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PROFESSOR: So it's a beautiful recording. OK, so to get started, questions? From last time?

Barton covered for me last time. I fled. I was out of town. I was at a math

conference. It was pretty surreal. Questions, yes.

AUDIENCE: [INAUDIBLE] about the exam?

PROFESSOR: About--?

AUDIENCE: The exam.

PROFESSOR: The exam. Yes, absolutely. So the exam is, as you all know, on Thursday, a week

hence. So on Tuesday we will have a lecture. The material Tuesday will not be

covered on the exam. The exam will be a review of everything through today's

lecture, including the problems that, which for some technical reason I don't know

why didn't get posted. But it should be up after lecture today. The exam will be a

combination of short questions and computations. It will not focus on an enormous

number of computations. It will focus more on conceptual things. But there will be a

few calculations on the exam. And I will post some practice problems over the next

couple of days.

AUDIENCE: Do we have a problem set [INAUDIBLE]?

PROFESSOR: You do have a problem set due Tuesday. And that is part of your preparation for the

exam. Here's a basic strategy for exams for this class. Anything that's on a problem

set is fair game. Anything that's not covered on a problem set is not going to be fair

game. If you haven't seen a new problem on it, broadly construed, then you won't--

I won't test you on a topic you haven't done problems on before. But I will take

problems and ideas that you've studied before and spin them slightly differently to
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make you think through them in real time on the exam. OK?

From my point of view, the purpose of these exams is not to give you a grade. I

don't care about the grade. The purpose of these exams is to give you feedback on

your understanding. It's very easy to slip through quantum mechanics and think, oh

yeah, I totally-- I got this. This is fine. But it's not always an accurate read. So that's

the point.

Did that answer your question? Other questions? Exam or-- yeah.

AUDIENCE: About the harmonic oscillator actually.

PROFESSOR: Excellent.

AUDIENCE: So when we solved it Tuesday using the series method, so there are two solutions

technically, the even solution and the odd term solution. So did boundary conditions

force the other one to be completely zero, like the coefficient in front of it? So

there's like an A0 term which determines all the other ones. But there's an A0 term

and an A1 term for the evens and odds. So did the other ones just have to be 0?

PROFESSOR: This is a really good question. This is an excellent question. Let me ask the question

slightly differently. And tell me if this is the same question. When we wrote down our

differential equation-- so last time we did the harmonic oscillator. And Barton did

give you the brute force strategy for the harmonic oscillator. We want to find the

energy eigenstates, because that's what we do to solve the Schrodinger equation.

And we turn that into a differential equation. And we solve this differential equation

by doing an asymptotic analysis and then a series expansion.

Now, this is a second order differential equation. Everyone agree with that? It's a

second order differential equation. However, in our series expansion we ended up

with one integration constant, not two. How does that work? How can it be that there

was only one integration constant and not two? It's a second order differential

equation. Is this he question?

AUDIENCE: Yeah.
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PROFESSOR: OK, and this is an excellent question. Because it must be true, that there are two

solutions. It cannot be that there is just one solution. It's a second order differential

equation. Their existence in uniqueness theorems, which tell us there are two

integration constants. So how can it possibly be that there was only one?

Well, we did something rather subtle in that series expansion. For that series

expansion there was a critical moment, which I'm not going to go through but you

can come to my office hours again, but just look through the notes. There's an

important moment in the notes when we say, aha, these terms matter. But what we

did is we suppressed a singular solution. There's a solution of that differential

equation which is not well-behaved, which is not smooth, and in particular which

diverges.

And we already did, from the asymptotic analysis, we already fixed that the

asymptotic behavior was exponentially falling. But there's a second solution which is

exponentially growing. So what we did, remember how we did this story? We took

our wave function and we said, OK, look, we're going to pull off-- we're going to first

asymptotic analysis. And asymptotic analysis tells us that either we have

exponentially growing or exponentially shrinking solutions.

Let's pick the exponentially shrinking solutions. So phi e is equal to e to the minus x

over 2a squared squared, times some-- I don't remember what Barton called it. I'll

call it u of x. So we've extracted, because we know that asymptotically it takes this

form. Well, it could also take the other form. It could be e to the plus, which would

be bad and not normalizable. We've extracted that, and then we write down the

differential equation for u. And then we solve that differential equation by series

analysis, yeah?

However, if I have a secondary differential equation for phi, this change of variables

doesn't change the fact that it's a secondary differential equation for u, right?

There's still two solutions for u. One of those solutions will be the solution of the

equation that has this asymptotic form. But the other solution will be one that has an

e to the plus x squared over a squared so that it cancels off this leading factor and
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gives me the exponentially growing solution. Everyone cool with that?

So in that series analysis there's sort of a subtle moment where you impose that

you have the convergent solution. So the answer of, why did we get a first order

relation, is that we very carefully, although it may not have been totally obvious,

when doing this calculation one carefully chooses the convergent solution that

doesn't have this function blowing up so as to overwhelm the envelope. That

answer your question?

AUDIENCE: Yep.

PROFESSOR: Great. It's a very good question. This is an important subtlety that comes up all over

the place when you do asymptotic analysis. I speak from my heart. It's an important

thing in the research that I'm doing right now, getting these sorts of subtleties right.

It can be very confusing. It's important to think carefully through them. So it's a very

good question. Other questions before we move on? OK.

So I'm going to erase this, because it's not directly germane, but it is great. OK, so

one of the lessons of this brute force analysis was that we constructed the

spectrum, i.e., the set of energy eigenvalues allowed for the quantum harmonic

oscillator, and we constructed the wave functions. We constructed the wave

functions by solving the differential equation through asymptotic analysis, which give

us the Gaussian envelope, and series expansion, which give us the Hermite

polynomials. And then there's some normalization coefficient.

And then we got the energy eigenvalues by asking, when does this series

expansion converge? When does it, in fact truncate, terminate, so that we can write

down an answer? And that was what gave us these discrete values. But fine, we

can see that it would be discrete values. We're cool with that. In fact, Barton went

through the discussion of the node theorem and the lack of degeneracy in one

dimensional quantum mechanics. So it's reasonable that we get a bunch of discrete

energy eigenvalues, as we've talked about now for two lectures.

However, there's a surprise here, which is that these aren't just discrete, they're
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evenly spaced. We get a tower, starting with the lowest possible energy

corresponding to a-- sorry, E0-- starting with the lowest possible energy, which is

greater than 0, and a corresponding ground state wave function. And then we have

a whole bunch of other states, phi 1, phi 2, phi 3, phi 4, labeled by their energies

where the energies are evenly spaced.

