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1 The Delta Function Potential

Consider a particle of mass m moving in a one-dimensional potential. The potential V (x) is is rather

singular: it vanishes for all x except for x = 0 at which point it has infinite strength. More precisely,

the potential is delta function localized at x = 0 and is written as

V (x) = −α δ(x), α > 0 , (1.1)

Here α is a constant chosen to be positive. Because of the explicit minus sign, the potential is infinitely

negative at x = 0; the potential is attractive. The potential is shown in Fig. 1, where we represent the

delta function by an arrow pointing downwards.

Figure 1: A delta function well.

We want to know if this potential admits bound states. For a bound state the energy E must

be negative: this ensures that all of x =6=6 0 is classically forbidden, and the wavefunction will decay

rapidly allowing a normalized solution. A bit of intuition comes by thinking of the delta function as

approximated by a finite square well in the limit as the width of the well goes to zero and the depth

goes to infinity in such a way that the product, representing the ”area” is finite (the delta function

is a function with unit area, as it is clear from its integral). In Figure 2 we show two finite-well

representations and sketch the wavefunction. We can see that the middle region provides the curving
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Figure 2: The delta function potential viewed as the limit as the finite square well becomes narrower and
deeper simultaneously. We expect to get a wavefunction with discontinuous derivative.

of the wavefunction needed to have a smooth derivative. In the limit as the width of the region goes

to zero we would expect, if there is a bound state, to have discontinuous derivative.

We can get further insight by considering units. The dimension-full constants in the problem are

α,m, and ~. Since a delta function has units of one over length, the constant α must have units of

energy times length for the potential to have units of energy. Thus we have, as units

α
E = , (1.2)

L

but, as usual, the units of energy are
~2

E = . (1.3)
mL2

From these two equations we find

~2 mα2

L =
mα

! E = . (1.4)
~2

t be carried by the above combination of the constants of the problem.

f any bound state must be a number times that combination:

mα2

Eb = −# . (1.5)
~2

itive number that we aim to determine. It is good to see α appearing in the

hat as the strength of the delta function increases, the depth of the bound

would naturally expect!

e relevant equations. We want to find an E < 0 state. The wavefunction is

ndependent Schrödinger equation

~2 d2ψ− = (E x
2m d 2

− V ( ))ψ. (1.6)
x
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For x = 0, we have V (x) = 0, so this becomes

d2ψ 2
=

dx2

(
mE�
~2

)
mE

ψ = κ2ψ κ2
2

, � � > 0. (1.7)
~2

The solutions to this differential equation are of the form

eκx, e�κx , κ > 0 . (1.8)

The potential is even: δ(�x) = δ(x), so if we have a ground state it must be even and, of course, have

no nodes. If there is an excited state, it must be odd and thus have a node at x = 0. The only odd

solution we can build with the above exponentials is sinhκx. But a ψ � sinhκx cannot be normalized,

it blows up at x = �1. Therefore there cannot be an excited state in the delta function potential. If

there are bound states there is just one of them!

Let us use the above solutions to build the the ground state wavefunction. First, we can see that

for x > 0 we must discard the solution eκx, because it diverges as x!1. Similarly we must discard

e�κx for x < 0. Since the wavefunction must be continuous at x = 0 the solution must be of the form

ψ(x) =

{
Ae�κx x > 0 ,

(1.9)
Aeκx x < 0 .

Is any value of κ allowed for this solution? No, we will get another constraint by considering

the derivative of the wavefunction and learning that, as anticipated, it is discontinuous. Indeed, the

Schrödinger equation gives us a constraint for this discontinuity. Starting with

~2 d2ψ� + V (x)ψ = Eψ , (1.10)
2m dx2

we integrate this equation from �ε to ε, with 0 < ε � 1, a range that includes the position of the

delta function. This gives

~2�
2m

(
dψ

dx

∣∣ dψ

ε

�
dx

∣∣
�ε

) ε

+

∫
dx ( δ ψ

�ε
�α (x)) (x) = E

∫ ε

dx ψ(x) . (1.11)
�ε

The integral on the left-hand

∣∣
side returns

∣∣
a finite value due to the delta function. In the limit as

ε! 0 the integral on the right-hand side vanishes because ψ(x) is finite for all x, while the region of

integration is contracting away. This yields

~2� lim
2m ε!0

(
dψ

dx

∣∣ dψ

ε

�
dx

∣∣
�ε

)
� αψ(0) = 0 . (1.12)

