Chapter 3

Normal Modes

Systems with several degrees of freedom appear to be much more complicated than the simple
harmonic oscillator. What we will see in this chapter is that this is an illusion. When we look
at it in the right way, we can see the simple oscillators inside the more complicated system.

Preview

In this chapter, we discuss harmonic oscillation in systems with more than one degree of
freedom.

1. We will write down the equations of motion for a system of particles moving under
general linear restoring forces without damping.

2. Next, we introduce matrices and matrix multiplication and show how they can be used
to simplify the description of the equations of motion derived in the previous section.

3. We will then use time translation invariance and find the irreducible solutions to the
equations of motion in matrix form. This will lead to the idea of “normal modes.” We
then show how to put the normal modes together to construct the general solution to
the equations of motion.

4. * We will introduce the idea of “normal coordinates” and show how they can be used
to automate the solution to the initial value problem.

5. * We will discuss damped forced oscillation in systems with many degrees of freedom.
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54 CHAPTER 3. NORMAL MODES

3.1 More than One Degree of Freedom

In general, the number of degrees of freedom of a system is the number of independent
coordinates required to specify the system’s configuration. The more degrees of freedom the
system has, the larger the number of independent ways that the system can move. The more
possible motions, you might think, the more complicated the system will be to analyze. In
fact, however, using the tools of linear algebra, we will see that we can deal with systems
with many degrees of freedom in a straightforward way.

3.1.1 Two Coupled Oscillators
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Figure 3.1: Two pendulums coupled by a spring.

Consider the system of two pendulums shown in figute The pendulums consist of
rigid rods pivoted at the top so they oscillate without friction in the plane of the paper. The
masses at the ends of the rods are coupled by a spring. We will consider the free motion of the
system, with no external forces other than gravity. This is a classic example of two “coupled
oscillators.” The spring that connects the two oscillators is the coupling. We will assume that
the spring in figur®.1is unstretched when the two pendulums are hanging straight down, as
shown. Then the equilibrium configuration is that shown in fiute This is an example
of a system with two degrees of freedom, because two quantities, the displacements of each
of the two blocks from equilibrium, are required to specify the configuration of the system.
For example, if the oscillations are small, we can specify the configuration by giving the
horizontal displacement of each of the two blocks from the equilibrium position.

Suppose that block 1 has mass, block 2 has mass., both pendulums have length
and the spring constant ig@reek letter kappa). Label the (small) horizontal displacements
of the blocks to the righty; andzo, as shown in figur@.2. We could have called these
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Figure 3.2: Two pendulums coupled by a spring displaced from their equilibrium positions.

masses and displacements anything, but it is very convenient to use the samexsyitbol,
different subscripts. We can then write Newton'’s l1&v= ma, in a compact and useful
form.
d2
mjﬁ:rj = Fj y (31)

for j = 1to 2, whereF] is the horizontal force on block 1 aid is the horizontal force
on block 2. Because there are two valueg, dB.1) is two equations one for; = 1 and
another forj; = 2. These are the two equations of motion for the system with two degrees
of freedom. We will often refer to all the masses, displacements or forces at engeras
or F;, respectively. For example, we will say tiatis the horizontal force on thih block.
This is an example of the use of “indiceg”i¢ an index) to simplify the description of a
system with more than one degree of freedom.

When the blocks move horizontally, they will move vertically as well, because the length
of the pendulums remains fixed. Because the vertical displacement is second ordeysin the

7
vi &5 (3.2)

we can ignore it in thinking about the spring. The spring stays approximately horizontal for
small oscillations.

To find the equation of motion for this system, we must find the fofGesn terms of
the displacements;;. It is the approximate linearity of the system that allows us to do this
in a useful way. The forces produced by the Hooke’s law spring, and the horizontal forces
on the pendulums due to the tension in the string (which in turn is due to gravity) are both
approximately linear functions of the displacements for small displacements. Furthermore,
the forces vanish when both the displacements vanish, because the system is in equilibrium.
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Thus each of the forces is some constant (different for each block)tinpiss some other
constant times. It is convenient to write this as follows:

Fy = —Knx — Kigve, Fp = —Kory — Koo, (3.3)
or more compactly,

2
Fj = — Z Kjka:k (34)
k=1

for j = 1to 2. We have written the four constantsias, K12, K21 and Koo in order to
write the force in this compact way. Later, we will call these constants the matrix elements
of the K'matrix. In this notation, the equations of motion are

d? :
My = = kz Kjkxy, (3.5)
-1

forj =1to 2.
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Figure 3.3: Two pendulums coupled by a spring with block 2 displaced from an equilibrium
position.

Because of the linearity of the system, we can find the consfaptspy considering
the displacements of the blocks one at a time. Then we find the total forcé3.4)ngor
example, suppose we displace block 2 with block 1 held fixed in its equilibrium position and
look at the forces on both blocks. This will allow us to comgie and K»,. The system
with block two displaced is shown in figuB2. The forces on the blocks are shown in
figure3.4,whereT} is the tension in thgth pendulum stringF» is the force on block 1 due
to the displacement of block Zy; is the force on block 2 due to the displacement of block 2.
For small displacements, the restoring force from the spring is nearly horizontal and equal to
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ka2 on block 1 and-xx5 on block 2. Likewise, in the limit of small displacement, the vertical
component of the force from the tensiBnnearly cancels the gravitational force on block 2,
mag, SO that the horizontal component of the tension gives a restoring-fosee,g/¢ on
block 2. For block 1, the force from the tensifnjust cancels the gravitational foree g.

Thus
magx2

F12 ~ KZ9, F22 ~ — — RZ2, (36)
and Mg
Ku%—lﬁ, K22%72+f£. (37)
An analogous argument shows that
m
Kglﬁ—,‘{, K11%719+I£. (38)
Notice that
Ko = Ko . (3.9)

We will see below that this is an example of a very general relation.
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Figure 3.4: The forces on the two blocks in ficBir&

3.1.2 Linearity and Normal Modes

Os1
We will see in this chapter that the most general possible motion of this system, and of any
such system of oscillators, can be decomposed into particularly simple solutions, in which all
the degrees of freedom oscillate with the same frequency. These simple solutions are called
“normal modes.” The displacements for the most general motion can be written as sums of
the simple solutions. We will study how this works in detail later, but it may be useful to see it
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first. A possible motion of the system of two coupled oscillators is animated in program 3-1.
Below the actual motion, we show the two simple motions into which the more complicated
motion can be decomposed. For this system, the normal mode with the lower frequency is
one in which the displacements of the two blocks are the same:

x1(t) = xo(t) = by cos(wit — 7). (3.10)
The other normal mode is one in which the displacements of the two blocks are opposite
x1(t) = —x2(t) = bo cos(wat — O2) . (3.11)

The sum of these two simple motions gives the much more complicated motion shown in
program 3-1.