They needed to be discrete, because these are bound states. But evenly spaced is

a surprise. So why are they evenly spaced? Anyone, based on the last lecture's

analysis? Yeah, you don't have a good answer to that from last lecture's analysis.

It's one of the mysteries that comes out of the first analysis. When you take a

differential equation, you just beat the crap out of it with a stick by solving it. With

differential equations strategies like this you don't necessarily get some of the more

subtle structure.

One of the goals of today's lecture is going to be to explain why we get this

structure. Why just from the physics of the problem, the underlying physics, should

you know that the system is going to have evenly spaced eigenvalues? What's the

structure?

And secondly, I want to show you a way of repeating this calculation without doing

the brute force analysis that reveals some of that more fine grain structure of the

problem. And this is going to turn out to be one of the canonical moves in the

analysis of quantum mechanical systems. So from quantum mechanics to quantum

field theory this is a basic series of logic moves.

What I'm going to do today also has an independent life in mathematics, in algebra.

And that will be something you'll studying in more detail in 8.05, but I would

encourage you to ask your recitation instructors about it, or me in office hours.

So our goal is to understand that even spacing and also to re-derive these results

without the sort of brutal direct assault methods we used last time. So what I'm

going to tell you about today is something called the operator method. It usually

goes under the name of the operator method.
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To get us started let's go back to look at the energy operator for the harmonic

oscillator, which is what, at the end of the day, we want to solve. p squared over 2m

plus m omega squared upon 2, x squared. And this is the operator that we want to--

whose eigenvalues we want to construct, whose eigenfunctions we want to

construct. Before we do anything else, we should do dimensional analysis.

First thing you when you look at a problem is do some dimensional analysis. Identify

the salient scales and make things, to the degree possible, dimensionless. Your life

will be better. So what are the parameters we have available to us? We have h bar,

because it's quantum mechanics. We have m, because we have a particle of mass,

m. We have omega, because this potential has a characteristic frequency of omega.

What other parameters do we have available to us? Well, we have c. That's

available to us. But is it relevant? No. If you get an answer that depends on the

speed of light, you made some horrible mistake. So not there.

What about the number of students in 8.04? No. There are an infinite number of

parameters that don't matter to this problem. What you want to know is, when you

do dimensional analysis, what parameters matter for the problem. What parameters

could possibly appear during the answer? And that's it. There are no other

parameters in this problem.

So that's a full set of parameters available to us. This has dimensions of momentum

times length. This has dimensions of mass, and this has dimensions of one upon

the time. And so what characteristic scales can we build using these three

parameters? Well, this is a moment times a length. If we multiply by a mass, that's

momentum times mass times x, which is almost momentum again. We need a

velocity and not a position, but we have 1 over time.

So if we take h bar times and omega, so that's px times m over t, that has units of

momentum squared. And similarly, this is momentum which is x, which is length

mass over time. I can divide by mass and divide by frequency or multiply by time, so

h bar upon m omega. And this is going to have units of length squared. And with a

little bit of foresight from factors of two I'm going to use these to define two link
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scales. x0 is equal to h bar-- I want to be careful to get my coefficients. I always put

the two in the wrong place. So 2 h bar upon m omega. Square root. And I'm going

to define p0 as equal to square root of 2 h bar times m omega.

So here's my claim. My claim is at the end of the day the salient link scales for this

problem should be integers or dimensionless numbers times this link scale. And

salient momentum scales should be this scale. Just from dimensional analysis. So if

someone at this point says, what do you think is the typical scale, what is the typical

size of the ground state wave function, the typical link scale over which the wave

function is not 0? Well, that can't possibly be the size of Manhattan. It's not the size

of a proton. There's only one link scale associated with the system. It should be of

order x0. Always start with dimensional analysis. Always.

OK, so with that we can rewrite this energy. Sorry, and there's one last energy. We

can write an energy, the thing with energy, which is equal to h bar omega. And this

times a frequency gives us an energy.

So we can rewrite this energy operator as h bar omega times p squared over p0. So

this has units of energy. So everything here must be dimensionless. And it turns out

to be p squared over p0 squared plus x operator squared over x0 squared. So

that's convenient. So this has nothing to do with the operator method. This is just

being reasonable.

Quick thing to note, x0 times p0 is just-- the m omegas cancel, so we get root 2h

bar squared, 2 h bar. Little tricks like that are useful to keep track of as you go.

So we're interested in this energy operator. And it has a nice form. It's a sum of

squares. And we see the sum of squares, a very tempting thing to do is to factor it.

So for example, if I have two classical numbers, c squared plus d squared, the

mathematician in me screams out to write c minus id times c plus id. I have factored

this. And that's usually a step in the right direction. And is this true? Well yes, it's

true. c squared plus d squared and the cross terms cancel. OK, that's great. Four

complex numbers, or four C numbers.
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Now is this true for operators? Can I do this for operators? Here we have the

energy operator as a sum of squares. Well, let's try it. I'd like to write that in terms of

x and p. So what about writing the quantity x minus ip over x0 over p0, operator,

times x over x0 plus ip over p0.

We can compute this. This is easy. So the first term gives us the x squared over x0

squared. That last term gives us-- the i's cancel, so we get p squared over p0,

squared. But then there are cross terms. We have an xp and a minus px, with an

overall i. So plus i times xp over x0 times p0. x0 times p0, however, is 2 h bar. So

that's over 2 h bar. And then we have the other term, minus px. Same thing. So I

could write that as a commutator, xp minus px. Everyone cool with what?

Unfortunately this is not what we wanted. We wanted just p squared plus x squared.

And what we got instead was p squared plus x squared close plus a commutator.

Happily this commutator is simple. What's the commutator of x with p?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah, exactly. Commit this to memory. This is your friend. So this is just i h bar, so

this is equal to ditto plus ditto plus i h bar. Somewhere I got a minus sign. Where did

I get my minus sign wrong? x with ip. Oh now, good. This is good. So x with p is i--

so we get an i h bar. No, I really did screw up the sign. How did I screw up the sign?

No I didn't. Wait. Oh! Of course. No, good. Sorry, sorry. Trust your calculation, not

your memory.

So the calculation gave us this. So what does this give us? It gives us i h bar. So

plus. But the i h bar times i is going to give me a minus. And the h bar is going to

cancel, because I've got an h bar from here and an h bar at the denominator minus

1/2. So this quantity is equal to the quantity we wanted minus 1/2. And what is the

quantity we wanted, x0 squared plus p0 squared? This guy.

