
8.03 Lecture 12

Systems we have learned:
Wave equation:

∂2ψ

∂t2
= v2

p

∂2ψ

∂x2

There are three different kinds of systems discussed in the lecture:

(1) String with constant tension and mass per unit
length ρL

vp =
√
T

ρL

(2) Spring with spring constant k, length l, and
mass per unit length ρL

vp =
√
kl

ρL

(3) Organ pipe with room pressure P0 and air
density ρ

vp =
√
γP0
ρ

This time, we are doing EM (electromagnetic) waves!



~∇ · ~E = ρ

ε0
⇒Gauss’ Law

~∇ · ~B = 0 ⇒Gauss’ Law for magnetism

~∇× ~E = −∂
~B

∂t
⇒Faraday’s Law

~∇× ~B = µ0

(
~J + ε0

∂ ~E

∂t

)
⇒Ampere’s Law

In the vacuum: ρ = 0 and ~J = 0 and we get:

~∇ · ~E = 0
~∇ · ~B = 0

~∇× ~E = −∂
~B

∂t

~∇× ~B = µ0ε0
∂ ~E

∂t

Where in the last two equations we see a changing magnetic field generates an electric field and a
changing electric field generates a magnetic field. Can you see the EM wave solution from these
equations? Maxwell saw it!
We need to use this identity:

~∇× (~∇× ~A) = ~∇(~∇ · ~A)− (~∇ · ~∇) ~A

Where ~∇ · ~∇ ≡ ~∇2 is the Laplacian operator. In the vacuum:

~∇×���
��:
−∂ ~B/∂t

(~∇× ~E) = ~∇���
��:0

(~∇ · ~E)− (~∇2) ~E

Where we have made replacements based on the vacuum Maxwell equations above. Let’s first
examine the left hand side:

~∇×
(
−∂

~B

∂t

)
= − ∂

∂t

(
~∇× ~B

)
= −µ0ε0

∂2 ~E

∂t2

= −~∇2E

⇒ ~∇2E = µ0ε0
∂2 ~E

∂t2
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Recall
∇2 ≡

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
And so we have a wave equation!!(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
~E = µ0ε0

∂2 ~E

∂t2

This equation changed the world! Maxwell is the first one who recognized it because of the term
he put in. It was a wave equation with speed equal to the speed of light:

vp = c = 1
√
µ0ε0

≈ 3 · 108 m/s

What about the ~B field? We can do the same exercise:

~∇2B = µ0ε0
∂2 ~B

∂t2

It is very important that the associated magnetic field also satisfies the wave equation. From the
Maxwell equation ~E creates ~B and ~B creates ~E, therefore they can not exist without each other.

1638 Galileo: speed of light is large
1676 Romer: 2.2× 108 m/s

1729 James Bradley: 3.01× 108 m/s

This means that in vacuum you can excite EM waves! What is oscillating? The field!
Before we tackle EM waves, let’s review divergence and curl briefly.
*Field:
Scalar field: every positing in the space gets a number. Temperature is an example.
Vector field: Instead of a number or scalar, every point gets a vector.

~A(x, y, z) = Axx̂+Ayŷ +Az ẑ

The electric and magnetic fields are vector fields, e.g.:

~F = q( ~E + ~v × ~B)

To understand the structure of vector fields:
Divergence (using our definition of ~∇ from above):

~∇ · ~A = ∂Ax
∂x

+ ∂Ay
∂y

+ ∂Az
∂z
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The divergence is a measure of how much the vector v spreads out (diverges) from a point:

The divergence of this vector field is positive. The divergence of this vector field is zero.

Curl:

~∇× ~A =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣∣ =
(
∂Az
∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax
∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay
∂x
− ∂Ax

∂y

)
ẑ

What exactly does curl mean? It is a measure of how much the vector ~A “curls around” a point.

This vector field has a large curl. This vector field has no curl.

Gauss’ Theorem (or the Divergence Theorem):∫∫∫
V

(
~∇ · ~A

)
dτ =

∮
S

~A · ~da

Which allows us to relate the integral of the divergence over the whole volume (RHS) to a 2-D
surface integral (LHS).

Stokes’ Theorem: ∫∫
S

(
~∇× ~A

)
· ~da =

∮
P

~A× ~dl
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Which allows us to related the surface integral over the curl (LHS) to a line integral integral over
a closed path (RHS).