3.1.3 n Coupled Oscillators

Before we try to solve the equations of motion, /(3.5), let us generalize the discussion to
systems with more degrees of freedom. Consider the oscillation of a systepaxicles
connected by various springs with no damping. Our analysis will be completely general, but
for simplicity, we will talk about the particles as if they are constrained to move in the
direction, so that we can measure the displacement gftthgarticle from equilibrium with
the coordinate:;. Then the equilibrium configuration is the one in which allatfeare all
zero.

Newton’s law,F' = ma, for the motion of the system gives

2, .
d°xz;

wherem; is the mass of thgth particle,F}; is the force on it. Because the system is linear,
we expect that we can write the force as follows (as in (3.4)):

Fj=-=> Kjay (3.13)
k=1

for j = 1ton. The constant- Ky, is the force per unit displacement of jile particle due
to a displacement;, of thekth particle. Note that all the;s vanish at equilibrium when all
thex;s are zero. Thus the equations of motion are

d*x;
m;j WQJ =— Z K, oy, (3.14)
k

forj = 1ton.
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To measureK;;,, make a small displacementy, of the kth particle, keeping all the
other particles fixed at zero, assumed to be an equilibrium position. Then measure the
force, F};, on the jth particle with only the kth particle displaced. Since the system is
linear (because it is made out of springs or in general, as long as the displacement is
small enough), the force is proportional to the displacement;;,. The ratio of F};, to z;,
is *Kjkl

K, = —Fji/x, when x, =0 for { #k. (3.15)
Note thatK;, is defined with a- sign, so that a positiv& is a force that is opposite to the
displacement, and therefore tends to return the system to equilibrium.

Because the system is linear, the total force due to an arbitrary displacement is the sum
of the contributions from each displacement. Thus

Fj=Y Fj=-> Kja. (3.16)
k k

Let us now try to understand (3.9). If we consider systems with no damping, the forces
can be derived from a potential energy,

Fj=—%—. (3.17)

But then by differentiating equation (3.16) we find that

A
k= 8xj8xk '

(3.18)

The partial differentiations commute with one another, thus equation (3.18) implies
K, = Ky;j . (3.19)

In words, the force on patrticledue to a displacement of partidlas equal to the force on
particlek due to the displacement of partigle

3.2 Matrices

It is very useful to rewrite equation (3.14) in a matrix notation. Because of the linearity of
the equations of motion for harmonic motion, it will be very useful to have the tools of linear
algebra at hand for our study of wave phenomena. If you haven't studied linear algebra (or
didn’t understand much of it) in math courde@N'T PANIC . We will start from scratch by
describing the properties of matrices and matrix multiplication. The important thing to keep
in mind is that matrices are nothing very deep or magical. They are just bookkeeping devices
designed to make your life easier when you deal with more than one equation at a time.



60 CHAPTER 3. NORMAL MODES

A matrix is a rectangular array of numbers. A M matrix hasN rows andM
columns. Matrices can be added and subtracted simply by adding and subtracting each of
the components. The difference comes in multiplication. It is very convenient to define
a multiplication law that defines the product of /six M matrix on the left with a\/ x L
matrix on the right (the order is important!) to beMr L matrix as follows:

Call the N x M matrix A and letA;; be the number in thg¢th row andkth column for
1 <j< Nandl <k < M. These individual components of the matrix are called matrix
elements. In terms of its matrix elements, the matrimoks like:

A A - A
A A oA
A= |72 TEo T (3.20)
Ayt An2 -+ Anwm
Call the M x L matrix B with matrix element®,,; for 1 <k < M andl <[ < L:
By B2 -+ DBig
B=| 7 77 2k (3.21)
Byi Bu2 - Bur
Call the N x L matrix C'with matrix elementg’;; for1 < j < N andl <1 < L.
Cn Cip -+ Cq
C = Cfl C,? N CfL (3.22)
Cn1 Cn2 -+ Cng
Then the matrixC is defined to be the product matdxB if
M
Cii=Y_ Ajx-Bu. (3.23)

k=1

Equation(3.23) is the algebraic statement of the “row-column” rule. To compute the
j¢ matrix element of the product matriX,B, take thejth row of the matrixA and thefth
column of the matrixB and form their dot-product (corresponding to the sum évier
(3.23)). This rule is illustrated below:

All Alk AlM By - Blﬁ .-+ By

Ajp - A - Ay By | Bw |-+ Bir

ANt - ANk - ANm By oo | Bme |-+ Bur
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Cll Clé CIL
— e el o | (3.24)
CNl CNK CNL

For example,

2 3 2 3 13

(0 1).(333):(0 | 3). 629

2 -1 2 -1 1
It is easy to check that the matrix product defined in this way is associdiBy(C =
A(BC). However, in general, it is not commutativéB # BA. In fact, if the matrices
are not square, the product in the opposite order may not even make any sense! The matrix
productAB only makes sense if the number of columnsia$ the same as the number of
rows of B. Beware!

Except for the fact that it is not commutative, matrix multiplication behaves very much

like ordinary multiplication. For example, there are “identity” matrices. VheVN identity
matrix, calledl, has zeros everywhere except for 1's down the diagonal. For example, the

3 x 3 identity matrix is
1 0 0
I=10 1 0]. (3.26)

0 0 1
The Nx N identity matrix satisfies

1A = Al = Aforany N x N matrix A;
IB = B for any N x M matrix B; (3.27)

C1 = C for any M x N matrix C.

We will be primarily concerned with “square” (thatsx N) matrices.

Matrices allow us to deal with many linear equations at the same time.

