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In the Taylor series:
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Original dispersion relation:
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From the fact that a << 27 /k = ka is very small.
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The last equation is known as the “wave equation.” We get an infinite number of coupled equations
of motion. Come back to the original question: What are the normal modes?

() = A(z)B(t)

We separate 1(x,t) into a function that controls the time evolution and a different function that
controls the amplitude. Plugging our new 1 into the wave equation:
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This equation must be satisfied for all  and ¢ and so both sides must be equal to a constant. (If
this is unfamiliar, think about varying x without varying t; the only way the two sides stay equal
is if they are constant.) Now we have:
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Solving the left hand side first:
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= B(t) = By, sin(wpt + fm)
Where wy,, = vpky,. Moving to the right hand side:
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=  A(t) = Cpysin(kmx + am)

We now have an expression for the mth normal mode:
Ym(x,t) = Ay sin(wpt + By sin(kpmx + auy)

wWm = Vpky, is decided by the properties of the string. The two unknowns, o, and k,,, are decided
by the boundary conditions. A,,, 3, are decided by the initial conditions. (Shown later).

*Look at the structure of this normal mode solution. Let’s stop and think about what we have
learned:

(1) Each point mass on the string is oscillating harmonically (only up and down; not in the horizontal
direction!) at the same frequency and phase!

(2) Their relative amplitude: sine function! (The same as the discrete system)

Need to determine the unknown coefficients step by step. Let’s take a concrete example: suppose
we have a string, one end is fixed and the other end is open.
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Boundary conditions:

(1) =0 = ¥(0,t)=0
o

(@) a=L = Z-(LH)=0

If % # 0 then there is a net force (the tension does not cancel with the normal force).

What are the normal modes?

(1) = ¥m(0,t) = Ay, sin(ag,) sin(wmt + Bm) =0

= a, =0
O, .
2 = o Ak sin(wmt 4 B cos(kmx + aum)
Atz =1"L: 81/}";)(;’ 2 =0 = Ak sin(wpt + B cos(Kp, L)
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For the first mode, m = 1:
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The second mode, m = 2:
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The third mode, m = 3:
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The general solution:

P(x,t) = i Ay sin(wit + B sin(kpz + auy)

m=1



From the boundary conditions:
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b(x,t) = mZ—1 Ap sin [(2m2—Ll)v7rt + 5m] sin {(2”1221)%90—1-}

How do we extract A,, and (3,7

Initial conditions: (a) v(z,0) =0 and (b) ¥ (x,0) is known.
From (a) we get:

Suppose at t = 0 the string looks like this. Also,
the string is at rest.

(x,t) = i Amwm cos(wmt + Bm) sin(kmz + am)
m=1
V(x,t) =0= B = g = Y(x,0) = miojl A, sin ((2m221)77$>

(b) How do I extract A,, from the given ¢ (z,0)? Use the “orthogonality” of the sine functions:
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We can extract A, by:

In this example:

Where

L - _
§1fm—n

Oifm#n )

Ap = E/OL Y(x,0)sin(kpyx)dx

N
3

hsin(kp,x)dx

o
N =~

|
>

N N

L
{cos(kmL) - cos(kmg)

?A
3

(2m — 1)m
o = T
2L



MIT OpenCourseWare
https://ocw.mit.edu

8.03SC Physics lll: Vibrations and Waves
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.



https://ocw.mit.edu/terms
https://ocw.mit.edu

	cover.pdf
	EndSheet_Vertical.pdf
	Blank Page