Gauss’ Theorem Stokes’ theorem

*Consider a “plane wave” solution:

~E = Re
[
E0e

i(kz−ωt)x̂
]

Only in the x̂ direction.

= {E0 cos(kz − ωt) , 0 , 0}

Check if it satisfies
~∇2E = µ0ε0

∂2 ~E

∂t2

⇒ ∂2Ex
∂z2 x̂ = µ0ε0

∂2 ~Ex
∂t2

x̂

In x̂ direction: −E0k
2 cos(kz − ωt) = −µ0ε0ω

2E0 cos(kz − ωt)

ω

k
= 1
√
µ0ε0

= c ⇒ Condition needed to satisfy the wave equation.

*What about ~B?

~∇× ~E = −∂
~B

∂t

=

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

Ex 0 0

∣∣∣∣∣∣∣ = ∂Ex
∂z

ŷ −
�
�
���

0
∂Ex
∂y

ẑ

= −kE0 sin(kz − ωt)ŷ

⇒ ~B = k

ω
E0 cos(kz − ωt)ŷ = E0

c
cos(kz − ωt)ŷ

What did we learn from this exercise?

1. ~E must come with ~B. In vacuum: the two fields are perpendicular and they are in phase.
If ~k is the direction of propagation then ~B = 1

c k̂ × ~E The amplitude of the magnetic field is
equal to the amplitude of the electric field divided by the speed of light.

2. The EM wave is non-dispersive, meaning that the speed of the wave c is independent of the
wave number k: ω

k = c = 1√
µ0ε0
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3. The direction of the propagating EM wave is ~E × ~B

In general a propagating EM wave can be written as:

~E(r, t) = Re
[
~E0e

i(~k·~r−ωt+φ)
]

Where ~E0 ≡ E0x x̂+ E0y ŷ + E0z ẑ , ~r ≡ xx̂+ yŷ + zẑ and ω ≡ ck
Given this electric field, we can get the magnetic field:

~B(r, t) = 1
c
k̂ × ~E

Example:

~k = 2π
λ

{
x̂√
2

+ ŷ√
2

}
~E0 = −E0√

2
x̂+ E0√

2
ŷ

~k · ~r = 2π√
2λ

(x+ y)

⇒ ~E(x, y, z) = E0

(
− x̂√

2
+ ŷ√

2

)
cos

(√
2π
λ

(x+ y)− ωt
)
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~B = 1
c
k̂ × ~E ⇒ ~B(x, y, z) = E0

c
ẑ cos

(√
2π
λ

(x+ y)− ωt
)

If there is no other material, this EM wave will travel forever...
Now let’s put something into the game: A “perfect conductor”

A busy world inside this system! All the little
charges are moving around without cost of energy
(there is no dissipation).

Incident wave: 
~EI = E0

2 cos(kz − ωt)x̂
~BI = E0

2c cos(kz − ωt)ŷ

To satisfy the boundary conditions ~E = 0 at z = 0 we
need a reflected wave!

~ER = −E0
2 cos(−kz − ωt)x̂

~BR = E0
2c cos(−kz − ωt)ŷ
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~E = ~EI + ~ER = E0
2 (cos(kz − ωt)− cos(−kz − ωt)) x̂

= E0 sin(ωt) sin(kz)x̂

~B = ~BI + ~BR = E0
2c (cos(kz − ωt) + cos(−kz − ωt))ŷ

= E0
c

cos(ωt) cos(kz)ŷ

Energy density?

UE = 1
2εbE

2 = ε0
2 E

2
0 sin2 ωt sin2 kz

UB = 1
2µ0

B2 = ε0
2 E

2
0 cos2 ωt cos2 kz

Poynting vector: directional energy flux, or the rate of energy transfer per unit area:

~S =
~E × ~B

µ0
= 1
µ0
ExBy ẑ

= E2
0

µ0c
sinωt cosωt sin kz cos kzẑ

= E2
0

4µ0c
sin(2ωt) sin(2kz)ẑ

This is how a microwave oven works!

*The EM waves are bounced around inside the oven
*EM waves increase the vibration of the molecules in the oven and increase the temperature of the
food.
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