Quantum Physics [ (8.04) Spring 2016
Assignment 7

MIT Physics Department Due Friday April 8, 2016
April 1, 2016 12:00 noon

Reading: Griffiths sections 2.5 and 2.3.

Problem Set 7

1. Two delta functions [15 points]

Consider a particle of mass m moving in a one-dimensional double well potential
V(z)=—go(x —a)—gé(x+a), ¢g>0.

(a) Find transcendental equations for the bound state energy eigenvalues of the
system. Plot the energy levels in units of h?/(ma?) as a function of the dimen-
sionless parameter A = mag/h?. Explain the features of the plot.

(b) In the limit of large separation 2a between the wells find a simple formula for
the splitting between the ground state and the first excited state.

2. Sketching wavefunctions. Griffiths 2.47, p. 87. [10 points]

In this problem you should try to figure out intuitively how the solutions look. It is
a good idea then to check your intuition with the shooting method and the setup of
the H; ion.

3. Harmonic oscillators beyond the turning points [10 points]

For the simple harmonic oscillator energy eigenstates with n = 0,1, and 2, calculate
the probability that the coordinate = takes a value greater than the amplitude of a
classical oscillator of the same energy.

4. Harmonic oscillator computations [15 points]

(a) Calculate the expectation value of ! on the energy eigenstate with number n.

(b) Calculate Az and Ap on the energy eigenstate with number n. What is the
value of the product AxAp?
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(c) Consider the polynomials H, (&) defined by the generating function

oo n

—52+42s s
€ P2t = ZHn(g)ﬁ

n=0

Verify that H,,(§) = (2£)"+. .. where the dots represent terms with lower powers
of £&. Show that the polynomials H, () so defined satisfy the Hermite differential
equation:

H! —2¢H! +2nH, = 0.

5. Harmonic oscillator and a wall. Griffiths Problem 2.42. p. 86. [ 5 points]

6. Harmonic oscillator oscillating! [10 points]

A particle of mass m in a harmonic oscillator with frequency w has an initial, time
zero wavefunction

U(x,0) = %(800(93) L),

where ¢y and ¢; are the normalized eigenstates of the Hamiltonian with number
eigenvalue zero and one, respectively.

(a) Write down W(x,t) and |¥(z,t)|*. You may leave your expressions in terms of
@o and ;.

(b) Find (z) as a function of time. What is the amplitude of this oscillation and
what is its frequency?

(c) Find (p) as a function of time.

(d) Show that for any harmonic oscillator state, the probability distribution |¥(x, t)|?
is equal to |¥(xz, ¢+ T)[* for T = 2%
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