An N dimensional column vector can be regarded a& arl matrix. We will call this
object an NV-vector.” It should not be confused with a coordinate vector in three-dimensional
space. Likewise, we can think of &hdimensional row vector as axIV matrix. Matrix
multiplication can also describe the product of a matrix with a vector to give a vector. The
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particularly important case that we will need in order to analyze wave phenomena involves
square matrices. Consider Anx N matrix A multiplying anN-vector, X, to give another
N-vector,F. The square matrixd hasN? matrix elementsd;; for j andk =1toN. The
vectorsX and F each hav& matrix elements, just their componenfsand F; for j = 1 to
N. Then the matrix equation:

AX=F (3.28)

actually stands folN equations:
N
> Aj- Xp=F, (3.29)
k=1

for j=1 toN. In other words, these afé simultaneous linear equations for tNeX;'s. You

all know, from your studies of algebra how to solve forihés in terms of theF;’'s and the
Aji’s but it is very useful to do it in matrix notation. Sometimes, we can find the “inverse”
of the matrix4, A—!, which has the property

AA ' =A7A=T, (3.30)

where[ is the identity matrix discussed in (3.26) and (3.27). If we can find such a matrix,
then theN simultaneous linear equations, (3.29), have a unigue solution that we can write in
a very compact form. Multiply both sides of (3.29) Ay!. On the left-hand side, we can

use [(3.30) and (3.27) to get rid of the' A and write the solution as follows:

X=A'F, (3.31)

3.2.1 *Inverse and Determinant

We can computel—! in terms of the “determinant” ol. The determinant of the matrix
is a sum of products of the matrix elementslafith the following properties:

e There areV! terms in the sum;
e Each term in the sum is a productéfdifferent matrix elements;
¢ In each product, every row number and every column number appears exactly once;

e Every such product can be obtained from the product of the diagonal elements, - - - Ay n,
by a sequence of interchanges of the column labels. For exatpphe,; Ass - - Ann
involves one interchange whikg 2 Ax3A31 A44 - - - Axn requires two.

e The coefficient of a product in the determinant is +1 if it involves an even number of
interchanges and1 if it involves an odd number of interchanges.
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Thus the determinant of ax2 matrix, A is
det A = A1 A9 — A10A9 . (3.32)
The determinant of ax33 matrix, A is

det A = A1 Ago Ass + A1 A23As1 + A13 A2 Aso
—A11 A3 A3 — A13A20A31 — A12A21A33 .

(3.33)

Unless you are very unlucky, you will never have to compute the determinant of a matrix
larger tharB x 3 by hand. If you are so unlucky, it is best to use an inductive procedure that
builds it up from the determinants of smaller submatrices. We will discuss this procedure
below.

If det A = 0, the matrix has no inverse. It is not “invertible.” In this case, the simul-
taneous linear equations have either no solution at all, or an infinite number of solutions. If
det A # 0, the inverse matrix exists and is uniquely given by

1= defA (3.34)
whereA is the cofactomatrix defined by its matrix elements as follows:
(A)x = det A(jk) (3.35)
with
A(jk)y, =1ifm = jand = k;

(k)
A(jk)im = 0ifm = j and I# k;
A(jk)im = 0ifm # jand = k;

A(GK)im = Apn ifm # 7 andl # k.

In other words A(jk) is obtained from the matriX by replacing the:j matrix element by
1 and all other matrix elements in révor columnj by 0. Thus if

Ay | Ay | Al

A= || Ap - | A | Ay || (3.36)

Axr - | Anj |- Ann
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Ay |0 Ay
A(jk) = 0O ---|1|--- 0 . (3.37)
Any - 0 ANN

Note the sneaky interchangejof- k in this definition, compared td (3.23).
For example if

. (;1 g) (3.38)
then
A(ll):((l) (2)) A(12):(0 3) (3.39)
A(21):<(5) é A(22)=< ’
Thus,

A= ( 2 _3) (3.40)
and sincelet A =4-2—-5-3 = -7,

1 (=2/T 37
Al_(5/7 _4/7>. (3.41)

A~ satisfiesd A=! = A~ A = I wherel is the identity matrix:

I:(é ?) . (3.42)

In terms of the submatriced(jk), we can define the determinant inductively, as promised
above. In fact, the reason that (3.8@yks is that the determinant can be written as

N
det A=Y Ay det A(k1). (3.43)
k=1

Actually this is true for any row, not jugt= 1. The relation, (3.30) can be rewritten as
det A for j = 5’

N
> Ajpdet A(kj') = (3.44)
k=1 0 for j # j
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The determinants of the submatricés; A(k1), in (3.43)can, in turn, be computed by the

same procedure. The result is a definition of the determinant that refers to itself. However,
eventually, the process terminates because the matrices keep getting smaller and the determi-
nant can always be computed in this way. The only problem with this procedure is that it is
very tedious for a large matrix. For anx n matrix, you end up computing! terms and

adding them up. For large this is impractical. One of the nice features of the techniques
that we will discuss in the coming chapters is that we will be able to avoid such calculations.

3.2.2 More Useful Facts about Matrices

Suppose thatl andB are N x N matrices and is an Nvector.

1. If you know the inverses ol and B, you can find the inverse of the produdf3, by
multiplying the inverses in the reverse order:

(AB)"'=B"1A"L. (3.45)
2. The determinant of the produet3, is the product of the determinants:
det(AB) = det A det B, (3.46)
thus ifdet(AB) = 0, then eitherd or B has vanishing determinant.

3. A matrix multiplying a nonzero vector can give zero only if the determinant of the
matrix vanishes:
Av=0 = detA=0 or v=0. (3.47)

This is the statement, in matrix language, tNahomogeneous linear equations in
N unknowns can have a nontrivial solutian,# 0, only if the determinant of the
coefficients vanishes.

4. Similarly, if det A = 0, there exists a nonzero vectorthat is annihilated by:
det A=0 = Jv+#0 suchthatdv =0. (3.48)

This is the statement, in matrix language, tNatomogeneous linear equationsNn
unknownsactually do have a nontrivial solutiony # 0, if the determinant of the
coefficients vanishes.

5. The transpose of aN x M matrix A, denoted byd”', is theM x N matrix obtained by
reflecting the matrix about a diagonal line through the upper left-hand corner. Thus if
A A o Awg
A1 Agp - Aoy
A= : T : (3.49)

An1 An2 - Anm
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then
All A21 ANl
A A el oo A
AT | T e (3.50)
AIM A2M ANM

Note that if N # M, the shape of the matrix is changed by transposition. Only for
square matrices does the transpose give you back a matrix of the same kind. A square
matrix that is equal to its transpose is called a “symmetric” matrix.

3.2.3 Eigenvalue Equations

We will make extensive use of the concept of an “eigenvalue equation.” Roxan matrix,
R, the eigenvalue equation has the form:

Rc=hec, (3.51)

wherec is anonzero N-vector: andh is a number. The idea is to find both the number,
which is called the eigenvalue, and the vecatowhich is called the eigenvector. This is the
problem we discussed in chapter 1(1n78&)in connection with time translation invariance,
but now written in matrix form.