We define the discontinuity ∆0 of ψ0 at x = 0

∣∣
as

∣∣

∆0

(
dψ

dx

)
� lim

ε!0

(
dψ dψ

. (1.13)
dx

∣∣
ε

�
dx

∣∣
�ε

)
We have therefore learned that

∣∣ ∣∣

2
0

(
dψ

∆
dx

)
mα

= � ψ(0) . (1.14)
~2
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Note that the discontinuity in ψ0 at the position of the delta function is proportional to the value of

the wavefunction at that point. At a node a delta function would have no effect; ψ0 would also be

continuous.

Applying the discontinuity equation to our solution (1.9), we have( dψ
lim

∣∣∣ dψ 2mα∣ − = lim κAe−κε κAe−κε = 2κA = A . (1.15)
ε!0 dx ε dx

∣∣
−ε

)
ε!

(
−

)
− −

~20
−

This relation fixes the value of

∣∣
κ

mα
κ = , (1.16)

~2
and therefore the value Eb of the bound state energy

~2κ2 1 mα2

Eb = − = − � . (1.17)
2m 2 ~2

As we anticipated with the unit analysis, the answer takes the required form (1.5) and the undetermined

constant # takes the value 1/2.

2 The Node Theorem

Recall the infinite well potential {
0 0 < x < a ,

V (x) = (2.18)
1 elsewhere.

The bound states take the form √
2 ( )nπx

ψn(x) = sin (2.19)
a a

and corresponding energies
~2n2

En = , n = 1, 2, . . . (2.20)
2ma2

Note that ψn has n − 1 nodes (zeroes). (The points x = 0 and x = a are not nodes, but rather

endpoints.)

′

′

→ →

·

∞

Figure 3: A smooth potential that goes to infinity as |jxj ! 1| → ∞.
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This leads us to the node theorem. Consider a potential V (x) that is continuous and satisfies

V (x)!1 as jxj ! 1 (Fig. 3). This potential has a number of bound states (energy eigenstates that

satisfy ψ ! 0 as jxj ! 1), which we index ψ1, ψ2, ψ3, . . . . Recall also that there are no degenerate

bound states in one dimension. The node theorem states that ψn has n − 1 nodes. We will give an

intuitive, non-rigorous explanation of this phenomenon.

For this argument we also recall that ψ(x0) = ψ0(x0) = 0 implies that ψ(x) = 0 for all x. One can-

not have vanishing derivative at a zero of the wavefunction. That applies to nodes or finite endpoints.

→∞ | | → ∞
→ | | → ∞

′

Figure 4: The screened potential Va(x).

First, we examine the potential and fix the location of x = 0 at a minimum. We then define the

screened potentials Va(x) as follows:

V (x) x < a ,
Va(x) =

{
|j |j

(2.21)
1 j∞ |xj| > a .

As shown in Fig. 4, the screened potential Va(x) is an infinite well of width 2a whose bottom is the

taken from V (x). The argument below is based on two plausible assumptions. First: As a ! 1→ ∞ the

bound states of Va(x) become the bound states of V (x). Second: As a is increased the wavefunction

and its derivative are continuously stretched and deformed.

When a is very small, Va(x) is approximately a very narrow infinite well with a flat bottom – an

infinite square well. This is because we chose x = 0 to be a minimum and any minimum is locally flat.

On this infinite square well the node theorem holds. The ground state, for example, will vanish at the

endpoints and will have no nodes. We will now argue that as the screen is enlarged we can’t generate

a node. This applies to the ground state, as we explicitly discuss below, and to all other states too. If

we can’t generate nodes by screen enlargement the node theorem applies to V (x).

