
   
 

                 
              

         

Massachusetts Institute of Technology 
Physics 8.03 Fall 2016 

Exam 1 

Instructions 

Please write your solutions in the white booklets. We will not grade anything written on the exam 
copy. This exam is closed book. No electronic equipment is allowed. All phones, blackberry, 
blueberry, raspberry Pi, tablets, computers etc. must be switched off. 

1
 



�� � 

�  � �  � 

Springs and masses:
 
d2 d 

m x(t) + b x(t) + kx(t) = F (t)
dt2 dt 

More general differential equation with harmonic driving force: 

d2 d F0 
x(t) + Γ x(t) + ω0

2 x(t) = cos (ωdt)
dt2 dt m 

Steady state solutions: 
xs(t) = A cos (ωdt − δ) 

where 
F0 

A =  m

(ω0
2 − ωd

2)2 + ωd
2Γ2 

and 

Γωd 
tan δ = 

ω2 − ω2 
0 d 

General solutions:
 
For Γ = 0 (undamped system):
 

x(t) = R cos (ω0t + θ) + xs(t) 

where R and θ are unknown coefficients. 
For Γ < 2ω0 (under damped system): 

Γ2 

x(t) = Re− 2
Γ t cos ω0

2 − t + θ + xs(t)
4
 

where R and θ are unknown coefficients. 
For Γ = 2ω0 (critically damped system): 

2
Γ− t x(t) = (R1 + R2t)e + xs(t) 

where R1 and R2 are unknown coefficients. 
For Γ > 2ω0 (over damped system): 

Γ2 Γ2Γ Γ−ω2
0 t 2

0− − − −ω+ t
2 4 2 4x(t) = R1e + R2e + xs(t) 

where R1 and R2 are unknown coefficients. 
Coupled oscillators 
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Fj = − Kjkxk 

k=1 

Examples for n = 2   
x1(t)X (t) =
x2(t)  

K11 K12K =
K21 K22  
m1 0 M =
0 m2

Matrix equation of motion, matrices M, K, I are n × n, vectors X , Z are n × 1. 

d2 

X (t) = −M−1KX (t)
dt2 

Z(t) = Ae −iωt 

(M−1K − ω2I)A = 0 

To obtain the frequencies of normal modes solve: 

det(M−1K − ω2I) = 0 

For n = 2   

M11 M12
det = M11M22 − M12M21M21 M22

If the system is driven by force one can find the response amplitudes C(ωd) 

−iωdtF(t) = F0e 

−iωdtW(t) = C(ωd)e 

  
c1(ωd)C(ωd) = c2(ωd)

(M−1K − ωd
2I)C(ωd) = F0 
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solving the equation above one can find the response amplitudies for the first (c1(ωd)) and 
second (c2(ωd)) objects in the system. 

Reflection symmetry matrix: 

0 −1 S = −1 0 

Eigenvalues (β) and eigenvectors (A) of this 2 × 2 S matrix:
 
1
 

(1) β = −1, A = 
1
 
1
 

(2) β = 1, A = −1
 
1D infinite coupled system which satisfy space translation symmetry:
 
Given a eigenvalue β, the corresponding eigenvector is
 

Aj = βj A0 

where
 
Aj (A0)
 

is the normal amplitude of jth(0th) object in the system. 
Consider an one dimentional system which consists infinite number of masses coupled by springs, 

β can be written as β = eika where k is the wave number and a is the distance between the masses. 
Kirchoff’s Laws (be careful about the signs!) n n 

Node : Ii = 0 Loop : ΔVi = 0 
i i 

Q dI dQ
Capacitors : ΔV = Inductors : ΔV = −L Current : I = 

C dt dt 
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Problem 1 (30 pts)
 

Solve the following short questions. 

