
   
 

                 
              

         

Massachusetts Institute of Technology 
Physics 8.03 Fall 2016 

Exam 2 

Instructions 

Please write your solutions in the white booklets. We will not grade anything written on the exam 
copy. This exam is closed book. No electronic equipment is allowed. All phones, blackberry, 
blueberry, raspberry Pi, tablets, computers etc. must be switched off. 
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Formula Sheet Exam 2 

Springs and masses: 
d2 d 

m x(t) + b x(t) + kx(t) = F (t)
dt2 dt 

More general differential equation with harmonic driving force: 

d2 d F0 
x(t) + Γ x(t) + ω0

2 x(t) = cos (ωdt)
dt2 dt m 

Steady state solutions: 
xs(t) = A cos (ωdt − δ) 

where 
F0 

A =  m

(ω0
2 − ωd

2)2 + ωd
2Γ2 

and 

Γωd 
tan δ = 

ω2 − ω2 
0 d 

General solutions:
 
For Γ = 0 (undamped system):
 

x(t) = R cos (ω0t + θ) + xs(t) 

where R and θ are unknown coefficients. 
For Γ < 2ω0 (under damped system): 

Γ2 

x(t) = Re− 2
Γ t cos ω0

2 − t + θ + xs(t)
4
 

where R and θ are unknown coefficients. 
For Γ = 2ω0 (critically damped system): 

2
Γ− t x(t) = (R1 + R2t)e + xs(t) 

where R1 and R2 are unknown coefficients. 
For Γ > 2ω0 (over damped system): 

Γ2 Γ2Γ Γ2
0 

2
0− −ω t − − −ω+ t

2 4 2 4x(t) = R1e + R2e + xs(t) 

where R1 and R2 are unknown coefficients. 
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Coupled oscillators
 

nn 
Fj = − Kjkxk 

k=1 

Examples for n = 2   
x1(t)X (t) =
x2(t)  

K11 K12K =
K21 K22  
m1 0 M =
0 m2

Matrix equation of motion, matrices M, K, I are n × n, vectors X , Z are n × 1. 

d2 

X (t) = −M−1KX (t)
dt2 

Z(t) = Ae −iωt 

(M−1K − ω2I)A = 0 

To obtain the frequencies of normal modes solve: 

det(M−1K − ω2I) = 0 

For n = 2   

M11 M12
det = M11M22 − M12M21M21 M22

If the system is driven by force one can find the response amplitudes C(ωd) 

−iωdtF(t) = F0e 

−iωdtW(t) = C(ωd)e   
c1(ωd)C(ωd) = c2(ωd)

(M−1K − ωd
2I)C(ωd) = F0 

3 



  
  
  

solving the equation above one can find the response amplitudies for the first (c1(ωd)) and 
second (c2(ωd)) objects in the system. 

Reflection symmetry matrix: 

0 −1 S = −1 0 

Eigenvalues (β) and eigenvectors (A) of this 2 × 2 S matrix:
 
1
 

(1) β = −1, A = 
1
 
1
 

(2) β = 1, A = −1
 
1D infinite coupled system which satisfy space translation symmetry:
 
Given a eigenvalue β, the corresponding eigenvector is
 

Aj = βj A0 

where
 
Aj (A0)
 

is the normal amplitude of jth(0th) object in the system. 
Consider an one dimentional system which consists infinite number of masses coupled by springs, 

β can be written as β = eika where k is the wave number and a is the distance between the masses. 
Kirchoff’s Laws (be careful about the signs!) n n 