Why is this the case? Consider how we might develop an additional node while stretching the

screen. To start with, consider the ground state in the top part of Figure 5. There is no node at this

value of the screen and we have ψ′0(−a) > 0 (left wall) and ψ′0(a) < 0 (right wall). Suppose that as

we increase a we produce a node, shown for the larger screen a′0 below. For this to happen the sign of

ψ′0 at one of the endpoints must change. In the case shown it is the right endpoint that experiences a

change in the sign of ψ′0. With the assumption of continuous stretching there would have to be some

intermediate screen at which ψ′0 = 0 at the right endpoint. But in that case, ψ = ψ′0 = 0 at this

endpoint, and then ψ(x) = 0 for all x, which is clearly impossible.
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Figure 5: Introducing a single node requires changing the sign of the derivative at the right endpoint: ψ′(a) < 0
but ψ′(a′) > 0. At some intermediate screen, the value of ψ′ at the right endpoint must become zero. But this
is impossible.

Figure 6: Introducing two nodes by having the wavefunction cross the x-axis in between the two boundaries
(compare top and bottom). This is not possible as it would require in an intermediate screen (middle) in which
ψ = ψ′ = 0 at some point.

It is possible to introduce nodes without changing the sign of ψ0 at either endpoint. In this process,

shown in Fig. 6, the wavefunction dips and produces two new nodes. This process can’t take place,

however. Indeed, for some intermediate screen the wavefunction must be tangential to the x axis and

at this point we will have ψ = ψ0 = 0, which is impossible.

We conclude that we cannot change the number of nodes of any wavefunction as we stretch the

screen. The n-th excited state of the tiny infinite square well, with n− 1 nodes will turn into the n-th

excited state of V (x) with n − 1 nodes. In the tiny infinite square well the energy levels are ordered

6
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in increasing energy by the number of nodes. The same is true at all stages of the stretching screen

and therefore for true for V (x). Any two consecutive energy levels cannot get permuted because, by

continuity, this would require a situation where we have a degeneracy, which is not possible.

3 Harmonic Oscillator

The classical harmonic oscillator is a rich and interesting dynamical system. It allows us to understand

many kinds of oscillations in complex systems. The total energy E of a particle of mass m moving in

one dimension under the action of a restoring force F = −kx, k > 0, is usually written as

E = 1
2 mv

2 + 1kx2 . (3.22)2

The first term is the kinetic energy and the second term is the potential energy

V (x) = 1kx2 . (3.23)2

The potential is quadratic in x. In such a system the particle performs oscillatory motion with angular

frequency ω given by

ω =

√
k

k
m

→ = mω2 . (3.24)

Trading k for ω and using the momentum to express the kinetic energy, we can rewrite E as follows

p2
E =

2m
+ 1mω2 x2 . (3.25)2

This is all for the classical harmonic oscillator.

The quadratic potential is ubiquitous in physics, as it arises to first approximation when we expand

an arbitrary potential around a minimum. To show this consider an arbitrary potential V (x) with a

minimum at x0. For x ≈ x0, we can use a Taylor expansion to write

V (x) = V (x0) + (x− x0)V ′(x0) + 1(x x0)
2V (x x 3

0) + ((x 0) ) . (3.26)2 − ′′ O −

Since x0 is a critical point V ′(x0) = 0. Dropping the higher order terms, we then have that the

potential is approximately quadratic

V (x) ≈ V (x0) + 1V ′′(x0)(x− x0)2. (3.27)2

This is a good approximation for x close to x0. Since x0 is a minimum V ′′(x0) > 0 and this is a

harmonic oscillator centered at x0 and with k = V ′′(x0). The additive constant V (x0) has no effect

on the dynamics.

Faced with the question of defining a quantum harmonic oscillator we are inspired by the above

expression (3.25) for the energy and declare that x̂ and p̂ will be operators with [x,ˆ p̂] = i~ and that
ˆthe Hamiltonian H is given by

p̂2
Ĥ =

2m
+ 1mω2x̂2, [x,ˆ p̂ ] = i . (3.28)2 ~

The harmonic oscillator potential in here is

V (x) = 1
2 mω

2x2. (3.29)
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Note that ω has units of frequency: [ω] = 1/T . We can use this to construct a characteristic energy

~ω. The quantum harmonic oscillator is a rather natural system directly inspired by the classical

oscillator.