A couple of examples may be in order. SupposeRhata diagonal matrix, like

R= (3 (1)> . (3.52)

Then the eigenvalues are just the diagonal elements, 2 and 1, and the eigenvectors are vectors
in the coordinate directions,

R(é):Q(é), R((l)):l ((1)) (3.53)
A less obvious example is
R= (f ;) (3.54)

This time the eigenvalues are 3 and 1, and the eigenvectors are as shown below:

f)-s () 8 () (1) e

It may seem odd that in the eigenvalue equation, both the eigeavaltige eigenvector
are unknowns. The reason that it works is that for most valugstd equation(3.51),has

1¢ = 0 doesn't count, because the equation is satisfied trivially fohakiye are interested only in nontrivial
solutions.
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no solution. To see this, we wri(8.51) as a set of homogeneous linear equations for the
components of the eigenvector,

(R—hI)c=0. (3.56)

The set of equation$3.56),has nonzero solutions foronly if the determinant of the coef-
ficient matrix,R — hl, vanishes. But this will happen only féf values ofh, because the
condition

det (R—hI)=0 (3.57)

is anN'th order equation fok. For eachh that solveg3.57),we can find a solution far.?
We will give some examples of this procedure below.
3.2.4 The Matrix Equation of Motion

It is very useful to rewrite the equation of moti¢8,14),in a matrix notation. Define a
column vector, X', whosejth row (from the top) is the coordinate:

1
Z2
x=|"71. (3.58)

Ln

Define the K matrix”, annxn matrix that has the coefficie;;, in its jth row andkth
column:

K1 K2 -+ Kip
g | f B R (3.59)
Knl Kn? et Knn

Ky, is said to be thejk matrix element” of thed matrix. Because of equati¢8.19),the
matrix K is symmetrick = K.
Define the diagonal matrix/ with m; in the jth row andjth column and zeroes else-

where

my 0O -+ 0
0 mg -+ 0

M = : _— . . (3.60)
0 0 - my,

M is called the “mass matrix.”

2The situation is slightly more complicated when the solutions foe degenerate. We discuss thi(Sii17)
below.
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Using these definitions, we can rewrite (3.14) in matrix notation as follows:

d>X

M—=-KX. 3.61
There is nothing very fancy going on here. We have just used the matrix notation to get rid
of the summation sign in (3.14)fhe sum is now implicit in the matrix multiplication in
(3.61). This is useful because we can now use the properties of matrices and matrix multi-
plication discussed above to manipulate (3.61). For example, we can simplify (3.61) a bit by
multiplying on the left byl ~! to get

d*X

_ -1
o = MTKX. (3.62)

3.3 Normal Modes

If there is only one degree of freedom, then h&trand M/ ~! are just numbers and the
solutions to the equation of motion, (3.62), have the form of a constant amplitude times an
exponential factor. In fact, we saw that this form is related to a very general fact about the
physics — time translation invariance, (1..33). The arguments of chapter 1, [(1.71)-(1.85), did
not depend on the number of degrees of freedom. Thus they show that here again, we can
find irreducible solutions, that go into themselves up to an overall constant when the clocks
are reset. As in chapter 1, the first step is to allow the solutions to be complex. That is, we
replacel(3.62) by

d*z

dt?
whereZ is a complex: vector with components,;. The real parts of the componentsZof
are the components of a real solution satisfying (3.62),

=-M'K_Z, (3.63)

zj = Rez;. (3.64)
We will say that the real vectak], is the real part of the complex vectat,
X =ReZ, (3.65)

if (3.64) is satisfied.
Just as in chapter 1, we know that we can find irreducible solutions that have the same
form up to an overall constant when the clocks are ré&fetknow from [(1.85) that these
have the form
Z(t) = Ae Wt (3.66)

where A is some constant-vector and the angular frequeney;is still just a number. Now
ift —t+a, '
Z{t)— Z({t+a)=e""Z(t). (3.67)
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While the irreducible form/| (3.66), comes just from time translation invariance, we must
still look at the equations of motion to determine the vectaand the angular frequency,
w. Inserting|(3.66) intc (3.63), doing the differentiation and canceling the exponential factors
from both sides, we find that (3/66) is a solution if

WwWPA=M1T1KA. (3.68)

This matrix equation is an eigenvalue equation of the form that we discussed!in((3.51)-(3.57).
w? is the eigenvalue of the matrl¥ ! K and A is the corresponding eigenvector. Let us see
what it means physically.

The real part of the column vectdrspecifies the displacement of each of the degrees
of freedom of the system. The eigenvalue equation, /(3.68), does not involve any complex
numbers (because we have not put in any damping). Therefore (as we will see explicitly
below), we can choose the solutions so that all the componenAtaraf real. Then the real
part of the complex solutions we seek in (3.66) is

X (t) = Acoswt, (3.69)

or in terms of the components 4f

ai
A=|a2 |, (3.70)
x1(t) = aj coswt, x9(t) =agcoswt, etc. (3.71)

Not only does everything move with the same frequency, butaties of displacements

of the individual degrees of freedom are fixed. Everything oscillates in phase. The only
difference between the motion of the different degrees of freedom is their different amplitudes
from the different components df.

The point is worth repeating. Time translation invariance and linearity imply that we can
alwaysfind irreducible solutions| (3.67), in which all the degrees of freedom oscillate with
the same frequency. The extra piece of information that leads to (3.69) is dynamical. If there
is no damping, then all the componentsioan be chosen to be real, and all the degrees of
freedom oscillate not only with the same frequency, but also with the same phase.

If such a solution is to satisfy the equations of motion, then the acceleration must also
be proportional t4, so that the individual displacements don'’t get out of synch. But that is
what (3.68) is telling us— M~ K is the matrix that, acting on the displacement, gives the
acceleration. The eigenvalue equation (3.68) means that the acceleration is propottional to
again. The constant of proportionality?, is the return force per unit displacement per unit
mass for the particular displacement specifiediby
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We have already discussed the mathematical structure of the eigenvalue equation in
(3.51)-B.57). We will do it again, for emphasis, in the case of physical interest, (3.68).
It should be clear that not every valuebfindw? gives a solution of (3.68). We will solve
for the allowed values by first finding the possible values®aénd then finding the corre-
sponding values ofl. To find the eigenvalues, note that (3.68) can be rewritten as

{M’lK - oﬂf} A=0, (3.72)

wherel is then xn identity matrix. (3.72) is just a compact way of representifgmoge-
neous linear equations in thecomponents off where the coefficients depend oh. We

saw in (3.47) and (3.48) that for systems ¢fomogeneous linear equationsiininknowns,

a nonzero solution exists if and only if the determinant of the coefficient matrix vanishes.
The reason is that if the determinant were nonzero, then the midtrixk’ — w21, would

have an inverse, and we could use (3.31) to conclude that the only solution for theAsector,
is A= 0. Thus to have a nonzero amplitudie, we must have

det [M1K — wﬂ ~0. (3.73)

(3.73)is a polynomial equation for?. It is an equation of degresin w?, because the term in

the determinant from the product of all the diagonal elements of the matrix contains a piece
that goes a$w2]". All the coefficients in the polynomial are real. Physically, we expect
all the solutions fow? to be real and positive whenever the system is in stable equilibrium
because we expect such systems to oscillate. Mathematically, we can shotistettvays

real, so long as all the masses are positive. We will do this below in(3.127)-(3.130).