Node : Ii = 0 Loop : ΔVi = 0 
i i 

Q dI dQ
Capacitors : ΔV = Inductors : ΔV = −L Current : I = 

C dt dt 
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Trigonometric equalities:
 

sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b) 

cos(a ± b) = cos(a) cos(b) = sin(a) sin(b)     
a + b a − b 

sin(a) + sin(b) = 2 sin cos
2 2    

a + b a − b 
sin(a) − sin(b) = 2 cos sin

2 2    
a + b a − b 

cos(a) + cos(b) = 2 cos cos
2 2    
a + b a − b 

cos(a) − cos(b) = −2 sin sin
2 2

Integrals involving sin and cos:   L     2 nπx mπx 1, if n = m. 
sin sin dx =

L 0 L L 0, otherwise.   L     2 nπx mπx 1, if n = m. 
cos cos dx =

L 0 L L 0, otherwise.  L     2 nπx mπx 
cos sin dx = 0

L L L0  
x sin(x)dx = sin(x) − x cos(x) + C 
x cos(x)dx = cos(x) + x sin(x) + C 
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Maxwell Equations in vacuum
 

∂Ey ∂Ex ∂Bz ∂Ez ∂Ey ∂Bx ∂Ex ∂Ez ∂By− = − ; − = − ; − = − 
∂x ∂y ∂t ∂y ∂z ∂t ∂z ∂x ∂t 

∂By ∂Bx ∂Ez ∂Bz ∂By ∂Ex ∂Bx ∂Bz ∂Ey− = µ0c0 ; − = µ0c0 ; − = µ0c0
∂x ∂y ∂t ∂y ∂z ∂t ∂z ∂x ∂t 

∂Ex ∂Ey ∂Ez ∂Bx ∂By ∂Bz 
+ + = 0 ; + + = 0 

∂x ∂y ∂z ∂x ∂y ∂z 

Wave equation for EM fields in vacuum 

∂2Ei ∂2Ei ∂2Ei 1 ∂2Ei 
+ + = where i = x, y, z 

∂x2 ∂y2 ∂z2 c2 ∂t2 

∂2Bi ∂2Bi ∂2Bi 1 ∂2Bi 
+ + = 

2 
where i = x, y, z 

∂x2 ∂y2 ∂z2 c ∂t2 

For EM plane waves in vacuum: 

1 
B( ((r, t) = k̂ × E( ((r, t) 

c 

E( ((r, t) = cB( ((r, t) × k̂

Linear energy density in a string with tension T and mass density ρL 

dK 1 ∂y 2 
dU 1 ∂y 2 

= ρL = T 
dx 2 ∂t dx 2 ∂x 

EM energy per unit volume and Poynting vector: 

1 1 1 
UE = c0E(

2 UB = B( 2 S( = E( × B(
2 2µ0 µ0 

Transmission and reflection 

z1 − z2 2z1
R = T = 

z2 + z1 z2 + z1 

Phase velocity and impedance: 

T 
v = Z = TρL (string) 

ρL 

1 L 
v = Z = (transmission line) 

LC C 
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Snell’s law 

n1 sin θ1 = n2 sin θ2 

Fourier transform 

∞ 
−iωt f(t) = dωC(ω)e 

−∞ 

∞1 iωt C(ω) = dtf(t)e 
2π −∞ 

Delta function ∞1 
e i(ω−ω')tdt = δ(ω − ω')

2π −∞ 

∞ 

δ(x)dx = 1 
−∞ 

∞ 

δ(x − a)f(x)dx = f(a) 
−∞ 
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Problem 1 (30 pts)
 

Solve the following short questions. (If you found that you spend a lot of time on one problem, you 
are probably not on the right track.) 

A. (6 pts) A progressing plane electromagnetic wave is moving toward a perfect conductor, where 
charges in the conductor can move freely without energy dissipation. What is the boundary 
condition for the electric field of electromagnetic wave at the surface of the conductor (not 
inside the conductor)? 

B. (6 pts) An AM radio station with radio frequency f recently received bad reviews on the audio 
quality. The manager of this AM station asked you for advice. You found that one possibility 
to improve the audio quality was to change the bandwidth Δf of the signal emitted by this 
station such that the station can send signals with better time resolution. Would you suggest 
to increase or decrease the bandwidth Δf? Why do you think so? 

C. (6 pts) In a room of size L × L × 16L, what is the lowest angular frequency of normal mode 
oscillations of the air in the room? (You can assume that the speed of sound is v). 