Our first step is finding the energy eigenstates, the solutions of the time-independent Schrödinger

equation:
~2 d2ϕ(x) 1� + mω2x2ϕ(x) = Eϕ(x). (3.30)
2m dx2 2

Here both E and ϕ(x) are unknown. We expect that energy eigenstates only exist for certain quantized

values of E.

As a first step we will clean the equation of dimensionful constants. This helps us appreciate better

the equation at hand. Moreover, it would allow us to easily put the equation on a computer. Each

term in the equation must have units of energy times units of ϕ, as we can see by looking at the

right-hand side of the equation. Note that the units of ϕ are not relevant to the consistency of the

equation, as ϕ appears on each term. We can therefore ignore the units of ϕ. The units of energy

on the left- hand side are constructed on the first term by a combination of constants and derivatives

and in the second term by a combination of constants and powers of x. If we could work with a unit

free coordinate u instead of x the units of energy would have to be produced just by the constants in

the problem, and as we have seen, the only possibility is ~ω. A common ~ω factor will then simplify

tremendously the structure of the equation as it will allow us to define a unit free energy!

We therefore begin by introducing a unit-free coordinate u to replace the conventional coordinate x.

We set

x = a u, u unit free, [a] = L , (3.31)

where a must be a constant with units of length. To determine a in terms of ~,m, and ω we equate a

characteristic kinetic energy to a characteristic potential energy:

~2
= mω2a2

ma2
! a2

~
= . (3.32)

mω

Now, plugging x = au into the time-independent Schrödinger equation yields

~2 d2ϕ(u) 1� + mω2a2u2ϕ(u) = Eϕ(u). (3.33)
2ma2 du2 2

Here, we have used
d du d 1 d

= = . (3.34)
dx dx du a du

~2Note that 2
2 = ~ω and mω a2 = ~ω, so we have

ma

�1 d2ϕ(u)
2~ω + 1

2 2~ωu
2ϕ(u) = Eϕ(u). (3.35)

du

We can see that things are working. As expected the energy units on the left-hand side are carried by

~ω! Multiplying by 2 , we reach~ω

d2ϕ(u)� + u2ϕ(u) = (
2

Eϕ u), (3.36)
du

where we have defined a unit free energy E :

2EE � , E = 1

~ω 2~ω E . (3.37)

8

−

→

−

−

−

≡



If we know the pure number E we then know the energy E. Rearranging, we reach the cleaned-up

version of the time-independent Schrödinger equation:

d2ϕ
= (u2 )ϕ . (3.38)

du2
� E

This is our simplified, unit free version of the time-independent Schrödinger equation. It is clearly less

cluttered than (3.30).

The above differential equation must have solutions for all values of the energy parameter E ,

after all you could integrate it on a computer! Quantization must arise because solutions are not

normalizable except for special values of E . To understand this issue as it relates to the equation we

examine solutions for large values of juj. In this limit, E can be ignored as compared to u2, and we

have the approximate equation

ϕ00(u) � u2ϕ(u). (3.39)

This equation cannot be solved by any polynomial! If ϕ is a polynomial of degree n, the degree of the

left hand side would be n � 2 and that of the right-hand side n + 2. This cannot work. Let’s try a

solution of the form
2

ϕ(u) = ukeαu /2. (3.40)

The leading term in ϕ00 comes when we differentiate the exponential:

ϕ00(u) � α2u2ϕ(u) as juj ! 1. (3.41)

Comparing with (3.39) we have solutions for α = �1, in which case we have

2 2
ϕ(u) � Auke�u /2 +Bukeu /2 as juj ! 1 . (3.42)

The solution with coefficient B would not yield an energy eigenstate because it diverges as juj ! 1
and would not be normalizable. Note that the uk factor played no role in the analysis. This factor,

however suggests that a polynomial multiplying e�u
2/2 could be a solution of the differential equation.