Negativew? are associated with unstable equilibrium. For example, consider a mass at
the end of a rigid rod, free to swing in the earth’s gravitational field in a vertical plane around
a frictionless pivot, as shown in figure 13.Bhe mass can move along the dotted line. The
stable equilibrium position is indicated by the solid line. The unstable equilibrium position
is indicated by the dashed line.

When the mass is at the unstable equilibrium point, the smallest disturbance will cause it
to fall. Once away from equilibrium, the displacement increases exponentially until the angle
from the vertical becomes so large that the nonlinearities in the equation of motion for this
system take over. We will discuss this nonlinear oscillator further in appendix B.

Once we have found the possible values,tf we can put each one back into (3.72)
to get the corresponding. Becausel (3.72) is homogeneous, the overall scalke isfnot
determinedbut all the ratios, a;/ay, are fixed for eachu?.

3.3.1 Normal Modes and Frequencies

The vector A is called the “normal mode” of the system associated with the frequency
w. Becaused is real, in the absence of friction, the complex solutions, /(3.66), can be put
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R

Figure 3.5: A mass on a rigid rod, free to swing in the earth’s gravity in a vertical plane.

together into real solutions, liK8.69). The general real solution is of the form

X(t)=Re [(b+ic)Z(t)] =

(3.74)
bA coswt+cAsinwt =dA cos(wt —0)

whereb andc (or d and ¢ are real numbers.

We can now construct the complete solution to the equation of motion. Because of lin-
earity, we get it by adding together all the normal mode solutions with arbitrary coefficients
that must be set by the initial conditions.

We can now see that the number of different normal modes is always equaht®
number of degrees of freedom. Label the normal models* asherea is a label that (we
will argue below) goes from 1 te. Label the corresponding frequencies Then the most
general possible motion of the system is a sum of all the normal modes,

Z(t) =) waA%e et (3.75)
a=1
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or in real form (withw = b + ic)

X(t) = Z [ba A% cos(wat) + co A% sin(wat)]
o=t (3.76)
=) daA%cos(wat — ba)

whereb, andc, (or d, andd,) are real numbers that must be determined from the initial
conditions of the systenNote that the set of all the normal mode vectors must be “com-

plete,” in the mathematical sense that any possible configuration of this system can be
described as a linear combination of normal mode®therwise, we could not satisfy arbi-

trary initial conditions with the solution, (3/76). This can be proved mathematically (because
the matrix, K, is symmetric and the masses are positive), but the physical argument will
be enough for us here. Likewise no normal mode can possibly be a linear combination of
the other normal modes, because each corresponds to an independent possible motion of the
physical system with its own frequency. The mathematical way of saying this is that the set
of all the normal modes is “linearly independent.”

Because the set of normal modes must be both complete and linearly in-
dependent, there must be preciselyormal modes, where againjs the (3.77)
number of degrees of freedom.

If there were fewer than normal modes, they could not possibly describe all possible
configurations of the: degrees of freedom. If there were more tharthey could not be
linearly independent dimensional vectors. At least one of them could be written as a linear
combination of the others. As we will see later, (3.77) is the physical principle behind Fourier
analysis.

It is worth noting that solving the eigenvalue equation, (3.68), gets hard very rapidly as
the number of degrees of freedom increases. First you have to compute the determinant of
ann x n matrix. If all the entries are nonzero, this requires adding!dprms. Once you
have finished that, you still have to solve a polynomial equation of degfe®n > 3, this
cannot be done analytically except in special cases.

On the other hand, it is always straightforward to check whether a given vector is an
eigenvector of a given matrix and, if so, to compute the eigenvalue. We will use this fact in
the problems at the end of the chapter.

3.3.2 Back to the 2x2 Example

Let us return to the example from the beginning of this chapter in the special case where the
two pendulum blocks have the same mass= ms = m. Simple as it is, this will be a very
important system for our understanding of wave phenomena. Let us see how the techniques
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that we have developed allow us to solve for the allowed frequencies and the corresponding
A vectors, the normal modes. Fram (3.7) and (3.8)Athmatrix has the form

o (mg/_{:—:‘i mg/—g/:_/{) ' (3.78)

The M matrix is

0 m

M:(m 0) : (3.79)
Thus from[(3.78) and (3.79),

1, (9/l+K/m  —K/m
M 1K_<g i g/£+,<,/m>' (3.80)

The matrixM 'K — w2l is

Y —
MUK — W = (g/g +—Z//ng © g/£+§//$— WQ) . (3.81)

To find the eigenvalues af —! K, we form the determinant

K/m — w? —Kk/m
det[M 'K — wI] = det [(g/f +—f<c//m g/t + /f//m W2 ﬂ
= (9/t+ K/m —w?)* — (k/m)? (3.82)

= (W = g/O)(W* — g/t —2r/m) = 0.
Thus the angular frequencies of the normal modes are
wi=g/l, wi=g/l+2x/m. (3.83)

To find the corresponding normal modes, we substitute these frequencies back into the
eigenvalue equation. Faf, the normal mode vectad!,

Al = (“%> (3.84)
=) ,
2
satisfies the matrix equation
(MK —WifA = 0. (3.85)
From (3.81) anc (3.83),
MK —w2r = (B (3.86)
1 —Kk/m  K/m
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Thus (3.85becomes

< Kk/m —ﬁ/m) <a%)_0

—k/m  K/m a (3.87)
1_ 1

_ K[ a1—ay 1_ 1

T m (—a%—i—a%) = ap =0y

We can take] = 1 because we can multiply the normal mode vector by any number we like.
Only the ratioa{ /a} matters. So, for example, we can take

Al = G) . (3.88)

This gives(3.10). The displacement in this normal mode is shown in fi§ute

1199999999

Figure 3.6: The displacement in the normal motle,

Forw3, the normal mode vectad?,
2 ai
A= (1), (3.89)
2

satisfies the matrix equation (where the identity matrix multiplyiigs understood)

[MT'K —w3]A% = 0. (3.90)

