8.03 Lecture 3

Summary: solution of $\ddot{\theta} + \Gamma \dot{\theta} + \omega_0^2 \theta = 0$

(0): $\Gamma = 0$ No damping:

$$\theta(t) = A\cos\left(\omega_0 t + \alpha\right)$$

(1): $\omega_0^2 > \frac{\Gamma^2}{4}$ Underdamped Oscillator:

$$\theta(t) = Ae^{-\Gamma t/2}\cos(\omega t + \alpha)$$
 where $\omega = \sqrt{\omega_0^2 - \frac{\Gamma^2}{4}}$

(2): $\omega_0^2 = \frac{\Gamma^2}{4}$ Critically damped oscillator:

$$\theta(t) = (A + Bt)e^{-\Gamma t/2}$$

(3): $\omega_0^2 < \frac{\Gamma^2}{4}$ Overdamped Oscillator:

$$\theta(t) = Ae^{-(\Gamma/2+\beta)t} + Be^{-(\Gamma/2-\beta)t}$$
 where $\beta = \sqrt{\frac{\Gamma^2}{4} - \omega_0^2}$

Continue from lecture 2:

Now we are interested in giving a driving force to this rod:

Assume that the force produces a torque:

 $\tau_{DRIVE} = d_0 \cos \omega_d t$

Total torque:

$$\tau(t) = \tau_g(t) + \tau_{DRAG}(t) + \tau_{DRIVE}(t)$$

Equation of motion: $\ddot{\theta} + \Gamma \dot{\theta} + \omega_0^2 \theta = \frac{d_0}{I} \cos \omega_d t$ Where, from last lecture, we have defined:

$$\Gamma \equiv \frac{3b}{ml^2} \quad \omega_0 \equiv \sqrt{\frac{3g}{2l}}$$

Where Γ is the size of the drag force and ω_0 is the natural angular frequency (i.e., without drive). Also, define $f_0 \equiv \frac{d_0}{I}$. Now our equation of motion reads:

$$\ddot{\theta} + \Gamma \dot{\theta} + \omega_0^2 \theta = f_0 \cos \omega_d t$$

We would like to construct something to "cancel" $\cos \omega_d t$. Idea: use complex notation:

$$\ddot{z} + \Gamma \dot{z} + \omega_0^2 z = f_0 e^{i\omega_d t}$$

Guess:

$$z(t) = Ae^{i(\omega_d t - \delta)}$$

where the δ is designed to cancel $e^{i\omega_d t}$. It takes some time for the system to "feel" the driving torque. Taking our derivatives gives us:

$$\dot{z}(t) = i\omega_d z$$
$$\ddot{z}(t) = -\omega_d^2 z$$

Insert these results into the equation of motion:

$$(-\omega_d^2 + i\omega_d\Gamma + \omega_0^2)z(t) = f_0 e^{i\omega_d t}$$
$$(-\omega_d^2 + i\omega_d\Gamma + \omega_0^2)Ae^{i(\omega_d t - \delta)} = f_0 e^{i\omega_d t}$$
$$(-\omega_d^2 + i\omega_d\Gamma + \omega_0^2)A = f_0 e^{i\delta}$$
$$= f_0(\cos\delta + i\sin\delta)$$

Since this is a complex equation, we can solve for A and δ Real part: $(\omega_0^2 - \omega_d^2)A = f_0 \cos \delta$ Imaginary part: $\omega_d \Gamma A = f_0 \sin \delta$ Squaring both of these equations and adding them together yields:

$$\begin{aligned} A^2 \left[(\omega_0^2 - \omega_d^2) + \omega_d^2 \Gamma^2 \right] &= f_0^2 \\ A(\omega_d) &= \frac{f_0}{\sqrt{(\omega_0^2 - \omega_d^2) + \omega_d^2 \Gamma^2}} \end{aligned}$$

-

Dividing the imaginary part by the real part yields:

$$\tan \delta = \frac{\Gamma \omega_d}{\omega_0^2 - \omega_d^2}$$
$$\Rightarrow \theta(t) = \operatorname{Re}[z(t)] = A(\omega_d) \cos\left(\omega_d t - \delta(\omega_d)\right) \tag{1}$$

Where both $A(\omega_d)$ and $\delta(\omega_d)$ are functions of ω_d .

No free parameter?! Actually, this is the a particular solution. The full solution (if we prepare the system in the "underdamped" mode) is:

$$\theta(t) = A(\omega_d) \cos\left(\omega_d t - \delta\right) + Be^{-\Gamma t/2} \cos\left(\omega t + \alpha\right)$$

Where the left side with amplitude A is the steady state solution and the right side with amplitude B will die out as $t \to \infty$.

You may be confused with so many different ω 's!! To clarify:

 ω_0 is the "natural angular frequency." In our example with the rod, $\omega_0 = \sqrt{3g/2l}$ ω : this frequency is lower if there is a drag force. It is defined by the equation $\omega = \sqrt{\omega_0^2 - \Gamma^2/4}$ ω_d is the frequency of the driving torque or force

Example: Driving a pendulum

Take a small angle approximation: $\sin \theta \approx \theta = \frac{x-d}{l}$ and $\cos \theta \approx 1$ This implies:

$$\vec{T}\approx -T\frac{x-d}{l}\hat{x}+T\hat{y}$$

In the \hat{x} direction we have

$$m\ddot{x} = -b\dot{x} - T\frac{x-d}{l}$$

and in the \hat{y} direction we have

$$0 = m\ddot{y} = -mg + T$$

where the force has to be zero because there is no vertical motion (assuming a small angle). We now know mg = T.

Setting up our equation of motion we have

$$m\ddot{x} + b\dot{x} + \frac{mg}{l}x = \frac{mg}{l}\Delta\sin\omega_d t$$
$$\ddot{x} + \frac{b}{m}\dot{x} + \frac{g}{l}x = \frac{g\Delta}{l}\sin\omega_d t$$

To compare with our previous solution, define $\Gamma \equiv b/m$, $\omega_0^2 \equiv g/l$, and $f_0 \equiv g\Delta/l$ to give

$$\ddot{x} + \Gamma \dot{x} + \omega_0^2 x = f_0 \sin \omega_d t$$

Let us examine the amplitude:

$$A(\omega_d) = \frac{f_0}{\sqrt{(\omega_0^2 - \omega_d^2) + \omega_d^2 \Gamma^2}}$$

There are a few cases we need to consider:

(1) $\omega_d \to 0$

$$A(\omega_d) = \frac{f_0}{\omega_0^2} = \frac{g\Delta/l}{g/l} = \Delta$$

The amplitude will simply be the amplitude of the initial displacement. If the drive frequency is zero then $\tan \delta = 0 \rightarrow \delta = 0$.

(2) $\omega_d o \infty$

 $A(\omega_d) \Rightarrow 0 \text{ and } \tan \delta \to \infty \quad \text{therefore } \delta = \pi$

A plot of the phase as a function of the drive frequency.

A plot of the amlitude as a function of the drive frequency.

There is a third possibility: (3) $\omega_d \approx \omega_0$ This is called driving "on resonance." Even a small Δ can produce a large A, amplitude:

$$A(\omega_0) = \frac{f_0}{\omega_0 \Gamma} = \frac{\omega_0^2 \Delta}{\omega_0 \Gamma} = \frac{\omega_0}{\Gamma} \Delta = Q\Delta$$

Where $Q \equiv \omega_0 / \Gamma$ and is a large parameter which gives a large amplitude.

MIT OpenCourseWare https://ocw.mit.edu

8.03SC Physics III: Vibrations and Waves Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.