This analysis suggests that, for our purposes, we should write

ϕ(u) = h(u)e�u
2/2 . (3.43)

Note that there is no assumption or loss of generality in writing this expression. Indeed, any function
2 2 2

ϕ(u) and be written some other function times e�u /2 as it is immediately clear (ϕ(u)eu /2)e�u /2.

In writing (3.43) we are only hoping that the differential equation for h(u) is simpler. Clearly, if we

find h(u) we have found ϕ(u). We actually expect that h(u) may be a polynomial because the ansatz

captures the large juj dependence that prevents the solution for ϕ(u) from being a polynomial.

Plugging (3.43) into (3.38) and simplifying, we find a second-order linear differential equation for

h(u):

d2h dh� 2u + (E � 1)h = 0 . (3.44)
du2 du

It is actually possible at this point to see that getting a polynomial solution requires quantization of E
Indeed, assume that h(u) is a polynomial of degree j:

h(u) = uj + α1u
j�1 + α2u

j�2 + . . . . (3.45)
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In the above equation the first term is then a polynomial of degree j� 2. Each of the other two terms

are polynomials of degree j. For the equation to make sense the coefficient of contributions to the

coefficient of uj and uj�1 must vanish. The coefficient of uj is

Coefficient of uj : �2j + E � 1 = 0 ! E = 2j + 1 . (3.46)

Thus, we get the quantization of energy: a polynomial solution h(u) of degree j requires E = 2j + 1.

You may wonder about the subleading term of degree j � 1 whose coefficient must also vanish.

Coefficient of uj�1 : (�2(j � 1) + E � 1)α1 = 0 . (3.47)

Since the energy E has already been fixed, the only way to satisfy this condition is to set α1 = 0. Thus

the polynomial is actually of the form

h(u) = uj + α2u
j�2 + . . . . (3.48)

If this is supposed to lead to an energy eigenstate the vanishing of α1 could have been anticipated.

Since the harmonic oscillator potential is even we know that bound states must be either even or odd.

Since e�u
2/2 is even, the solution ϕ(u) will be either even or odd if h(u) is even or odd. If α1 had not

vanished, h(u) would have two consecutive powers of u and could not be either even or odd.

We can analyze the equation more systematically using a series expansion:

∑1
h(u) = aku

k. (3.49)
k=0

A simple way to plug into the differential equation (3.44) is to select from each term the contribution

to the coefficient of uj . For this one can imagine the terms aju
j + aj+1u

j+1 + aj+2u
j+2 in h(u) and

select the piece that contributes to the coefficient of uj :

d2h
Contribution from: : (j + 2)(j + 1)aj+2

du2

dh (3.50)Contribution from: � 2u :
du

� 2jaj

Contribution from: (E � 1)h : (E � 1)aj

The total coefficient of uj in the left hand side of the differential equation must be set to zero, for all

values of j, for the differential equation to be satisfied. Therefore

(j + 2)(j + 1)aj+2 � 2jaj + (E � 1)aj = 0 , j = 0, 1, 2, . . . (3.51)

This can be written as a recursion relation:

2j + 1
aj+2 =

� E
aj , (3.52)

(j + 2)(j + 1)

This is a two-step recurrence relation. If you choose some a0 you can construct a solution that contains

only odd coefficients, a2, a4, . . . as determined recursively by the above relation. That solution, of the

form

a0 + a2u
2 + a4u

4 + � � � (3.53)
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would be even. Another solution is constructed by choosing some a1 and then using the above recursion

to find a3, a5, . . .. That solution, of the form

a1u+ a3u
3 + � � � . (3.54)

would be odd. For any arbitrary value of E both solutions of the differential equation (3.44) exist, but

neither one would be polynomial and neither one would be expected to be a good energy eigenstate.

The general solution to (3.44) with arbitrary E is thus determined by the two constants (a0, a1) as

they together determine all coefficients. This makes sense, because a0 = h(0) and a1 = h0(0) and

the solution of a second order differential equation is be determined by knowing the function and its

derivative at any point.

