
8.03 Lecture 18

Waveplate: use material which the index of reflection is different for different orientations of light
passing through it!

∆φ = 2πl
λx
− 2πl
λy

= nx − ny

c
ωl

Quarter-waveplate: ∆φ is designed to be π
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*Axis with smaller phase → fast axis

*Axis with larger phase → slow axis



Matrix: Q0 =
(

1 0
0 i

)
In general: (

cos2 θ + i sin2 θ cos θ sin θ − i sin θ cos θ
cos θ sin θ − i sin θ cos θ sin2 θ + i cos2 θ

)
Where θ is the direction of the fast axis with respect to the x axis.
(Editor’s note: see video lecture for a demonstration.)

How do we produce EM waves?! Radiation from a point source.
In vacuum, EM wave neither loses nor gains energy. Recall the Poynting vector: ~S = 1

µ0
~E × ~B

“rate of energy transfer per area”

〈S ·A〉1 = 〈S ·A〉2 = power

〈S〉 ∝ 1/A ∝ 1/r2

⇒ 〈 ~E〉, 〈 ~B〉 ∝ 1/r

Question: How do I produced radiation?
i Stationary charge:

~E = q

4πε0r2 ∝
1
r2

~B0 = 0

 ~S = 0
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ii Charge at constant speed u:

β = u

c

~E = q

4πε0r2
1− β2

(1− β2 sin2 θ)3/2 r̂

~B = ~u× ~E

c2 ∝ 1
r2

⇒ | ~E| ∝ 1
r2 , | ~B| ∝ 1

r2

1
µ0
~E × ~B = ~S ∝ 1

r4 ⇒ Does not radiate

(Or we can use a simpler argument: boost to the rest frame of the charge)
Therefore we need to accelerate the charge to produce radiation. (Proof can be found in Georgi
355-360). Or the following geometrical argument. Goal: to create a “kink” in the electric field:
Accelerated Charge!
Consider a charge, accelerated between t = 0 to t = ∆t. a is small and ∆t is small.

It takes time for information to propagate (at the speed of light).

(1) Surface: information that the charge accelerated has only just reached this sphere
(2) Surface: information that the charge moving with constant velocity has reached this sphere
Q:What will the “observer” see at t = t+ ∆t? A: A stationary charge.
Therefore outside (1) the electric field is like the charge has never moved (where the observer lives).
Inside (2) the electric field is in the r̂ direction. Between (1) and (2) the field must be continuous
because there is no source between them. Since u ≡ a · ∆t is � c (where u is the velocity of the
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charge after acceleration) then the field lines from A to B are approximately parallel. We have
managed to create a “kink”!

⇒ E⊥ = −a⊥r
c2 E‖

What is E‖? Use Gauss’ Law:

E‖ = EOut = q

4πε0r2 = Electric field outside

E⊥ = −qa⊥
4πε0r2c2
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This is very important! E⊥ at position ~r is due to acceleration which occurred at a retarded time:

t′ = t− r/c

⇒ ~ERad(~r, t) = −q~a⊥(t− r/c)
4πε0c2r

⇒ ~BRad ∝
1
r

⇒ ~SRad ∝ ~ERad × ~BRad ∝
1
r2

We are sending energy to the edge of the universe!!

~r � scale of ~a(t) such that the static contributions die out.

~ERad(~r, t) = −q~a⊥(t− r/c)
4πε0c2r

~BRad(~r, t) = 1
c
r̂ × ~ERad(~r, t)

~SRad(~r, t) = 1
µ0
~ERad × ~BRad

~a⊥ = ~a−~a · r̂ r̂, r̂ = ~r

|~r |

1. Get ~a

2. define ~r, get ~a⊥ ~a⊥ = ~a− ~a · r̂ r̂

3. ~ERad

4. ~BRad = 1
c
r̂ × ~ERad

5. ~SRad = 1
µ0
~ERad × ~BRad

6. Total power: P (t) =
∫∫∫

~SRad(~r, t) · dAn̂ =
q2∣∣a(t− r/c)

∣∣2
4πε0c3
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Example: harmonically oscillating charge:

where x = ẑd cosωt and R� d
(1) At a distance R away from the charge in the ẑ:

~a(t) = ~̈x(t) = −ẑdω2 cosωt

~ERad(~r, t)− = −q~a⊥(t− r/c)
4πε0c2r

~a⊥ = ~a− ~a·r̂r̂ in this case ~a ‖ ~z
⇒ ~a⊥ = 0

⇒ No radiation!
(2) How about Rŷ?

~a⊥ = ~a− ~a · ŷŷ = −ẑdω2 cosωt

~ERad(t) = +qdω2 cos(ω(t−R/c))
4πε0c2R

ẑ

~BRad(t) = 1
c
ŷ× ~ERad(t) = qdω2 cos(ω(t−R/c))

4πε0c3R
x̂

We get harmonic waves with amplitude decreasing versus R (3) How about at R
(

1
2 ŷ +

√
3

2 ẑ

)
?
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(30◦ angle with respect to the z-axis in the y − z plane)

~a⊥(t) = ~a− (~a · r̂)r̂

= −ω2d cos(ωt)
(
ẑ −
√

3
2

(
1
2 ŷ +

√
3

2 ẑ

))

= −ω2d cosωt
(

1
4 ẑ −

√
3

4 ŷ

)

~ERad = qω2d

8πε0c3R
cos(ω(t−R/c))

(
1
2 ẑ −

√
3

2 ŷ

)

Example 2: A particle with charge q is moving on an elliptical orbit

x(t) =
√

2A cos(ωt)
y(t) = A sin(ωt)

What are the polarizations of the electric field seen by distant observers on the positive x, y, z axes?
First calculate ~a(t)

~a(t) = −
√

2Aω2 cos(ωt)x̂−Aω2 sin(ωt)ŷ

(1) Observer Rx̂

~a⊥ = −Aω2 sinωtŷ

~ERad = qω2A

4πε0c3R
sin(ω(t−R/c)) Linearly polarized

(2) ŷ: similarly, also linearly polarized
(3) ẑ: elliptically polarized

7



 

MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