31t is tiresome writing the identity matrix, everywhere. It is not really necessary because you can always
tell from the context whether it belongs there or not. From now on, we will often leave it out. Thus, if you see
something that looks like a number in a matrix equation, like-th& in (3.90),you should mentally include a
factor ofI.
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This time, (3.81and (3.83pive

. ([ —Kk/m —kK/m
MK —wi = (_H/m _R/m) : (3.91)

Thus (3.90becomes

<—/<;/m —ﬁ/m) (a%)
2 ) =0
—Kk/m 2 —/{/2m as (3.92)
K (af +a
Again, only the rati@? /a3 matters, so we can take
A% = (_11> . (3.93)

This gives(3.11). The displacement in this normal mode is shown in figure

Figure 3.7: The displacement in the normal motfe,

The physics of these modes is easy to understand. In mode 1, the blocks move together
and the spring is never stretched from its equilibrium position. Thus the frequency; j¢just
the same as an uncoupled pendulum. In mode 2, the blocks are moving in opposite directions,
so the spring is stretched by twice the displacement of each block. Thus there is an additional
restoring force ofx, and the square of the angular frequency is correspondingly larger.

3.3.3 n=2 —the General Case

Let us work out explicitly the case of= 2 for an arbitraryX’ matrix,

1 [ Kii/mi Kig/my
M K_<K12/m2 Kon/ms ) (3.94)
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where we have usdd,; = K15. Then|(3.73) becomes

K11 Kgs — K2 Ky K
(Kl =B _(Kun | B o, (2.95)
mimeo mi ma
with solutions
1 /K, K 1 /K  Kp\? K2
w2:(“+22>j: ( o 22) + 2 (3.96)
2\m mo 4\ my mo myma

For eachw?, we can take; = 1. Then

mi w2 — Kll
Ko

As we anticipated, the eigenvectors turned out to be real. This a general consequence of
the reality of M/ ~'K andw?. The argument is worth repeating. When all the elements of
the matrix\/ ~' K — w?I are real, the ratiosy;/a;, are real (because they are obtained by
solving a set of simultaneous linear equations with real coefficients). Thus if we choose one
component of the vectot to be real (multiplying, if necessary, by a complex number), then
all the components will be real. Physically, this means that for the solution, (3.66), all the
different parts of the system are oscillating not only with the same frequency, but with the
same phase up to a sign. This is true only because we have ignored damping. We will return
to the question in the last section (an optional section that is not for the fainthearted).

(3.97)

ag =

3.3.4 The Initial Value Problem

Once you have solved for the normal modes and corresponding frequencies, it is straightfor
ward to put them together into the most general solution to the equations of motion for the
set of NV coupled oscillators| (3.76). Itis

X(t) = Z (ba A% coswat + co A% sinwyt) . (3.98)

[0}

The 2N constant$,, andc, are determined by the initial conditions. Theare related to
the initial displacementsy (0):

X(0) =) baA”. (3.99)

In words,b,, is the coefficient of the normal modg' in the initial displacemenk (0). The

c,, are related to the initial velocitie% ‘t*O:

dX (t)
dt

=3 Cawad®. (3.100)
t=0 .
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The equations/ (3.99) and (3.100), are two sets of simultaneous linear equationgfor the
andc,. They can be solved by hand. This is easy enough for a small number of degrees of
freedom. We will see in the next section that we can also get the solutions directly with very
little additional work by manipulating the normal modes.

Meanwhile, we should pause again to consider the physics of (3T188&.shows ex-
plicitly how the most general motion of the system can be decomposed into the simple mo-
tions associated with the normal modes. It is worth staring at an example (real, animated or
preferably both) at this point. Try to construct the system in figureAhg.two identical
oscillators with a relatively weak spring connecting them will do. Convince yourself that the
normal modes exist. If you start the system oscillating with the blocks moving the same way
with the same amplitude, they will stay that way. If you get them started moving in opposite
directions with the same amplitude, they will continue doing that. Now set up a random mo-
tion. See if you can understand how to take it apart into normal modes. It may help to stare
again at program 3-1 on the program disk, in which this is done explicitly. In this animation,
you see the two blocks of figure 3.1 and below, the two normal modes that must be added to
produce the full solution.

3.4 * Normal Coordinates and Initial Values

There is another way of looking at the solutions of (3.14). We can find linear combinations
of the original coordinates that oscillate only with a single frequency, no matter what else is
going on. This construction is also useful. It allows us to use the form of the normal modes
to simplify the solution to the initial value problem.

To see how this works, let us return to the simple example of two identical pendulums,
(3.78)-B.93). The most general possible motion of this system looks like

X(t) = bA cos(wit — 01) + cA% cos(wat — 6), (3.101)
or, using|(3.88) and (3.93)

z1(t) = beos(wit — 61) + ccos(wat — b2) , (3.102)
x9(t) = beos(wit — 01) — ccos(wat — 62) .

The motion of each block is nonharmonic, involving two different frequencies and four con-
stants that must be determined by solving the initial value problem for both blocks.
But consider the linear combination

X1(t) = z1(t) + 2o(t) . (3.103)
In this combination, all dependence ©and 6 goes away,

X1(t) = 2bcos(wit — 6). (3.104)
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This combination oscillates with the single frequengy,and depends on only two constants,
b andf;, no matter what the initial conditions are. Likewise,

X2(t) = x1(t) — x2(t) (3.105)
oscillates with the frequenaysg,
X2(t) = 2ccos(wyt — ). (3.106)

X' and X? are called “normal coordinates.” We can just as well describe the motion
of the system in terms of! and X2 as in terms of;; andz,. We can go back and forth
using the definitions| (3.103) and (3.105). Whileandz- are more natural from the point
of view of the physical setup of the system, figure X1,and X? are more convenient for
understanding the solution. As we will see below, by going back and forth from physical
coordinates to normal coordinates, we can simplify the analysis of the initial value problem.

It turns out that it is possible to construct normal coordinates for any system of normal
modes. Consider a normal modé corresponding to a frequency,. Construct the row
vector

B = A°T M (3.107)

whereA®T is the transpose of®, a row vector withu$ in the jth column.
The row vectorB® is also an eigenvector of the matix—' K, but this time from the
left. That is

B“M™'K = w2 B*. (3.108)
To derive [(3.108), note that (3/68) can be transposed to give
AT K ML =2 AeT (3.109)

because\/ ! and K are both symmetric (see (3.18) and notice that the ordeirdfand K’
are reversed by the transposition). Then

BM'K = A*TMM'K = A°TKM~'M (3.110)
= w2ATM = W2 Be. (3.111)

Given a row vector satisfying (3.108), we can form the linear combination of coordinates
X*=B*-X=> blz;. (3.112)

J
ThenX“ is the normal coordinate that oscillates with angular frequepdyecause

d? X d*X _

g =B 5 =-B'M KX = —w?B® - X = —w2Xx°. (3.113)
Thus each normal coordinate behaves just like the coordinate in a system with only one
degree of freedonrhe B vectors from which the normal coordinates are constructed
carry the same amount of information as the normal modes. Indeed, we can go back

and forth using (3.107).