So putting that all together we can write that the energy operator, which was equal

to h bar omega times the quantity we wanted, is equal to-- well, the quantity we

wanted is this quantity plus 1/2. h bar omega times-- I'll write this as x over x0 plus
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ip over p0, x over x0 plus ip over p0, hat, hat, hat, plus 1/2. Everyone cool with that?

So it almost worked. We can almost factor.

So at this point it's tempting to say, well that isn't really much an improvement.

You've just made it uglier. But consider the following. And just trust me on this one,

that this is not a stupid thing to do. That's a stupid symbol to write, though.

So let's define an operator called a, which is equal to x over x0 plus ip over p0, and

an operator, which I will call a dagger. "Is that a dagger I see before me?" Sorry. x

over x0 minus ip over p0. Hamlet quotes are harder. So this is a dagger.

And we can now write the energy operator for the harmonic oscillator is equal to h

bar omega times a dagger a plus 1/2. Everyone cool with that? Now, this should

look suggestive. You should say, aha, this looks like h bar omega something plus

1/2. That sure looks familiar from our brute force calculation. But, OK, that familiarity

is not an answer to the question.

Meanwhile you should say something like this. Look, this looks kind of like the

complex conjugate of this guy. Because there's an i and you change the sign of the

i. But what is the complex conjugate of an operator? What does that mean? An

operator is like take a vector and rotate. What is the complex conjugation of that? I

don't know. So we have to define that.

So I'm now going to start with this quick math aside. And morally, this is about what

is the complex conjugate of an operator. But before I move on, questions? OK.

So here's a mathematical series of a facts and claims. I claim the following. Given

any linear operator we can build-- there's a natural way to build without making any

additional assumptions or any additional ingredients. We can build another

operator, o dagger, hat, hat, in the following way. Consider the inner product of f

with g, or the bracket of f with g. So integral dx of f complex conjugate g.

Consider the function we're taking here is actually the operator we have on g. I'm

going to define my-- so this is a perfectly good thing. What this expression says is,

take your function g. Act on it with the operator o. Multiply by the complex
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conjugate. Take the integral. This is what we would have done if we had taken the

inner product of f with the function we get by taking o and acting on the function g.

So here's the thing. What we want-- just an aside-- what we want to do is define a

new operator. And here's how I'm going to define it. We can define it by choosing

how it acts. I'm going to tell you exactly how it acts, and then we'll define the

operator.

So this operator, o with a dagger, called the adjoint, is defined in the following way.

This is whatever operator you need, such that the integral gives you-- such that the

following is true. Integral dx o on f, complex conjugate, g. So this is the definition of

this dagger action, the adjoint action. OK so o dagger is the adjoint. And sometimes

it's called the Hermetian adjoint. I'll occasionally say Hermetian and occasionally

not, with no particular order to it.

So what does this mean? This means that whatever o dagger is, it's that operator

that when acting on g and then taking the inner product with f gives me same

answer as taking my original operator and acting on f and taking the inner product

with g. Cool? So we know how-- if we know what our operator o is, the challenge

now is going to be to figure out what must this o dagger operator be such that this

expression is true. That's going to be my definition of the adjoint. Cool? So I'm going

to do a bunch of examples. I'm going to walk through this.

So the mathematical definition is that an operator o defined in this fashion is the

Hermetian adjoint of o. So that's the mathematical definition. Well, that's our version

of the mathematical definition. I just came back from a math conference, so I'm

particularly chastened at the moment to be careful.

So let's do some quick examples. Example one. Suppose c is a complex number. I

claim a number is also an operator. It acts by multiplication. The number 7 is an

operator because it takes a vector and it gives you 7 times that vector. So this

number is a particularly simple kind of operator. And what's the adjoint? We can do

that. That's easy.
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So c adjoint is going to be defined in the following way. It's integral dx f star of c

adjoint g is equal to the integral dx of c on f complex conjugate times g. But what is

this? Well, c is just a number. So when we take its complex conjugate we can just

pull it out. So this is equal to the integral dx c complex conjugate, f star g. But I'm

now going to rewrite this, using the awesome power of reordering multiplication, as

c star. And I'm going to put parentheses around this because it seems like fun.

So now we have this nice expression. The integral dx of f c adjoint g is equal to the

integral dx of f c star g, c complex conjugate g. But notice that this must be true for

all f. It's true for all. Because I made no assumption about what f and g are, true for

all f and g. And therefore the adjoint of a complex number is its complex conjugate.

And this is the basic strategy for determining the adjoint of any operator. We're

going to play exactly this sort of game. We'll put the adjoint in here. We'll use the

definition of the adjoint. And then we'll do whatever machinations are necessary to

rewrite this as some operator acting on the first factor. Cool? Questions?

OK, let's do a more interesting operator. By the way, to check at home, and I think

this might be on your problem set-- but I don't remember if it's on or not. So if it's

not, check this for yourself. Check that the adjoin of the adjoint is equal to the

operator itself. It's an easy thing to check.

So next example. What is the adjoint of the operator derivative with respect to x?

Consider the operator, which is just derivative with respect to x. And I want to know

what is the adjoint of this beast. So how do we do this? Same logic as before.

Whatever the operator is, it's defined in the following way. Integral dx, f complex

conjugate on dx dagger on g. This is equal to the integral dx of-- how we doing on

time? Good-- integral dx of dx, f complex conjugate on g.

Now, what we want is we want to turn this into an expression where the operator is

acting on g, just as our familiar operator ddx. So how do I get the ddx over here? I

need to do two things. First, what's the complex conjugate of the derivative with

respect to x of a complex function? MIT has indigestion. So this is integral dx,

derivative with respect to x of f complex conjugate, g.
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And now I want this operator. I want derivative acting on g. That's the definition.

Because I want to know what is this operator. And so I'm going to do integration by

parts. So this is equal to the integral, dx. When I integrate by parts I get an F

complex conjugate, and then an overall minus sign from the integration by parts

minus f complex conjugate dx g. Was I telling you the truth earlier? Or did I lie to

you? OK, keep thinking about that.

And this is equal to, well the integral of dx, f complex conjugate if minus the

derivative with respect to x acting on g. Everyone cool with that? But if you look at

these equalities, dx adjoint acting on g is the same as minus dx acting on g. So this

tells me that the adjoint of dx is equal to minus dx. Yeah?

AUDIENCE: Are you assuming that your surface terms vanish?

PROFESSOR: Thank you! I lied to you. So I assumed in this that my surface terms vanished. I did

a variation by parts. And that leaves me with a total derivative. And that total

derivative gives me a boundary term. Remember how integration by parts works.

