattering from a diffraction grating and x-ray diffraction from crystals;

vi. Interpret a hologram as a diffraction pattern;

vii. Understand how a zone plate can focus a plane wave.

Problems

13.1. Consider the transverse oscillations of a semi-infinite, flexible membrane with
surface tensiofl’s and surface mass densjiy. The membrane is stretched in the= 0
plane fromy = —oo to co and fromz = 0 to co. The membrane is held fixed along the half
lines, = 2=0, a <y<ocandzx =z =0, —© <y < —a. Fory betweera and
—a, the membrane is driven with frequenego that the end at= 0 moves with transverse
displacement

¥(0,y,1) = f(y) et

where

b<1—y> for0<y<a
fly) = b<1—|—y) for —a<y<0
a

0 for ly| > a.
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The transverse displacement is given by
(@51 / dky C(k e (yky+ak(ky)—wt)

wherek(k,) is some function ok, and

i b
ky) =5 / dy f(y) e ¥ = 7rl<:2 (1 —coskya).

Find the functiork(k,).

If the intensity of the wave at= L,y = 0 for largeL is Iy, find the intensity for: = L
and any value of. Hint: Assume that you are in the far field region, and account for all the
relevant factors contributing to the ratio of the intensitjyto

13.2. Consider an opaque barrier in thg plane atz: = 0, with a single slit along the

x axis of width2a, but with regions on either side of the slit each with witdtlwhich are
partially transparent, designed to reduce the intensity by a factor of 2. When this barrier is
illuminated by a plane wave in thedirection, the amplitude of the oscillating field atz0

is

fla,y)e ™
for
1 for lyl < a
flz,y) =4 1/V2 for a< |y < 3a

0 for 3a<lyl.

Near the slit, this just produces a beam which is less intense by a factor of two on the edges.
Far away, however, the diffraction pattern is quite different from that of the single slit. At a
fixed large distanc®& = \/y? + 22 away from the slit, the intensity as a function of

wya

cR

is shown in the graph in figui®E3.38for positive¢. The value of the peak at= 0 is
normalized to 1, but has been suppressed in the graph to show the details of the secondary
maxima.

Find the smallest positive value for which the intensity vanishes.

Find the ratio of the intensity at= 7/2 to that at &= 0

So far we have not mentioned the polarization of the light, assuming that it is irrelevant. In
fact, we get the pattern shown above for any polarization, so long as the shading doesn't effect
the polarization (andg is small). However, if the light is initially polarized in the direction
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Figure 13.38: Problem 13.2.

45° from thez axis, we could reduce the intensity by two by passing it through a perfect
polarizer aligned with thg axis. Suppose that our slit between anda is completely
empty, but between-3a and —a and betweem and3a, we put such a polarizer. Now, as

before, the beam close to the slit just has the intensity on the edges reduced by a factor of 2.
Now, however, the diffraction pattern is quite different. As a functiofy ¢fie intensity at

large fixedR is . 036 2 . 2
() ()

which looks nothing like the pattern above. Explain the difference.

13.3. Consider an opaque barrier in the plane at: = 0, with identical holes centered
at(z,y) = (nga, nya) for all integers:,, andn,. Suppose that the barrier is illuminated from
z < 0 by a plane wave traveling in thedirection with wavelength = a+/3/2.

Forz > 0, the wave has the form

Z C m ei(mzp T+mypy+k.(mgz,my)z—wt)
x vy

Mg, My

wherem, andm,, run over all integers.

Find p.

For largez, only a finite number of terms in the sum are important. How many and how
do you know?

Now suppose that instead of coming in ttdirection, a plane wave with the same wave-
length is moving for < 0 at 45 to thez axis both in thes-z plane, and in thg-z plane.

That is 1 1
T _ MY o _
ka_k‘z_tan45 =1.
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Now for z > 0, the wave has the form

Z Con ei[(mzp+51)m+(myp+£y)y+k‘z(m1,my)z7wt}
z,My

Mg, My

wherem, andm,, run over all integers.

Find¢, and §,.

Again for largez, only a finite number of terms in the sum are important. Which ones —
that is, what values of., andm,,?

13.4. Describe the diffraction pattern that results when a transmission diffraction grating
with line separation distancgis illuminated by a plane wave of monochromatic light with
wavelengthL that is traveling in a direction perpendicular to the grating lines and at an angle
6 to the perpendicular from the surface of the grating.

13.5. An opaque screen with four narrow slitsatt0.6 mm andr=10.4 mm is block-
ing a beam of coherent light with wavelengtlx 10~> cm. Describe the diffraction pattern
that appears on a screen 5 meters away.

13.6. A semi-infinite flexible membrane is stretched in the 0 plane forz > 0 with
surface tensioff; and surface mass denspy. The membrane is clamped downzat 0
along the two semi-infinite lines, = 0,2 = 0,y > candz = 0,z = 0,y < —a. For
—a <y < aand z= 0, the membrane is forced to oscillate with an amplitude of the form
2= Beétcos Y
2a

Draw a diagram of the = 0 half plane forz > 0 and indicate where the average of the
absolute value square of the transverse displacement of the membrane is large (i.e. not much
smaller thanB2a/r, wherer is the distance from the origin). For your diagram, assume that
the distance is about 5 times the wavelength of the waves.

Find the intensity of the disturbance on the membrane produced by this forced oscilla-
tion as a function o = tan=!(y/z) on a large semicircles? + y* = R?, for R? >>
a*w? ps | Ts.

Hint: This is similar to a single slit diffraction problem. Note that even though the
disturbance is a cosine, you will have to do a Fourier integral (although not a difficult one) to
do part b, because the disturbance is confinedut&l y < a at z= 0.

13.7. Suppose that a diffraction grating with line separaditmetched onto the top of a
thick piece of glass with index of refractien If light of frequencyw is incident on the top,
coming in at an anglé from the perpendicular to the face and perpendicular to the grating
lines, find the angles of the components of the wave in the glass.



PROBLEMS 421

13.8. Shown in figurel3.39are 4 diffraction patterns such as might be produced by
shining laser light (nearly a plane wave) through a slit or slits, and projecting the pattern onto a
photographic plate far away. The patterns are each produced by about 500 individual photons
striking the plate with a probability density proportional to the intensity of the diffracted
wave.

B v 3RO E
C:
D

Figure 13.39: Four diffraction patterns.

The four objects that produced these patterns were, in a random order,
i. Asingle slit, 1 mm wide;

ii. A single slit, 0.6 mm wide;

iii. Two slits, each 0.6 mm wide, with centers 1.5 mm apart;

iv. Six slits, each 0.6 mm wide, with adjacent centers 1.5 mm apatrt.

a. Which is which?

b. How do you know?
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