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PROFESSOR: That brings us to claim number four, which is perhaps the most important one. I may have

said it already.b The eigenfunctions of Q form a set of basis functions, and then any

reasonable psi can be written as a superposition of Q eigenfunctions.

OK, so let's just make sense of this. Because not only, I think we understand what this means,

but let's write it out mathematically. So the statement is any psi of x, or this physical state, can

be written as a superposition of all these eigenfunctions So there are numbers, alpha 1 psi 1

of x plus alpha 2 psi 2 of x. Those are the expansion coefficients with alphas. And in summary,

we say from sum over i, alpha i psi i of x.

So the idea is that those alpha i's exist and you can write them. So any wave function that you

have, you can write it in a superposition of those eigenfunctions of the Hermitian operator. And

there are two things to say here. One is that, how would you calculate those alpha i's?

Well, actually, if you assume this equation, the calculation of alpha i's is simple, because of this

property. You're supposed to know the eigenfunctions. You must have done the work to

calculate the eigenfunctions. So here is what you can do. You can do the following integral.

You can do this one, psi i psi.

Let's calculate this thing. Remember what this is. This is an integral, dx, of psi i star. That's psi.

And psi is the sum over j of alpha j psi j. You can use any letter. I used i for the sum, but since

I put that psi i, I would make a great confusion if I used another i. So I should use j there. And

what is this? Well, you're integrating the part of this. That's a sum. So the sum can go out. It's

the sum over j alpha j integral of psi i star psi j d.

And what is this delta ij? That is our nice orthonormality. So this is sum over j alpha j, delta i j.

Now, this is kind of a simple sum. You can always be done. You should just think a second.

You're summing over j, and i is fixed. The only case when this gives something is when j, and

you're summing over, is equal to i, which is a fixed number. Therefore, the only thing that

survives is j equals to i, so this is 1. And therefore, this is alpha i.

So we did succeed in calculating this, and in fact, alpha i is equal to this integral of psi i with

psi. So how do you compute it now for i? You must do an integral. Of what? Of psi i star times

your wave function. So in this common interval. So the alpha i's are given by these numbers.

This would prove.



The other thing that you can check is if the wave function squared dx is equal to 1. What does

it imply for the alpha i's? You see, the wave function is normalized, but it's not a function of

alpha 1, alpha 2, alpha 3, alpha 4, all these things. So I must calculate this. And now let's do it,

quickly, but do it.

Sum over i, alpha i, psi i star, sum over j, alpha j, psi j. See, that's the integral of these things

squared dx. I'm sorry. I went wrong here. The star is there. The first psi, starred, the second

psi. Now I got it right. Now, I take out the sums i, sum over j, alpha i star alpha j, integral dx psi

i star psi j. This is delta i j, therefore j becomes equal to i, and you get sum over i of alpha i star

alpha i, which is the sum over i of, then alpha i squared. OK.

So that's what it says. Look. This is something that should be internalized as well. The sum

over i of the alpha i squared is equal to 1. Whenever you have a superposition of wave

functions, and the whole thing is normalized, and your wave functions are orthonormal, then

it's very simple. The normalization is computed by doing the sums of squares of each

coefficient. The mixings don't exist because there's no mixes here.

So everything is separate. Everything is unmixed. Everything is nice. So there you go. This is

how you expand any state in the collection of eigenfunctions of any Hermitian operator that

you are looking at.

OK. So finally, we get it. We've done all the work necessary to state the measurement

possibility. How do we find what we measure? So here it is. Measurement Postulate.

So here's the issue. We want to measure. I'm going to say these things in words. You want to

measure the operator, q, of your state. The operator might be the momentum, might be the

energy, might be the angular momentum, could be kinetic energy, could be potential energy.

Any Hermitian operator. You want to measure it in your state.

The first thing that the postulate will say is that you will, in general, obtain just one number

each time you do a measurement, but that number is one of the eigenvalues of this operator.

So the set of possible measurements, possible outcomes, better say, is the set of eigenvalues

of the operator. Those are the only numbers you can get.

But you can get them with different probabilities. And for that, you must use this plane. And

you must, in a sense, rewrite your state as a superposition of the eigenfunctions, those alphas.



And the probability to measure q1 is the probability that you end up of this part of the

superposition, and it will be given by alpha 1 squared, [INAUDIBLE]. The probability to

measure q will be given by alpha 2 squared and all of these numbers.

So, and finally, that after the measurement, another funny thing happens. The state that was

this whole sum collapses to that state that you obtained. So if you obtained q1, well, the whole

thing collapses to psi 1. After you've done the measurement, the state of the system becomes

psi 1.

So this is the spirit of what happens. Let me write it out. If we measure Q in the state psi, the

possible values obtained are q1, q2. The probability, p i, to measure q i is p i equals alpha i

squared. And remember what this alpha i we calculated it. This overlap of psi i with psi

squared. And finally, after finding-- after, let's write it, the outcome, q i, the state of the system

becomes psi of x is equal to psi i of x. And this is a collapse of the wave function. And it also

means that after you've done the measurement and you did obtain the value of q i, you stay

with psi i, if you measure it again, you would keep obtaining q i.

Why did it all become possible? It all became possible because Hermitian operators are rich

enough to allow you to write any state as a superposition. And therefore, if you want to

measure momentum, you must find all the eigenfunctions of momentum and rewrite your state

as a superposition of momentum. You want to do energy? Well, you must rewrite your state as

a superposition of energy eigenstates, and then you can measure. Want to measure angular

momentum? Find the eigenstates of angular momentum, use the theorem to rewrite your

whole state in different ways.

And this is something we said in the first lecture of this course, that any vector in a vector

space can be written in infinitely many ways as different superpositions of vectors. We wrote

the arrow and said, this vector is the sum of this and this, and this plus this plus this, and this

plus this plus this. And yes, you need all that flexibility. For any measurement, you rewrite the

vector as the sum of the eigenvectors, and then you can tell what are your predictions. You

need that flexibility that any vector in a vector space can be written in infinitely many ways as

different linear superpositions.

So there's a couple of things we can do to add intuition to this. I'll do, first, a consistency

check, and maybe I'll do an example as well. And then we have to define uncertainties, those

of that phase. So any question about this measurement postulate? Is there something unclear



about it?

It's a very strange postulate. You see, it divides quantum mechanics into two realms. There's

the realm of the Schrodinger equation, your wave function evolves in time. And then there's a

realm of measurement. The Schroedinger equation doesn't tell you what you're supposed to

do with measurement. But consistency with a Schroedinger equations doesn't allow you many

things. And this is apparently the only thing we can do. And then we do a measurement, but

somehow, this psi of x collapses and becomes one of the results of your measurement.

People have wondered, if the Schroedinger equation is all there is in the world, why doesn't

the result of the measurement come out of the Schroedinger equation? Well, people think very

hard about it, and they come up with all kinds of interesting things.

Nevertheless, nothing that comes out is sufficiently clear and sufficiently useful to merit a

discussion at this moment. It's very interesting, and it's subject of research, but nobody has

found a flaw with this way of stating things. And it's the simplest way of stating things. And

therefore, the measurement is an extra assumption, an extra postulate. That's how a

measurement works. And after you measure, you leave the system, the Schroedinger

equation takes over and keeps evolving. You measure again, something happens, there's

some answer that gets realized. Some answers are not realized, and it so continues.