Integration by parts says the integral of AdxB is equal to the integral of-- well, AdxB

can be written as derivative with respect to x of AB minus B derivative with respect

to x of A. Because this is A prime B plus B prime A. Here we have AB prime. So we

just subtract off the appropriate term.

But this is a total derivative. So it only gives us a boundary term. So this integral is

equal to-- can move the integral over here-- the integral and the derivative, because

an integral is nothing but an antiderivative. The integral and the derivative cancel,

leaving us with the boundary terms. And in this case, it's from our boundaries which

are minus infinity plus infinity, minus infinity and plus infinity.

Now, this tells us something very important. And I'm not going to speak about this in

detail, but I encourage the recitation instructors who might happen to be here to

think to mention this in recitation. And I encourage you all to think about it. If I ask

you, what is the adjoint of the derivative operator acting on the space of functions

which are normalizable, so that they vanish at infinity, what is the adjoint of the
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derivative operator acting on the space of functions which is normalizable at infinity?

We just derive the answer. Because we assume that these surface terms vanish.

Because our wave functions, f and g, vanish at infinity. They're normalizable.

However, if I had asked you a slightly different question, if I had asked you, what's

the adjoint of the derivative operator acting on a different set of functions, the set of

functions that don't necessarily vanish at infinity, including sinusoids that go off to

infinity and don't vanish. Is this the correct answer? No. This would not be the

correct answer, because there are boundary terms.

So the point I'm making here, first off, in physics we're always going to be talking

about normalizable beasts. At the end of the day, the physical objects we care

about are in a room. They're not off infinity. So everything is going to be

normalizable. That is just how the world works. However, you've got to be careful in

making these sorts of arguments and realize that when I ask you, what is the adjoint

of this operator, I need to tell you something more precise. I need to say, what's the

adjoint of the derivative acting when this operator's understood as acting on some

particular set of functions, acting on normalizable functions? Good. So anyway, I'll

leave that aside as something to ponder.

But with that technical detail aside, as long as we're talking about normalizable

functions so these boundary terms from the integration by parts cancel, the adjoint

of the derivative operator is minus the derivative operator. Cool? OK, let's do

another example.

And where do I want to do this? I'll do it here. So another example. Actually, no. I

will do it here.

So we have another example, which is three. What's the adjoint of the position

operator? OK, take two minutes. Do this on a piece of paper in front of you. I'm not

going to call on you. So you can raise you hand if you-- OK, chat with the person

next to you. I mean chat about physics, right? Just not-- [LAUGHS].

AUDIENCE: [CHATTING]
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PROFESSOR: OK, so how do we go about doing this? We go about solving this problem by using

the definition of the adjoint. So what is x adjoint? It's that operator such that the

following is true, such that the integral dx of f complex conjugate with x dagger

acting on g is equal to the integral dx of what I get by taking the complex conjugate

of taking x and acting on f and then integrating this against g. But now we can use

the action of x and say that this is equal to the integral dx of x f complex conjugate

g. But here's the nice thing. What is the complex conjugate of f times the complex

function of f? x is real. Positions are real. So that's just x times the complex

conjugate of f. So that was essential move there.

And now we can rewrite this as equal the integral of f complex conjugate xg. And

now, eyeballing this, x dagger is that operator which acts by acting by multiplying

with little x. Therefore, the adjoint of the operator x is equal to the same operator. x

is equal to its own adjoint. OK? Cool?

So we've just learned a couple of really nice things. So the first is-- where we I want

to do this? Yeah, good. So we've learned a couple of nice things. And I want to

encode them in the following definition. Definition-- an operator, which I will call o,

whose adjoint is equal to o, so an operator whose adjoint is equal to itself is called

Hermetian. So an operator which is equal to its own adjoint is called Hermetian.

And so I want to note a couple of nice examples of that. So note a number which is

Hermetian is what? Real. An operator-- we found an operator which is equal to its

own adjoint. x dagger is equal to x. And what can you say about the eigenvalues of

this operator? They're real. We use that in the proof, actually. So this is real.

I will call an operator real if it's Hermetian. And here's a mathematical fact, which is

that any operator which is Hermetian has all real eigenvalues. So this is really-- I'll

state it as a theorem, but it's just a fact for us. o has all real eigenvalues.

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah?
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AUDIENCE: Is it if and only [INAUDIBLE]?

PROFESSOR: No. Let's see. If you have all real eigenvalues, it does not imply that you're

Hermetian. However, if you have all real eigenvalues and you can be diagonalized,

it does imply. So let me give you an example.

So consider the following operator. We've done this many times, rotation in real

three-dimensional space of a vector around the vertical axis. It has one eigenvector,

which is the vertical vector. And the eigenvalue is 1, so it's real. But that's not

enough to make it Hermetian. Because there's another fact that we haven't got to

yet with Hermetian operators, which is going to tell us that a Hermetian operator has

as many eigenvectors as there are dimensions in the space, i.e., that the

eigenvectors form a basis.

But there's only one eigenvector for this guy, even though we're in a three-

dimensional vector space. So this operator, rotation by an angle theta, is not

Hermetian, even though its only eigenvalue isn't in fact real. So it's not an only if. If

you are Hermetian, your eigenvalues are all real. And you'll prove this on a problem

set. Yeah?

AUDIENCE: If you're Hermetian, are your eigenfunctions normal?

PROFESSOR: Not necessarily. But they can be made normal. We'll talk about this in more detail

later. OK. Let's do a quick check, last example. And I'm not actually going to go

through this in detail, but what about p? What about the momentum operator? First

off, do you think the momentum is real? It sure would be nice. Because its

eigenvalues are the observable values of momentum. And so its eigenvalues should

all be real. Does that make it Hermetian? Not necessarily, but let's check.

So what is the adjoint of p? Well, this actually we can do very easily. And I'm not

going to go through an elaborate argument. I'm just going to know the following. p is

equal to h bar upon i ddx. And this is an operator. This is an operator. So what's the

adjoint of this operator? Well, this under an adjoint gets a minus sign, right? It's itself

up to a minus sign. So is the derivative Hermetian? No, it's in fact what we anti-
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Hermetian. Its adjoint is minus itself.

What about i? What's its adjoint? Minus i. Sweet. So this has an adjoint, picks up a

minus. This has an adjoint, picks up a minus. The minuses cancel. p adjoint is p. So

p is in fact Hermetian. And here's a stronger physical fact. So now we've seen that

each of the operators we built is x and p, true of the operators we've looked at so

far is Hermetian, those that correspond to physical observables.

