8.03 Lecture 12

Systems we have learned:
Wave equation:
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There are three different kinds of systems discussed in the lecture:
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This time, we are doing EM (electromagnetic) waves!



V-E= % =Gauss’ Law

V-B=0 =Gauss’ Law for magnetism
VxE= —aaf =Faraday’s Law
V x B = 1o (j—i— 60%?) =Ampere’s Law

In the vacuum: p =0 and J =0 and we get:
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V-B=0
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Where in the last two equations we see a changing magnetic field generates an electric field and a
changing electric field generates a magnetic field. Can you see the EM wave solution from these
equations? Maxwell saw it!

We need to use this identity:

Vx(VxA)=V(V-4A)—(V-V)A
Where V - V = V? is the Laplacian operator. In the vacuum:
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Vx(VNxE] = V(N~E]- (V?)E

Where we have made replacements based on the vacuum Maxwell equations above. Let’s first

examine the left hand side:
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Recall

And so we have a wave equation!!
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This equation changed the world! Maxwell is the first one who recognized it because of the term
he put in. It was a wave equation with speed equal to the speed of light:

What about the B field? We can do the same exercise:
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It is very important that the associated magnetic field also satisfies the wave equation. From the
Maxwell equation E creates B and B creates F, therefore they can not exist without each other.

1638 Galileo: speed of light is large
1676 Romer: 2.2 x 108 m/s
1729 James Bradley: 3.01 x 108 m/s

This means that in vacuum you can excite EM waves! What is oscillating? The field!
Before we tackle EM waves, let’s review divergence and curl briefly.

*Field:

Scalar field: every positing in the space gets a number. Temperature is an example.
Vector field: Instead of a number or scalar, every point gets a vector.

—

A(l‘, Y, Z) = A% + Ayg + A2
The electric and magnetic fields are vector fields, e.g.:
F =q(E+7x B)

To understand the structure of vector fields:
Divergence (using our definition of V from above):
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from a point:
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The divergence is a measure of how much the vector v spreads out (diverges
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The divergence of this vector field is positive The divergence of this vector field is zero.
Curl:
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What exactly does curl mean? It is a measure of how much the vector A “curls around” a point
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This vector field has no curl.

This vector field has a large curl
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Gauss’ Theorem (or the Divergence Theorem)

JJ| (¥ A)dr = A-da

Which allows us to relate the integral of the divergence over the whole volume (RHS) to a 2-D

surface integral (LHS).

J(9x4)-da=§ Axd

Stokes’ Theorem:




Which allows us to related the surface integral over the curl (LHS) to a line integral integral over

a closed path (RHS).

Stokes’ theorem

Gauss’ Theorem

*Consider a “plane wave” solution:
E =Re [Eoei(szm)i:] Only in the Z direction.
= {Epcos(kz —wt) , 0, 0}
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What did we learn from this exercise?

1. E must come with B. In vacuum: the two fields are perpendicular and they are in phase.
If k is the direction of propagation then B = %k x I The amplitude of the magnetic field is

equal to the amplitude of the electric field divided by the speed of light.

2. The EM wave is non-dispersive, meaning that the speed of the wave ¢ is independent of the

% 1
wave number k: F=CT T




3. The direction of the propagating EM wave is Ex B

In general a propagating EM wave can be written as:
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E(r,t) = Re [E’Oei(d"?_wﬂ‘z’)}

Where Ey = FEo, &+ Eo,j+ Eo.2 , T=2% +yj+ 22 and w = ck
Given this electric field, we can get the magnetic field:
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Example:




B =
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If there is no other material, this EM wave will travel forever...
Now let’s put something into the game: A “perfect conductor”
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% 11 k A busy world inside this system! All the little
‘6 charges are moving around without cost of energy
-) (there is no dissipation).

Incident wave:

{EI = L0 cos(kz — wt)@

B = % cos(kz — wt)y

To satisfy the boundary conditions E=0atz=0we
need a reflected wave!

E
Er = —?0 cos(—kz — wt)z
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Br = 2—2 cos(—kz — wt)y
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I
E=FE;+Er= 70 (cos(kz — wt) — cos(—kz —wt)) &
= Eysin(wt) sin(kz)&

. . . E
B =DB;+Bgr = ?O(cos(kz — wt) + cos(—kz — wt))y
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= ?0 cos(wt) cos(kz)y

Energy density?

1
Ug = erEz = %OEg sin? wt sin? kz
Up = i 2 = E—OEQ cos? wt cos® kz
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Poynting vector: directional energy flux, or the rate of energy transfer per unit area:
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This is how a microwave oven works!

*The EM waves are bounced around inside the oven

*EM waves increase the vibration of the molecules in the oven and increase the temperature of the
food.
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