D. (6 pts) Consider a massive string with fixed ends, of length 2L, tension T and linear mass 
density ρL. At t = 0, this string has an initial shape ψ(x, 0) as shown in Figure 1. This string 

˙is then released carefully so that the initial velocity of the string ψ(x, 0) is 0. How long does it 
take for this string, a non-dispersive medium, to return to its initial shape after it is released 
at t = 0? Please give your explanations without actually doing Fourier decomposition. 

Figure 1: MIT string 

E. (6 pts) A light beam travels through vacuum (n1 = 1) before reaching two transparent plates 
with indices of refraction n2 and n3. It reaches first a transparent plate of index n2 at an 
incident angle of α = 60◦ . The beam traverses it, reaches another transparent plate with 
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index n3, traverses that, and enters a fourth material with index n4, propagating in that 
medium at an angle β = 45◦ to the normal axis. The configuration of this optical experiment 
is shown in Figure 2. What is the value for n4? 

Figure 2: Light experiment
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Problem 2 (17 pts)
 

The charge density fluctuations in a plasma are governed by a wave equation, which for one 
dimensional distortions reduces to 

2 ∂
2ρ(x, t)	 ∂2ρ(x, t) 

a − Ω2 
pρ(x, t) = 

∂x2 ∂t2 

Here ρ(x, t) is a small deviation of the charge density from its equilibrium value and Ωp is a constant 
parameter referred to as the plasma frequency. 

a.	 (3 pts) Write down a harmonic progressing wave solution which describes the deviation of the 
charge density ρ(x, t), going toward the −x̂ direction. We assume that the wavenumber of 
this progressing wave is k, the angular frequency is ω and the amplitude is A. At t = 0 and 
x = 0, the deviation of the charge density ρ(0, 0) is zero. 

b. (7 pts) Find the dispersion relation ω(k). Draw ω(k) as a function of k. What are the angular 
frequencies of harmonic progressing waves which are allowed to exist in the plasma? 

c.	 (4 pts) What is the group velocity of this medium? Is this a dispersive medium? 

d. (3 pts) What is the limiting phase velocity at large wavenumber k of this medium? 
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Problem 3 (23 pts)
 

The electric field of a uniform plane wave in vacuum, traveling at the speed of light c, is given as 

(E((r, t) = E0(3x̂ + aŷ) cos(ωt − 4x + 3y) 

where a is a constant. (This is a problem in the three dimensional space.) 

a.	 (4 pts) What is the direction of propagation of this plane wave? (Represent the direction as 
a Unit Vector). 

b. (6 pts) Calculate the angular frequency ω and the wavelength of this EM wave by using given 
numbers 

c.	 (4 pts) What is the value of a? 

d. (6 pts) What is the magnetic field, B( , associated with this wave? 

e.	 (3 pts) What is the directional energy flux density (the rate of energy transfer per unit area) 
of this electromagnetic wave? 
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Problem 4 (30 pts) 

A string with tension T , mass per unit length ρL and length L is made into the shape shown in 
Figure 3. The string is only allowed to move up and down in the ŷ direction. The left end of the 
string is fixed to a wall and the right end is attached to a massless ring which can move freely in the 
transverse direction without any friction. Gravity is ignored in this problem, and you may assume 
the small angle approximation for the whole string. The string is released from rest at t = 0. 

Figure 3: Initial shape of the string at time t = 0 

a.	 (8 pts) Write down the boundary conditions at x = 0 and x = L. You can write down the 
condition in terms of ψ(x, t) which is the displacement of the massive string in the ŷ direction 
with respect to the equilibrium position. 

b. (6 pts) Sketch the shape (ψ as a function of x) of the three lowest normal modes (regardless 
of whether they are excited or not) and give the corresponding angular frequencies. 

c.	 (10 pts) For the initial shape shown in Figure 3, calculate the amplitude of the nth normal 
mode in terms of n and H. 

d. (6 pts) Which normal modes will not be excited? Express your results in terms of n. 
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