Here's a physical fact. All the observables you measure with sticks are real. And the

corresponding statement is that all operators corresponding to observables, all

operators must be Hermetian. To the postulate that says, "Observables are

represented by operators," should be adjoined the word "Hermetian." Observables

are represented in quantum mechanics by Hermetian operators, which are

operators that have a number of nice properties, including they have all real

eigenvalues. Cool? OK. Questions? Yeah.

AUDIENCE: If it has to be Hermetian and not just have real eigenvalues, does that mean the

eigenvalues always need to form some kind of basis?

PROFESSOR: Yeah, the eigenvectors will. This is connected to the fact we've already seen. If you

take an arbitrary wave function you can expand it in states with definite momentum

as a superposition. You can also expand it in a set of states of definite energy or of

definite position. Anytime you have a Hermetian operator, its eigenvectors suffice to

expand any function. They provide a basis for representing any function.

So that's the end of the mathematical side. Let's get back to this physical point. So

we've defined this operator a and this other operator a dagger. And here's my

question first. Is a Hermetian? No. That's Hermetian. That's Hermetian. But there's

an i. That i will pick up the minus sign when we do the complex conjugation. Oh,

look. Sure was fortuitous that I called this a dagger, since this is equal to a dagger.

So this is the adjoint of a. So this immediately tells you something interesting. x and

p are both observables. Does a correspond to an observable? Is it Hermetian?

Every intervals is associated to a Hermetian operator. This is not Hermetian. So a
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does not represent an observable operator.

And I will post notes on the web page, which give us a somewhat lengthy

discussion-- or it might be in one of the solutions-- a somewhat lengthy discussion

of what it means for a and a dagger to not be observable. You'll get more

discussion of that there.

Meanwhile, if a is not observable, it's not Hermetian, does it have real eigenvalues?

Well, here's an important thing. I said if you're Hermetian, all the eigenvalues are

real. If you're not Hermetian, that doesn't tell you you can't have any real

eigenvalues. It just says that I haven't guaranteed for you that all the eigenvalues

are real. So what we'll discover towards the end of the course when we talk about

something called coherent states is that in fact, a does have a nice set of

eigenvectors. They're very nice. They're great. We use them for lasers. They're

very useful. And they're called coherent states. But their eigenvalues are not in

general real. They're generically complex numbers. Are they things you can

measure? Not directly. They're related to things you can measure, though, in some

pretty nice ways.

So why are we bothering with these guys if they're not observable? Yeah.

AUDIENCE: E [INAUDIBLE].

PROFESSOR: Yeah, good. Excellent. That's really good. So two things about it. So one thing is this

form for the energy operator is particularly simple. We see the 1/2. This looks

suggestive from before. But it makes it obvious that E is Hermetian. And that may

not be obvious to you guys. So let's just check.

Here's something that you'll show on the problem set. AB adjoint is equal to B

adjoint A adjoint. The order matters. These are operators. And so if we take the

adjective of this, what's this going to give us? Well we change the order. So it's

going to be a dagger, and then we take the dagger of both of the a dagger. So this

is self-adjoint, or Hermetian. So that's good. Of course, we already knew that,

because we could have written it in terms of x and p. But this is somehow simpler.
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And it in particular emphasizes the form, or recapitulates the form of the energy

eigenvalues. Why else would we care about a and a dagger?

OK, now this is a good moment. Here's the second reason. So the first reason you

care is this sort of structural similarity and the fact that it's nicely Hermetian in a

different way. Here's the key thing. Key. a and a dagger satisfy the simplest

commutation relation in the world. Well, the second simplest. The simplest is that it's

0 on the right-hand side. But the simplest not trivial commutation relationship. a with

a dagger is equal to-- so what is a dagger equal to? We just take the definition. Let's

put this in.

So this is x over x0 plus ip over p0, comma, x over x0 minus i, p over p0, hat, hat,

hat, hat, bracket, bracket. Good. So here there are going to be four terms. There's x

commutator x. What is that? What is the commutator of an operator with itself? 0.

Because remember the definition of the commutator A, B is AB minus BA. So A with

A is equal to AA minus AA. And you have no options there. That's 0.

So x with x is 0. p with p is 0. So the only terms that matter are the cross terms. We

have an x with p. And notice that's going to be times a minus i with p0 and x0. And

then we have another term which is p with x, which is i, p0 over x0. So you change

the order and you change the sign. But if you change the order of a commutator,

you change the side.

So we can put them both in the same order. Let me just write this out. So this is i

over x0 p0. So this guy, minus i over x0p0. But x0p0 is equal to 2h bar, as we

checked before. This was x with p. And then the second term was plus i, again over

x0p0, which is 2h bar, p with x.

This x with p is equal to? i h bar. So the h bar cancels. The i gives me a plus 1. And

p with x gives me minus i h bar. So the h bar and the minus i gives me plus 1. Well

that's nice. This is equal to 1. So plus 1/2, therefore a with a dagger is equal to 1. As

advertised, that is about as simple as it gets.

Notice a couple of other commutators that follow from this. a dagger with a is equal
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to minus 1. We just changed the order. And that's just an overall minus sign. And a

with a is what? 0. a dagger with a dagger? Good. OK.

So we are now going to use this commutation relation to totally crush the problem

into submission. It's going to be weeping before us like the Romans in front of the

Visigoths. It's going to be dramatic. OK, so let's check.

So let's combine the two things. So we had the first thing is that this form is simple.

The second is that the commutator is simple. Let's combine these together and

really milk the system for what it's got. And to do that, I need two more

commutators. And the lesson of this series of machinations, it's very tempting to

look at this and be like, why are you doing this? And the reason is, I want to

encourage you to see the power of these commutation relations. They're telling you

a tremendous amount about the system. So we're going through and doing some

relatively simple calculations. We're just computing commutators. We're following

our nose. And we're going to derive something awesome. So don't just bear with it.

Learn from this, that there's something very useful and powerful about commutation

relations. You'll see that at the end. But I want you to on to the slight awkwardness

right now, that it's not totally obvious beforehand where this is going.

So what is E with a? That's easy. It's the h bar omega a dagger a plus 1/2. So the

1/2, what's 1/2 commutator with an operator? 0. Because any number commutes

with an operator. 1/2 operator is operator 1/2. It's just a constant.

That term is gone. So the only thing that's left over is h bar omega, a dagger a with

a. The h bar omega's just a constant. It's going to pull out no matter which term

we're looking at. So I could just pull that factor out.

So this is equal to h bar omega times a dagger a minus a a dagger a. But this is

equal to h bar omega-- well, that's a dagger a a, a a dagger a. You can just pull out

the a on the right. a dagger a minus a a dagger a. That's equal to h bar omega.

