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Problem 1 

The charge density fluctuations in a plasma satisfy the wave equation, which for one dimensional 
distortions reduces to 

∂2ρ 2 ∂
2ρ 

= c − ω2ρ 
∂t2 ∂x2 p 

where ρ(x, t) is the charge density fluctuation, c is the speed of light, and fixed parameter ωp is 
known as the plasma frequency. 

a. Find the dispersion relation ω(k) for traveling wave solutions of the form ρ(x, t) = a sin(kx−ωt). 
b. Find k(ω). Graph wavevector k as a function of wave frequency ω. Find and sketch phase and 

group velocities. 

c. Show that the wave equation can also be satisfied by exponentially decaying solution of the 
form: 

ρ(x, t) = a cos(ωt)e −κx 

Find κ(ω) and graph it (you may use the same graph as in previous question but make sure to 
label it clearly). 
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Problem 2 

F(t)=Fsin(ωt)0

Figure 1: Force creating a wave 

Consider a very long string attached to a small massless loop at x = 0. The string has mass 
density µ and it is kept at tension T . The loop can move vertically without friction. An external 
force F (t) = F0 sin(ωt) is applied to the loop moving it up and down resulting in a steady state 
harmonic wave traveling towards positive x. Assume that the string is so long that you don’t need 
to worry about the reflected pulses. 

a. Find the boundary conditions that need to be satisfied by a wave solution y(x, t) at x = 0 in 
terms of given parameters. 

b. Find the frequency and wavelength of the resultant steady-state harmonic wave as a function 
of given parameters. 

c. Find the amplitude of the resultant steady-state harmonic wave. 
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Problem 3 
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Figure 2: Deformed String 

Consider a string of length L that is attached to a massless ring at x = 0 and to a fixed point 
at x = L. The ring is free to move perpendicular to the string along a frictionless rod. The tension 
of the string is T and the mass density is µ. The force of gravity can be ignored compared to other 
forces. At t = 0 the string is deformed such that there is a narrow rectangular pulse of height H 
as shown in the Figure 2. The width of the pulse D is much smaller than the length of the string 
L but it is finite. The center of the pulse is at x0 = L/4. The string is initially stationary with 
∂y 
∂t (x, 0) = 0. 

a. Find the functional form, wave numbers km, frequencies ωm and periods of oscillations τm of 
all possible normal modes of this string as a function of L, T , µ and integer m. 

b. Find the expression for coefficients Am in the expansion of y(x, 0) into normal modes. Evaluate 
all integrals and simplify results. Express results as a function of L, H, D and m. You may 
find useful trigonometric expressions in the formula sheet. 

c. Find which of the coefficients are equal to zero, if any. 

d. Write the complete expression for the time-dependent Fourier decomposition of the pulse y(x, t) 
in form of the infinite series of coefficients multiplied by the appropriate time-dependent terms. 

e. Find the shape of the string at t = τ1/2 where τ1 is the period of oscillations of the lowest 
normal mode. You do not have to use Fourier expansion, any logical argument would be 
acceptable. 
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Problem 4 

T2
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Figure 3: Traveling triangle 

Consider two strings with mass density µ1 = µ and µ2 = µ/2 and tensions T1 = T and T2 = T/2 
connected by a massless ring at x = 0. The ring can move along a frictionless rod. String 1 extends 
to the left, far beyond x = −L, and string 2 is attached to a fixed point on the wall at x = L. 
Initially a triangular pulse of width L/4 is moving along string 1 from left to right. At t=0 the front 
edge of the triangle is at x = −7L/8 as shown in Figure 3. 

a. Write wave equations on both sides of the ring and specify the boundary conditions at x = 0. 

b. Do you expect reflected waves at x = 0 and at x = L? Will the reflected wave have the same 
or the opposite sign than the incoming wave at x = 0 and at x = L? 

c. Assume that the incoming pulse is of the form f1(x, t) = f1(x/v1 − t). Find the functional form 
of the transmitted g(x, t) and reflected f2(x, t) pulses at x = 0 and x = L. Consider only times q
t ≤ 2L µ 

T . 

d. Make a sketch of string deformations at t = L
q

µ 
T and t = 2L

q
µ 
T . 
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Problem 5 

A string of length L, mass M and tension T is fixed at both ends. 

T, M

0 L

y

x

Figure 4: String attached at both ends 

a). What is the wavelength λ1, in the lowest possible normal mode, and what is the associate 
frequency ω1? 

b). What is the wavelength λn of the nth normal mode, and what is the associated frequency ωn? 

We deform the string as shown in Figure 5 (the triangle is equilateral). The vertical displacement 
is highly exaggerated in the figure. In the interval 0 < x < L the shape of the string is given by 
y = f(x). As per Fourier: 

∞X nπx 
y(x) = Bnsin (1)

L 
n=1 

with Z L2 nπx 
Bn = f(x)sin dx (2)
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Figure 5: Triangle on the string 

c). Which values for Bn will be zero ? Give your reasons. DO NOT attempt any integrations! 

We release the plucked string with zero speed. 

d). What is the minimum amount of time we have to wait for the string to look like Figure 4 
(y(x) = 0), and what is the minimum time for the string to look again like Figure 5. Give your 
reasons. q 

ML e). Make a sketch of the string 1 seconds after release. 4 T 

f). Let t = 0 be the moment that the string for the first time (after release) looks like Figure 4 
(y(x) = 0). Let the B value of the 5th normal mode be B5 (n = 5). Do not attempt to calculate 
B5! What is the evolution in time of this 5th mode? In other words what is y5(x, t)? The index 
5 indicates the 5th mode. Express your answer in terms of T , M , L and B5. 

6 



Assume now that someone (NOT you !) has calculated all values of Bn. The person proudly 
shows you, on her laptop, by adding up the 20 allowed lowest modes, that the match with the shape 
shown in Figure 5 is near perfect. For your curiosity, you want to see the shape of the string for 
values of x from L → 3L. The rope does not exist there, but equation (1) does not know that. 

g). Sketch f(x) in the range 0 → 3L. 

We now let the end of the string (x = L) move freely without friction. We keep the tension the 
same using a “massless” ring that slides without friction along a vertical bar. 

T, M

0 L

y

x

Figure 6: String with one free end 

h). Answer question a) in this new configuration. 

i). Answer question b) in this configuration. 

We now deform the string as shown in Figure 5. Your friend, again proudly shows you the results 
of her Fourier analysis in the new configuration. Again you are curious about the range L → 3L. 

j). Sketch f(x) in the range 0 → 3L. 
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Problem 6 

Consider two perfectly conducting planes at z = 0 and z = L. Between the planes there is standing 
electromagnetic wave with E-field always along y-axis. The wave is described by an electric field 
~ ~E(z, t) = Ey(z, t)ŷ, and a magnetic field B(z, t) = Bx(z, t)x̂. 

a. Using boundary conditions for the electric field on the conducting planes, write down the 
expression for Ey(z, t) in the n-th normal mode. 

b. Using Maxwell’s equations, or otherwise, find the corresponding magnetic field Bx(z, t) in the 
n-th normal mode. (Hint: you can consider a standing wave to be a superposition of two 
progressive waves) 

~c. Derive expressions for the Poynting vector S and the densities UE in the electric field and UB 

in the magnetic field, as well as the time-averages of all three quantities. 
~ ~d. For the second mode (n = 2), sketch the spatial variation of E, B, UE and UB between the 

two planes at t = 0. 

8 



  

MIT OpenCourseWare 

https://ocw.mit.edu 

8.03SC Physics III: Vibrations and Waves 

Fall 2016 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