Let us now demonstrate that if the series for h(u) never stops the corresponding ϕ(u) is not an

acceptable energy eigenstates. Let us see what would be the large u behavior of h(u) if it does not

terminate. For large j the recursion relation (3.52) gives

aj+2 2

aj
� . (3.55)

j

What kind of function grows this way? Note that

eu
2

1
1 n 1

= u (3.56)
(

n

∑
u

n!
=0

(
2
)

=
j2

∑
j .

j/2)!
even

This series has coefficients cj = 1 for even j, and so we see that(j/2)!

cj+2 (j/2)! 2 2
= =

cj ((j + 2)/2)! j + 2
� , (3.57)
j

for large j. This is just the behavior noted in (3.55) for h(u). So, if the series for h(u) does not

terminate the wavefunction is behaves like

2 2 2 2
ϕ(u) = h(u)e�u /2 � eu e�u /2 � eu /2, (3.58)

which is the bad solution we identified in (3.42). This proves that h(u) must be a polynomial and the

recursion relation must terminate for us to get an energy eigenstate!

Now we discuss how to get a polynomial h(u), although the main conclusion was anticipated earlier

in (3.46). If h(u) is to be of degree j it must have non vanishing aj and vanishing aj+2, as determined

from the recursion relation (3.52). The numerator in this recursion relation must vanish and we must

choose E such that

2j + 1� E = 0 . (3.59)

The solution will then take the form:

h(u) = a uj + a uj 2
j j�2

� + � � � , (3.60)

with powers decreasing in steps of two because this is what the recursion relation demands for having

a solution. The solution will therefore be automatically even (if j is even) or odd (if j is odd). Say j

is even and the solution is even with energy 2j + 1 as required. The second solution of the differential

equation for that value of the energy would be odd, but the energy 2j+ 1 that made the even solution
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terminate will not make the odd solution terminate. This means that the second solution of the

differential equation is not an energy eigenstate.

We usually call the degree j of the solution using the letter n. Then,

E = 2n+ 1 , n = 0, 1, 2, . . . (3.61)

corresponds to the polynomial solution

hn(u) = anu
n + an 2u

n�2 + � � � , n = 0, 1, 2, . . . (3.62)�
2

The energy of the solution ϕn(u) = hn(u)e�u /2 is

~ω ~ω
E = E = (2n+ 1). (3.63)

2 2

We have

En = ~ω
( 1
n+

)
, n = 0, 1, 2, . . . (3.64)

2
We see that the energies are quantized and the energy levels are evenly spaced. The ground state

energy is E0 = ~ω/2. The corresponding power series solutions hn(u) are the Hermite polynomials,

usually denoted as Hn(u)

Hn(u) = 2nun � � � � . (3.65)

The factor of 2n here is a convention choice. The Hermite polynomials are solutions of (3.44) with

E = 2n+ 1 therefore they satisfy the differential equation

d2Hn dH� n
2u + 2nHn = 0. (3.66)

du2 du

The first several Hermite polynomials are

H0(u) = 1

H1(u) = 2u
(3.67)

H2(u) = 4u2 � 2

H3(u) = 8u3 � 12u .

The generating function for the Hermite polynomials is an exponential, with formal parameter z:∑1
z2+2zu zn

e� = Hn(u). (3.68)
n!

u=0

It is not too hard to show that the polynomials defined by this expansion satisfy the requisite differential

equation (3.66) and are normalized as claimed in (3.65).

2 2 2 2 ~Let us write the energy eigenstates in terms of x. Recalling that u = x /a , where a = themω

relation

� �u2ϕn(u) Hn(u)e /2, (3.69)

then gives us
mω mω 2

ϕn(x) = NnHn

where N is a normalization constant.

(
x

√
~

)
e� x

2~ n = 0, 1, 2, . . . , (3.70)

n

Andrew Turner transcribed Zwiebach’s handwritten notes to create the first LaTeX version of this

document.
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