A. A graduate student was performing an experiment on a damped pendulum which was con
strained to move only in the x direction. The position of the pendulum as a function of time is 
shown in Figure 1. Based on the experimental data, is this an underdamped, an over-damped, 
or a critically damped oscillator? (5 pts) 

B. Two vibrations along the same string are described by the equation y1(t) = A cos(3πt) and 
y2(t) = A cos(4πt) where t is in seconds and A is 0.01 cm. Find the beat period of the 
superposition of the two. (5 pts) 

C. A heavy pendulum was oscillating under water with angular frequency	 ω1 (underdamped). 
Will the oscillation frequency increase, decrease or stay the same if the whole system is taken 
out of the water? Explain why. (5 pts) 

D. Consider an oscillator with three masses arranged in a line and connected with springs. The 
oscillator has a mirror symmetry x1 → −x3, x3 → −x1 and x2 → −x2. Write the symmetry 
matrix S for this system. (5 pts) 

E. Explain briefly why a driven under-damped oscillator often exhibits large, apparently erratic, 
responses when the driving mechanism is first turned on? (5 pts) 

F. Consider a simple mechanical oscillator of mass m attached to a spring of constant k. One 
may draw a close analogy between this system and a single loop circuit with inductor L and 
capacitor C connected in series. Both oscillators follow mathematically equivalent equations. 
What is the electrical equivalent of the mass m in the spring-mass system and of the spring 
constant k? (5 pts) 
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Figure 1: Displacement of a pendulum with respect to the equilibrium posi
tion 
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Problem 2 (30 pts)
 

Figure 2: Vibration free table 

Many precision scientific measurements require vibration free tables. One example is shown in 
Figure 2. Consider a table of mass m supported by 2 ideal springs with spring constant k = 

2
1 mω0

2 

and damped by a damper with damping force F = −mΓv where v is the relative velocity between 
the floor and the table (NOT the velocity of the table). Assume that the system is underdamped. 
Both the spring and the damper are firmly attached to the table and to the floor. An earthquake 
happened and the floor is vibrating harmonically along the vertical direction with frequency ωd and 
amplitude A 

yg(t) = A cos(ωdt) 

a.	 Write the equation of motion of the table in terms of y(t), assuming y = 0 represents the 
equilibrium position of the table before the earthquake. (10 pts) 

b. Find the amplitude of steady state vibrations of the table as a function of floor vibration 
frequency ωd. (10 pts) 

c.	 Make a sketch of the steady state amplitude as a function of ωd, indicate the amplitude value 
at ωd ∼ 0 and ωd → ∞. (10 pts) 
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Problem 3 (40 pts) 

For the system of three masses shown in the Figure 3, the ideal springs and the pendulum rods 
are massless, and x1 and x2 and x3 are measured from the position of static equilibrium (i.e., the 
spring is relaxed and the pendulum hangs vertically). The whole setup is prepared on Earth with 
gravitation force pointing downward. We also assume that the oscillation amplitudes of the three 
masses are very small and there is no damping or friction in the system. You can also safely assume 
that the masses are only moving in horizontal direction. 

Figure 3: Coupled Pendulum and Ideal Spring Oscillators 

a.	 In the beginning of the experiment, the third mass (the U shape one with mass 2m) is fixed 
at x3 = 0. Derive the coupled equations of motions for the positions of the two masses (x1 

and x2). (6 pts) 

b. Write down the 2 × 2 M−1K matrix (4 pts) 

c.	 Solve the two normal mode frequencies. (6 pts) 

d. Evaluate the amplitude ratios for each normal mode, describe the motion of each normal mode 
by a sketch. (8 pts) 

e.	 Write down the general expression for motion of the two masses in terms of the normal mode 
frequencies and four unknown coefficients. (4 pts) 

f. From now on, the third mass (with mass 2m) is released and free to move in the x direction. 
Derive the coupled equations of motion for the positions of the three masses (x1, x2 and x3) 
without solving it. (8 pts) 

g. Describe	 the motion of the three normal modes by a sketch without solving the coupled 
equations of motion. (4 pts) 
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