Well, a dagger with a is equal to a dagger with a minus 1 is equal to minus h bar

omega. And we have this a leftover, a.
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So E with a is equal to minus a. Well, that's interesting. Now, the second

commutator-- I'm not going to do it-- E with a dagger is going to be equal to-- let's

just eyeball what's going to happen. They can be a dagger. So we're going to have

a dagger a dagger minus a dagger a dagger a. So we're going to have an a dagger

in front and then a dagger. So all we're going to get is a sign. And it's going to be a

dagger plus a dagger. I shouldn't written that in the center. Everyone cool with that?

Yeah.

AUDIENCE: The h bar where?

PROFESSOR: Oh shoot, thank you! h bar here. Thank you. We would have misruled the galaxy.

OK, good. Other questions?

You don't notice-- you haven't noticed yet, but we just won. We just totally solved

the problem. And here's why. Once you see this, any time you see this, anytime you

see this commutator, an operator with an a is equal to plus a times some constant,

anytime you see this, cheer. And here's why. Yeah, right. Exactly. Now. Whoo!

Here's why. Here's why you should cheer. Because you no longer have to solve any

problems. You no longer have to solve any differential equations. You can simply

write down the problem. And let's see that you can just write down the answer.

Suppose that we already happened to have access-- here in my sleeve I have

access to an eigenfunction of the energy operator. E on phi E is equal to E phi E.

Suppose I have this guy. Cool? Check this out. Consider a new state, psi, which is

equal to a-- which do I want to do first? Doesn't really matter, but let's do a.

Consider psi is equal to a on phi E. What can you say about this state? Well, it's the

state you get by taking this wave function and acting with a. Not terribly illuminating.

However, E on psi is equal to what? Maybe this has some nice property under

acting with E. This is equal to E on a with pfi E.

Now, this is tantalizing. Because at this point it's very-- look, that E, it really wants to

hit this phi. It just really wants to. There's an E it wants to pull out. It'll be great. The

problem is it's not there. There's an a in the way. And so at this point we add 0. And
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this is a very powerful technique. This is equal to Ea minus aE plus aE, phi E.

But that has a nice expression. This is equal to Ea minus aE. That's the commutator

of E with a. Plus a. What's E acting on phi E? Actually, let me just leave this as aE.

So what have we done here before we actually act? What we've done is something

called commuting an operator through. So what do I mean by commuting an

operator through? If we have an operator A and an operator B and a state f, and I

want A to act on f, I can always write this as-- this is equal to the commutator of A

would be plus BA acting on f.

So this lets me act A on f directly without B. But I have to know what the commutator

of these two operators is. So if I know what the commutator is, I can do this. I can

simplify. When one does this, when one takes AB and replaces it by the commutator

of A with B, plus BA, changing the order, the phrase that one uses is I have

commuted A through B. And commuting operators through other is an

extraordinarily useful tool, useful technique.

Now let's do y. So here what's the commutator of E with a? We just did that. It's

minus h bar omega a. And what's aE on phi E? What's E on phi E? E. Exactly. Plus

Ea on phi. And now we're cooking with gas. Because this is equal to minus h bar

omega a plus Ea, hat. I'm going to pull out this common factor of a.

So if I pull out that common factor of a, plus E, a phi E, and now I'm going to just

slightly write this instead of minus h bar omega plus E, I'm going to write this as E

minus h bar omega. I'm just literally changing the order of the algebra. E minus h

bar omega. And what is aE? Psi. That was the original state we started with, psi.

Well, that's cool. If I have a state with energy E and I act on it with the operator a, I

get a new state, psi, which is also an eigenstate of the energy operator, but with a

slightly different energy eigenvalue. The eigenvalue is now decreased by h bar

omega. Cool?

And that is what we wanted. Let's explore the consequences of this. So if we have a

state with eigenvalue E, we have phi E such that E on phi E is equal to E phi E.

21



Then the state a phi E has eigenvalue as energy, eigenvalue E minus h bar omega.

So I could call this phi sub E minus h bar omega. It's an eigenfunction of the energy

operator, the eigenvalue, E minus h bar omega. Agreed? Do I know that this is in

fact properly normalized? No, because 12 times it would also be a perfectly good

eigenfunction of the energy operator. So this is proportional to the properly

normalized guy, with some, at the moment, unknown constant coefficient

normalization. Everyone cool with that?

So now let's think about what this tells us. This tells us if we have a state phi E,

which I will denote its energy by this level, then if I act on it with a phi E I get another

state where the energy, instead of being E, is equal E minus h bar omega. So this

distance in energy is h bar omega. Cool? Let me do it again.

We'll tack a on phi E. By exactly the same argument, if I make psi as equal to a on a

phi E, a squared phi E, I get another state, again separated by h bar omega, E

minus 2h bar omega. Turtles all the way down. Everyone cool with that?

Let's do a slightly different calculation. But before we do that, I want to give a a

name. a does something really cool. When you take the state phi E that has definite

energy E, it's an energy eigenfunction, and you act on it with a, what happens? It

lowers the energy by h bar omega. So I'm going to call a the lowering operator.

Because what it does is it takes a state with phi E, with energy eigenvalue E to state

with energy E minus h bar omega. And I can just keep doing this as many times as I

like and I build a tower. Yes?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Very good question. Hold on to that for a second. We'll come back to that in just a

second. So this seems to build for me a ladder downwards. Everyone cool with

that? But we could have done the same thing with a dagger. And how does this

story change? What happens if we take a dagger instead of a? Well, let's go

through every step here. So this is going to be E on a dagger. And now we have E a

dagger, a dagger, E, a dagger.
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What's E with a dagger? E with a dagger is equal to same thing but with a plus. And

again, psi. Same thing, because the a dagger factors out. Yeah? So we go down by

acting with a. We go up by acting with a dagger. And again, the spacing is h bar

omega. And we go up by acting with a dagger again.

So a and a dagger are called the raising and lowering operators. a dagger, the

raising operator. a dagger phi E plus h bar omega. So what that lets us do is build a

tower of states, an infinite number of states where, given a state, we can walk up

this ladder with the raising operator, and we can walk down it by the lowering

operator.

So now I ask you the question, why is this ladder evenly spaced? There's one

equation on the board that you can point to-- I guess two, technically-- there are two

equations on the board that you could point to that suffice to immediately answer

the question, why is the tower of energy eigenstates evenly spaced. What is that

equation?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah, those commutators. These commutators are all we needed. We didn't need

to know anything else. We didn't even need to know what the potential was. If I just

told you there's an energy operator E and there's an operator a that you can build

out of the observables of the system, such that you have this commutation relation,

what do you immediately know? You immediately know that you get a tower of

operators. Because you can act with a and raise the energy by a finite amount,

which is the coefficient of that a in the commutator.