3.4. * NORMAL COORDINATES AND INITIAL VALUES 79

3.4.1 More on the Initial Value Problem

Here we show how to use normal modes and normal coordinates to simplify the solution of
the initial value problem for systems of coupled oscillators. At the same time, we can use
our physical insight to learn something about the mathematics of the eigenvalue problem. We
would like to find the constantg @ndc, determined by (3.99) and (3.100) without actually
solving these linear equations. Indeed there is an easy way. We can make use of the special
properties of the normal coordinates. Consider the combination

BB A~ (3.114)

This combination is just a number, because it is a row vector times a column vector on the
right. We know, from[(3.112), that® = BAX is the normal coordinate that oscillates with
frequencywg, that is:

BP X (t) oc st (3.115)

On the other hand, the only terms|in (3.98) that oscillate with this frequency are those for
whichw, = wg. Thus ifws is not equal to,, thenB” A* must vanish to give consistency
with (3.115).

If the system has two or more normal modes with differendectors, but the same
frequency, we cannot use (3.115) to distinguish them. In this situation, we say that the modes
are “degenerate.” Suppose thtand £ are two different modes with the same frequency,

M1IKA'=w?AY, MK A?=0%A%. (3.116)

Because the eigenvalues are the same, any linear combination of the two mode vectors is still
a normal mode with the same frequency,

MK (51A1 4 ﬂ2A2) =2 (51A1 T ﬂQAZ) , (3.117)

for any constantsj; and ..
Now if AT'M A2 +# 0, we can use (3.117) to choose a n&has follows:

AT N A2
2 2 1
A% — A — T AT A (3.118)
This new normal mode satisfies
AT M A% =0. (3.119)

The construction iri (3.118) can be extended to any number of normal modes of the same
frequency. Thus even if we have several normal modes with the same frequency, we can still
use the linearity of the system to choose the normal modes to satisfy

BPAY = AP MAY = 0for B+ a. (3.120)
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We will almost always assume that we have done this.
We can use (3.120) to simplify the initial value problem. Consider!(3.99). If we multiply
this vector equation on both sides by the row veBtrwe get

BPX(0) =B b, A" = b,BA* =3B AP . (3.121)

where the last step follows because of (3.120), which implies that the sum omlsrcon-
tributes fora = 3. Thus we can calculatg directly from the normal modes ad(0),

_ B*X(0)

bo = — . 3.122
To Aa (3.122)

Similarly
1 o dX (1)
B>A« dt  |i—o
The point is that we have already solved simultaneous linear equations like (3.99) in
finding the eigenvectors af/ 'K so it is not necessary to do it again in solving tfer
andc,. Physically, we know that the normal coordinai€ must be proportional to the
coefficient of the normal mod&® in the motion. The precise statement of this is (3.122).

(3.123)

WaCa =

3.4.2 * Matrices from Vectors

We can also use (3.120) and the physical requirement of linear independence of the normal
modes to writel/ ~! K and the identity matrix in terms of the normal modes.

First consider the identity matrix. One can think of the identity matrix as a machine that
takes any vector and returns the same ved&at, using (3.120), we can construct such a
machine out of the normal modes. Consider the matrix H, defined as follows:

(0% «
H = Za: ’;aia . (3.124)

Note thatH is a matrix becausd®B“ in the numerator is the product of a column vector
times a row vectoon the right, rather than on the left. If we |&f act on one of the normal
mode vectorsA?, and use!(3.120), it is easy to see that only the term 3 in the sum
contributes and? - A° = AP. But because the normal modes are a complete s¥t of
linearly independent vectors, that implies that V' = V for any vector). ThusH is the
identity matrix,

H=1I. (3.125)

We can use this form faf to get an expression fav/~!K in terms of a sum over
normal modes. Consider the prodiét ' K - H = M~ K, and use the eigenvalue condition
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M~1K A% = w2 A to obtain

2 A B
MK =322 3.126
> (3.126)

In mathematical language, what is going on in (3.124)/and (3.126) is a change of the basis
in which we describe the matrices acting on our vector space from the original basis of some
obvious set of independent displacements of the degrees of freedom to the less obvious but
more useful basis of the normal modes.

3.4.3 * w?is Real

We can use (3.120) to show that all the eigenvalues dffthel are real. This is a particular
example of an important general mathematical theorem. You will use it frequently when you
study quantum mechanics. To prove it, let us assume the contrary and derive a contradiction.
If w? is a complex eigenvalue with eigenvectdr,then the complex conjugate?™, is also

an eigenvalue with eigenvecter:. This must be so because fe ! K matrix is real, which

implies that we can take the complex conjugate of the eigenvalue equation,

M1'KA=uw?A, (3.127)

to obtain
MK A* = w*" A, (3.128)

Then ifw? is complexw? and «#* are different and (3.120) implies
ATpma=0. (3.129)

But (3.129) is impossible unlegs= 0 or at least one of the masseslinis negative. To see
this, let us expand it in the componentsiof

A*TMA = Z a;mjaj = Z mj|aj|2 . (3130)
7=1 7=1

Each of the terms in (3.130) is positive or zeftws the only solutions of the eigenvalue
equation,(3.127), for complex’ are the trivial ones in whicd = 0 on both sides. All the
normal modes have reaf.

