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PROFESSOR: You first are facing the calculation of the energy eigenstate with some arbitrary potential. You

probably want to know some of the key features of the wave functions you're going to

calculate. So in fact, all of today's lecture is going to be devoted to this intuitive, qualitative

insights into the nature of the wave function. So we will discuss a few properties that help us

think clearly. And these are two of those properties. I want to begin with them. Then we'll do a

third one that we have already used, and we will prove it completely. And then turn to the

classical and semi-classical intuition that lets us figure out how the wave function will look.

And that's a great help for you. Even if you're solving for your wave function numerically, you

always need to know what the answer should look like. And it's ideal if before you calculate,

you think about it. And you realize, well, it should have this t properties. And if you find out that

those are not true, well, you will learn something about your intuition and see what was wrong

with it.

So we're talking about one dimensional potentials, time independent potentials. And a first

statement that is very important, and you will prove in an exercise after spring break, and that

is the fact that one dimensional potentials, when you look at what are called bound states, you

never find degeneracies, energy degeneracies. And this is when x extends from minus infinity

to infinity. You've seen already, in the case of a particle in a circle, there are degenerate

energy eigenstates. But if the potential extends to infinity, there is no such things.

Now what is a bound state? A bound state sounds like a complicated concept. But it is not. It

really means an energy eigenstate that can be normalized. Now if an energy eigenstate can

be normalized and you live in the full real line, that the wave function must go to 0 at infinity.

Otherwise you would never be able to normalize it. And if the wave function goes 0 at infinity,

the bound state is some sort of bump in the middle region or something like that. And it

eventually decays. So this is bound by the potential in some way. And that's basically what we

use to define a bound state. We'll take it to be that generally. So this is something, this

property, which is very important, is something you will prove.

But now we go to another property. We've emphasized forever that the Schrodinger equation

is an equation with complex numbers. And the solutions have complex numbers. And

suddenly, I wrote a few lectures ago a wave function was real. And I was asked, well, how can

it be real? Well, we've discussed stationary states in which the full wave function, capital PSI, is



equal to a little psi of x times the exponential of e to the minus i et over h bar. And there in that

exponential, there is complex numbers on this little psi of x in front of that exponential, which is

what we called basically those energy eigenstates. The e to the minus i et over h bar, it's

understood that little psi of x is the thing we've been looking for. And this psi of x solves the

time independent Schrodinger equation h psi equal e psi. And that equation has no complex

number in it.

So little psi of x can be real. And there's no contradiction. Because the full solution to the time

dependent Schrodinger equation is complex. But here is a statement. With v of x real, the

energy eigenstates can be chosen to be real. And the words can be chosen are very important

here. It means that you may find a solution that is complex, but you need not stick to that

solution. There is always a possibility to work with real solutions.

And what is the way you prove this? This I will put this in the notes. You don't have to worry

about the proof. You consider the Schrodinger equation for psi. And you show that psi star, the

complex conjugate of psi, solves the same equation that psi solves. And therefore, if psi is a

solution, psi star is a solution with the same energy. That part is very important. Therefore, if

you have two energy eigenstates with the same energy, you can form the sum. That's still an

energy eigenstate with the same energy. Even formed in difference, that's still an energy

eigenstate with the same energy. And the sum of psi plus psi star is real. And the difference

psi minus psi star, if you divide by 2i, is real as well. Therefore you can construct two solutions,

the real part of psi and the imaginary part of psi. And both are solutions to the Schrodinger

equation.

So I've said in words what is the proof of the first line. It's that if you have a psi, psi star is also

a solution. Therefore, psi plus psi star and psi minus psi star are solutions. So given a complex

psi, then psi psi of x. Then psi real of x that we define to be psi of x plus psi star of x over 2.

And the imaginary part of the wave function 1 over 2i psi of x minus psi star of x are both

solutions with the same energy as this one has. So these are the two solutions. So far so

good. You don't like to work with complex psi? No need to work with complex psi. Work with

real psi.

But here comes the second part of the argument, the second sentence. I want you to be alert

that the second sentence is very powerful. It says that if you have a bound state of a one

dimensional potential, more is true. There are no genuinely complex solutions in this case. Any

solution that you will find, it's not that it's complex and then you can find the real and imaginary



part. No, any solution that you will find will be basically real. And how can it fail to be real? It

just has a complex number in front of it that you can ignore. So it is a very strong statement.

That the wave function, it's not that you can choose to work it. You're forced to do it up to a

phase.

So how is that possible? How is that true? And here is the argument for the second line. If

we're talking bound states, then these two are real solutions with the same energy. So now

suppose these are bound states. There is a problem if there are two real solutions with the

same energy. They would be degenerate. And property number 1 says there's no such thing

as degenerate energy bound states. So they cannot be degenerate.

So if you start with a complex psi, and you build these two, they must be the same solution.

Because since there are no degenerate bound states, then psi, I will write it as psi imaginary,

of x must be proportional to psi real of x. And both are real, so the only possibility is that they

are equal up to a constant, where the constant is a real constant.

You see there cannot be degenerate bound states. So the two tentative solutions must be the

same. But that means that the original solution, psi, which is by definition the real part plus i

times the imaginary part, is now equal to psi r plus i times c times psi r again, which is 1 plus ic

times psi r. And that is basically the content of the theorem. Any solution is up to a number,

just the real solution. So you're not going to find the real solution has non-trivial different real

imaginary parts here. No, just the real solution and a complex number.

Now if you want, you can just write this as e to the i argument of 1 plus ic times square root of

1 plus c squared psi r. And then it's literally the way it's said here. The wave function is

proportional to a real wave function up to a phase. So that's a very neat situation. And

therefore, you should not be worried that we are going to have to assume many times in our

analysis that the bound states were trying to look for are real. And we plot real bound states.

And we don't have to worry about, what are you plotting? The real part? The imaginary part?

Many times we can just work with real things.