This didn't have to be the quantum mechanics of the harmonic oscillator at this

point. We just needed this commutator relation, E with a, E with a dagger. And one

of the totally awesome things is how often it shows up. If you take a bunch of

electrons and you put them in a magnetic field, bunch of electrons, very strong

magnetic field, what you discover is the quantum mechanics of those guys has

nothing to do with the harmonic oscillator on the face if it's magnetic fields, Lorentz

force law, the whole thing.
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What you discover is there's an operator, which isn't usually called a, but it depends

on which book you use-- it's n or m or l-- there's an operator that commutes with the

energy operator in precisely this fashion, which tells you that the energy eigenstates

live in a ladder. They're called Landau levels. This turns out to be very useful. Any

of you who are doing a [INAUDIBLE] in the lab that has graphene or any material,

really, with a magnetic field, then this matters.

So this commutator encodes an enormous amount of the structure of the energy

eigenvalues. And the trick for us was showing that we could write the harmonic

oscillator energy operator in terms of operators that commute in this fashion. So

we're going to run into this structure over and over again. This operator commutes

with this one to the same operator times a constant that tells you have a ladder.

We're going to run into that over and over again when we talk about Landau levels,

if we get there. When we talk about angular momentum we'll get the same thing.

When we talk about the harmonic oscillator we'll get the same thing. Sorry, the

hydrogen system. We'll get the same thing.

So second question, does this ladder extend infinitely up? Yeah, why not? Can it

extend infinitely down?

AUDIENCE: Nope.

PROFESSOR: Why?

AUDIENCE: Ground state.

PROFESSOR: Well, people are saying ground state. Well, we know that from the brute force

calculation. But without the brute force calculation, can this ladder extend infinitely

down?

AUDIENCE: [INAUDIBLE] you can't go [INAUDIBLE].

PROFESSOR: Brilliant. OK, good. And as you'll prove on the problems, that you can't make the

energy arbitrarily negative. But let me make that sharp. I don't want to appeal to
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something we haven't proven. Let me show you that concretely. In some state, in

any state, the energy expectation value can be written as the integral of phi complex

conjugate-- we'll say in this state phi-- phi complex conjugate E phi.

But I can write this as the integral, and let's say dx, integral dx. Let's just put in what

the energy operator looks like. So psi tilda, we can take the 4a transfer and write the

psi tilda p, p squared upon 2m-- whoops, dp-- for the kinetic energy term, plus the

integral-- and now I'm using the harmonic oscillator-- plus the integral dx of psi of x

norm squared, norm squared, m omega squared upon 2x squared. Little bit of a

quick move there, doing the 4a transfer for the momentum term and not doing the

4a [INAUDIBLE] but it's OK. They're separate integrals. I can do this.

And the crucial thing here is, this is positive definite. This is positive definite, positive

definite, positive definite. All these terms are strictly positive. This must be greater

than or equal to 0. It can never be negative. Yeah? So what that tells us is there

must be a minimum E. There must be a minimum energy. And I will call it minimum

E0. We can't lower the tower forever.

So how is this possible? How is it possible that, look, on the one hand, if we want, if

we have a state, we can always build a lower energy state by acting with lowering

operator a. And yet this is telling me that I can't. There must be a last one where I

can't lower it anymore. So what reaches out of the chalkboard and stops me from

acting with a again? How can it possibly be true that a always lowers the

eigenfunction but there's at least one that can't be lowered any further.

Normalizable's a good guess. Very good guess. Not the case. Because from this

argument we don't even use wave functions.

AUDIENCE: [INAUDIBLE]

PROFESSOR: That would be bad. Yes, exactly. So that would be bad, but that's just saying that

there's an inconsistency here. So I'm going to come back to your answer, a non-

normalizable. It's correct, but in a sneaky way. Here's the way it's sneaky.

Consider a state a on phi-- let's say this is the lowest state, the lowest possible
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state. It must be true that the resulting statement is not phi minus h bar omega.

There can't be any such state. And how can that be? That can be true if it's 0. So if

the lowering operator acts on some state and gives me 0, well, OK, that's an

eigenstate. But it's a stupid eigenstate. It's not normalizable. It can't be used to

describe any real physical object. Because where is it? Well, it's nowhere. The

probability density, you'd find it anywhere. It's nowhere, nothing, zero.

So the way that this tower terminates is by having a last state, which we'll call phi 0,

such that lowering it gives me 0. Not the state called 0, which I would call this, but

actually the function called 0, which is not normalizable, which is not a good state.

So there's a minimum E0. Associated with that is a lowest energy eigenstate called

the ground state.

Now, can the energy get arbitrarily large? Sure. That's a positive definite thing, and

this could get as large as you like. There's no problem with the energy eigenvalues

getting arbitrarily large. We can just keep raising and raising and raising. I mention

that because later on in the semester we will find a system with exactly that

commutation relation, precisely that commutation relation, where there will be a

minimum and a maximum.

So the communication relation is a good start, but it doesn't tell you anything. We

have to add in some physics like the energy operators bounded below for the

harmonic oscillator. Questions at this point? Yeah?

AUDIENCE: So you basically [INAUDIBLE] this ladder has to [INAUDIBLE] my particular energy

eigenstate and I can kind of construct a ladder. How do I know that I can't construct

other, intersecting ladders?

PROFESSOR: Yeah, that's an excellent question. I remember vividly when I saw this lecture in

143A, and that question plagued me. And foolishly I didn't ask it. So here's the

question. The question is, look, you found a bunch of states. How do you know

that's all of them? How do you know that's all of them? So let's think through that.

That's a very good question. I'm not going to worry about normalization. There's a

discussion of normalization in the notes.
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How do we know that's all of them? That's a little bit tricky. So let's think through it.

Imagine it's not all of them. In particular, what would that mean? In order for there to

be more states than the ones that we've written down, there must be states that are

not on that tower. And how can we possi-- wow, this thing is totally falling apart. How

do we do that? How is that possible?

There are two ways to do it. Here's my tower of states. I'll call this one phi 0. so I

raise with a dagger and I lower with a. So how could it be that I missed some

states? Well, there are ways to do it. One is there could be extra states that are in

between. So let's say that there's one extra state that's in between these two. Just

imagine that's true.