Thus there are only three possibilities? > 0 corresponds to stable equilibrium and
harmonic oscillationw? < 0, in which casev is pure imaginary, occurs when the equilibrium
is unstablew? = 0 is the situation in which the equilibrium is neutral and we can deform the
system with no restoring force.
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3.5 * Forced Oscillations and Resonance

One of the advantages of the matrix formalism that we have introduced is that in matrix
language we can take over the above discussion of forced oscillation and resonance in chapter
2 almost unchanged to systems with more than one degree of fredtosimply have to

replace numbers by appropriate vectors and matricedn particular, the forcé’(¢) in the

equation of motion, (2.2), becomes a vector that describes the force on each of the degrees
of freedom in the system. The only restriction here is that the frequency of oscillation is the
same for each component of the force. THen the equation of motion| (2.2), becomes

the matrix M/ ' K. The frictional terml’ becomes a matrix. In terms of the maffrixthe

frictional force vector isM/T'dZ/dt (compare((2/1)). Then we can look for an irreducible,
steady state solution to the equation of motion of the form

Z(t) = We ™t (3.131)
whereWW is a constant vector, which yields the matrix equation
[—w2 —iTw + M—lK} W=M"F,. (3.132)
Formally, we can solve this by multiplying by the inverse matrix
-1 2 17t
W = [M K—w —zrw} M™E,. (3.133)

If I" were zero in the matrix
[—w2 —iTw + M—IK} : (3.134)

then we know that the inverse matrix would not exist for any value adrresponding to
a free oscillation frequency of the system, because the determinant of the ' K — w3
matrix is zero. The amplitudé” would go tooco in this limit, in the direction of the normal
mode associated with the driving frequency, so long as the driving force has a component
in the normal mode directionFor w close towy, if there is no damping, the response
amplitude is very large, proportional to 1/(w3 — w?), almost in the direction of the
normal mode. However, in the presence of damping, the response amplitude does not go to
oo even forw = wy, because thd w term is still nonvanishing.

We can see all this explicitly if the damping matriis proportional to the identity matrix,

T=~1. (3.135)

Then we can usé (3.124)-(3.126) to wiifd "' K — w? — iTw] as a sum over the normal
modes, as follows:

A“B¢
BaAa

MK —w? - iFw} = Z (wi —w? — i’yw)

(3.136)

«
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Then the inverse matrix can be constructed in a similar way, just by inverting the factor in the
numerator:

-1 2 . 17h 2 o . \TLA"B®
MTK —w? —ilw| = }a: (w2 - w? = irw) e (3.137)
Using (3.137), we can rewrite (3.133) as
A% BM~'Fy
= A
W za: w2 —w? —iyw  BYA (3.138)

This has a simple interpretation. The second factor on the right hand side of (3.138) is the
coefficient of the normal modé&~ in the driving term/—! Fy. This coefficient is multiplied
by the complex number
1
{22} , (3.139)
Wi — w® —1yw
which is exactly analogous to the factoriin (2.21) in the one dimensional case. Thud jf
then, for each normal mode, the forced oscillation works just as it does for one degree of free-
dom. IfI" is not proportional to the identity matrix, the formulas are a bit more complicated,
but the physics is qualitatively the same.

3.5.1 Example

We will illustrate these considerations with our favorite example, the system of two identical
coupled oscillators, witd/ —! K matrix given by/(3.80). We will imagine that the system is
sitting in a viscous fluid that gives a uniform dampihg- ~I, and that there is a periodic
force that acts twice as strongly on block 1 as on block 2 (for example, we might give the
blocks electric chargey andg and subject them to a periodic electric field), so that the force
is

F(t)= (i) focoswt = Re [(?) foe_i“t} . (3.140)
Thus
MF, = (2> fo. (3.141)
1/ m
Now to usel(3.133), we need only invert the matrix
-1 2 . g—i-ﬁ—wQ—z"yw —£
MK —w —zrw]:<£ mo gk My ) (3.142)
— 7t 5w —nw
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This is simple enough to do by hand. We will do that first, and then compare the result with
(3.137). The determinant is

2 2
¢t m m (3.143)

Z(‘Z%—Qﬁ—w2—i’yw>'<‘z—w2—i7w).
m

Applying (3.34), we find

(MK —w? —iTw] ™!

_ 1 (3.144)
(2428 —w? —iw) (4 —w? —iw)
(#r R f)
£ g4+ L —w?—iyw

If we isolate the contribution of the two zeros in the denominator of (3.144), we can write

(MK —w? —iTw] !

N =

1 11 (3.145)
(§ —w? —iw) (1 1>
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which is just/(3.137), as promised. Now substituting into (3.133), we find

(3.146)

from which we can read off the final result:

o coswt + 1 sin wt) (3.147)

_ —twt) __
X(t) = Re (We ) o (042 cos wt + P sin wt

where

(% - w2)2 + ('YW)Q m (3.148)

and

(4 —w?)’ + ()’ m (3.149)
2(4+22 - w2)’ + ()’ m

The power expended by the external force is the sum over all the degrees of freedom of
the force times the velocity. In matrix language, this can be written as

P(t)=F(t)T- ‘U;E” . (3.150)
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The average power lost to the frictional force comes fromditast term in (3.1508mnd is

_ 1 9w f§
(7 —w?) 4 ()™ Am (3.151)
1 w3

2 4Am

NCRETEro e
Figure3.8 shows a graph of this (for/m = 3g/2¢ andy? = g/4¢). There are two
things to observe about figuB8. First note the two resonance peakswht= ¢/¢ and
w? = g/l + 2k/m = 4g/¢. Secondly, note that the first peak is much more pronounced that
the second. That is because the force is more in the direction of the normal mode with the
lower frequency, thus it is more efficient in exciting this mode.

0 g/t 2y/g/t
—

w

Figure 3.8: The average power lost to friction in the exampBeld0.

Chapter Checklist
You should now be able to:

1. Write down the equations of motion for a system with more than one degree of freedom
in matrix form;

2. Find theM and Kmatrices from the physics;

3. Add, subtract and multiply matrices;
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4. Find the determinant and inverse of2and 3«3 matrices;

5. Find normal modes and corresponding frequencies of a system with two degrees of
freedom, which means finding the eigenvectors and eigenvalues<@f matrix;

6. Check whether a given vector is a normal mode of a system with more than two degrees
of freedom, and if so, find the corresponding angular frequency;

7. Given the normal modes and corresponding frequencies and the initial positions and
velocities of all the parts in any system, find the motion of all the parts at all subsequent
times;

8. * Go back and forth from normal modes to normal coordinates;
9. * Reconstruct thé/ —1 K matrix from the normal modes and normal coordinates:;

10. * Explicitly solve for the free oscillations of system with two degrees of freedom with
damping and be able to analyze systems with three or more degrees of freedom if you
are given the eigenvectors;

11. * Explicitly solve forced oscillation problems with or without damping for systems
with three or fewer degrees of freedom.

Problems

3.1 The 3 component column vectot, the3 component row vectoB and the3 x 3
matrix C' are defined as follows:

0 1 1 1
A:(z), B=(3 -2 1), C:(O —2 1).
1 2 2 0

Compute the following objects:
BA, BC, AB.
3.2 Consider the vertical oscillation of the system of springs and masses shown below

with the spring constant& 4 = 78, Ky = 15 and K¢ = 6 (all dynes/cm). Find the normal
modes, normal coordinates and associated angular frequencies. If the 1 g. block is displaced
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