If there is such a state, by that commutation relation there must be another tower.

So there must be this state, and there must be this state, and there must be this

state, and there must be this state. Yeah? OK, so that's good so far.

But what happens? Well, A on this guy gave me 0. And this is going to be some phi

tilde 0. Suppose that this tower ends. And now you have to ask the question, can

there be two different states with two different energies with a0? Can there be two

different states that are annihilated by a0? Well, let's check.

What must be true of any state annihilated by a0? Well, let's write the energy

operator acting on that state. What's the energy of that state? Energy on phi 0 is

equal to h bar omega. This is a very good question, so let's go through it. So it's

equal to h bar omega times a dagger a plus 1/2 on phi 0. But what can you say

about this? Well, a annihilates phi 0. It gives us 0. So in addition to a being called

the lowering operator it's also called the annihilation operator, because, I don't

know, we're a brutal and warlike species.

So this is equal to h bar omega-- this term kills phi 0-- again with the kills-- and gives

me a 1/2 half leftover. 1/2 h bar omega phi 0. So the ground state, any state-- any

state annihilated by a must have the same energy. The only way you can be

annihilated by a is if your energy is this. Cool?
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So what does that tell you about the second ladder of hidden seats that we missed?

It's got to be degenerate. It's got to have the same energies. I drew that really

badly, didn't I? Those are evenly spaced.

So it's got to be degenerate. However, Barton proved for you the node theorem last

time, right? He gave you my spread argument for the node theorem? In particular,

one of the consequences of that is it in a system with bound states, in a system with

potential that goes up, you can never have degeneracies in one dimension. We're

not going to prove that carefully in here. But it's relatively easy to prove. In fact, if

you come to my office hours I'll prove it for you. It takes three minutes. But I don't

want to set up the math right now.

So how many people know about the Wronskian? That's awesome. OK, so I leave it

to you as an exercise to use the Wronskian to show that there cannot be

degeneracies in one dimension, which is cool. Anyway, so the Wronskian for the

differential equation, which is the energy eigenvalue equation.

There can be no degeneracies in one dimensional potentials with bound states. So

what we've just shown is that the only way that there can be extra states that we

missed is if there's a tower with exactly identical energies all the way up. But if they

have exactly identical energies, that means there's a degenerate. But we can prove

that there can't be degeneracies in 1D. So can there be an extra tower of states we

missed? No. Can we have missed any states? No. Those are all the states there

are. And we've done it without ever solving a differential equation, just by using that

commutation relation.

Now at this point it's very tempting to say, that was just sort of magical mystery stuff.

But what we really did last time was very honest. We wrote down a differential

equation. We found the solution. And we got the wave functions. So, Professor

Adams, you just monkeyed around at the chalkboard with commutators for a while,

but what are the damn wave functions? Right? We already have the answer. This is

really quite nice.

Last time we solved that differential equation. And we had to solve that differential
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equation many, many times, different levels. But now we have a very nice thing we

can do. What's true of the ground state? Well, the ground state is annihilated by the

lowering operator. So that means that a acting on phi 0 of x is equal to 0.

But a has a nice expression, which unfortunately I erased. Sorry about that. So a

has a nice expression. a is equal to x over x0 plus ip over p0. And so if you write

that out and multiply from appropriate constants, this becomes the following

differential equation. The x is just multiplied by x. And the p is take a derivative with

respect to x, multiply by h bar upon i. And multiplying by i over h bar to get that

equation, this gives us dx plus p over h bar x0-- sorry, that shouldn't be an i. That

should be p0. x on phi 0 is equal to 0.

And you solved this last time when you did the asymptotic analysis. This is actually a

ridiculously easy equation. It's a first order differential equation. There's one

integration constant. That's going to be the overall normalization. And so the form is

completely fixed. First order differential equation.

So what's the solution of this guy? It's a Gaussian. And what's the width of that

Gaussian? Well, look at p0 over h bar x0. We know that p0 times x0 is twice h bar.

So if I multiply by x amount on the top and bottom, you get 2 h bar. The h bars

cancel. So this gives me two upon x0 squared. Remember I said it would be useful

to remember that p0 times x0 is 2h bar? It's useful.

So it gives us this. And so the result is that phi 0 is equal to, up to an overall

normalization coefficient, e to the minus x squared over x0 squared. Solid. So there.

We've solved that differential equation. Is the easiest, second easiest differential

equation. It's our first order differential equation with a linear term rather than a

constant. We get a Gaussian.

And now that we've got this guy-- look, do you remember the third Hermite

polynomial? Because we know the third excited state is given by h3 times this

Gaussian. Do you remember it off the top of your head? How do you solve what it

is? How do we get phi 3? First off, how do we get phi 1? How do we get the next

state in the ladder? How do we get the wave function? Raising operator. But what is
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the raising operator? Oh, it's the differential operator I take with-- OK, but if I had a

dagger, it's just going to change the sign here.

So how do I get phi 1? Phi 1 is equal to up to some normalization. dx minus 2 over

x0 squared, x0, phi 0. So now do I have to solve the differential equation to get the

higher states? No. I take derivatives and multiply by constants.

So to get the third Hermite polynomial what do you do? You do this three times.

This is actually an extremely efficient way-- it's related to something called the

generating function, and an extremely efficient way to write down the Hermite

polynomials. They're the things that you get by acting on this with this operator as

many times as you want. That is a nice formal definition of the Hermite polynomials.

The upshot of all of this is the following. The upshot of all this is that we've derived

that without ever solving the differential equation the spectrum just from that

commutation relation, just from that commutation relation-- I cannot emphasize this

strongly enough-- just from the commutation relation, Ea is minus a times the

constant, and Ea dagger is a dagger times the constant. We derive that the energy

eigenstates come in a tower. You can move along this tower by raising with the

raising operator, lowering with the lowering operator. You can construct the ground

state by building that simple wave function, which is annihilated by the lowering

operator. You can build all the other states by raising them, which is just taking

derivatives instead of solving differential equations, which is hard.

And all of this came from this commutation relation. And since we are going to see

this over and over again-- and depending on how far you take physics, you will see

this in 8.05. You will see this in 8.06. You will see this in quantum field theory. This

shows up everywhere. It's absolutely at the core of how we organize the degrees of

freedom. This structure is something you should see and declare victory upon

seeing. Should see this and immediately say, I know the answer, and I can write it

down. OK?

In the next lecture we're going to do a review which is going to introduce a slightly

more formal presentation of all these ideas. That's not going to be material covered
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on the exam, but it's going to help you with the exam, which will be on Thursday.

See you Tuesday.

31


