MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Solutions to Problem Set \#6

Problem 1: Sound Waves in a Solid

We need to find $(\partial T / \partial P)_{\Delta Q=0}$. To do this we will use in sequence the first law, the energy derivative given in the statement of the problem, and the chain rule for partial derivatives.

$$
\begin{aligned}
d Q & =d U-\not d W=d U+P d V \\
& =\underbrace{\left(\frac{\partial U}{\partial T}\right)_{V}}_{C_{V}} d T+\underbrace{\left[\left(\frac{\partial U}{\partial V}\right)_{T}+P\right]}_{A} d V=0 \\
A & =T\left(\frac{\partial P}{\partial T}\right)_{V}=T \frac{\left(\frac{\partial V}{\partial T}\right)_{P}}{\left(\frac{\partial T}{\partial V}\right)_{P}\left(\frac{\partial V}{\partial P}\right)_{T}}=\frac{\alpha T}{-\left(\frac{\partial V}{\partial P}\right)_{T}}=\frac{\alpha}{\kappa_{T}} \\
0 & =C_{V} d T+\frac{\alpha T}{\kappa_{T}} d V
\end{aligned}
$$

Now express $d V$ in terms of $d T$ and $d P$,

$$
d V=\left(\frac{\partial V}{\partial T}\right)_{P} d T+\left(\frac{\partial V}{\partial P}\right)_{T} d P=\alpha V_{0} d T-\kappa_{T} V_{0} d P
$$

and substitute in to the adiabatic condition

$$
\begin{aligned}
0 & =C_{V} d T+\frac{\alpha T}{\kappa_{T}}\left(\alpha V_{0} d T-\kappa_{T} V_{0} d P\right) \\
\alpha T V_{0} d P & =\left(C_{V}+\frac{\alpha^{2} T V_{0}}{\kappa_{T}}\right) d T \\
\frac{\Delta T}{\Delta P} & =\frac{\alpha T}{\left(\frac{C_{V}}{V_{0}}\right)+\left(\frac{\alpha^{2} T}{\kappa_{T}}\right)}
\end{aligned}
$$

Problem 2: Energy of a Film
a) The best approach to take here is to find a general expression for C_{A} and then show that its derivative with respect to A is zero.

$$
\begin{array}{rlrl}
C_{A} & \left.\equiv \frac{d Q}{d T}\right|_{A} & \\
& =T\left(\frac{\partial S}{\partial T}\right)_{A} & & \text { by the second law } \\
\left(\frac{\partial C_{A}}{\partial A}\right)_{T} & =T \frac{\partial^{2} S}{\partial A \partial T} & & \\
& =T \frac{\partial}{\partial T}\left(\left(\frac{\partial S}{\partial A}\right)_{T}\right)_{A} & & \text { interchanging order of the derivatives }
\end{array}
$$

We use a Maxwell relation to find $(\partial S / \partial A)_{T}$. Note that S and \mathcal{S} are different variables. I would normally construct a magic square to find the equivalent derivatives, but for clarity I will go through the more fundamental route here.

$$
\begin{aligned}
& d E=T d S+\mathcal{S} d A \\
& d F=d E-d(T S)=-S d T+\mathcal{S} d A
\end{aligned}
$$

Since F is a state function, the cross derivatives must be equal.

$$
-\left(\frac{\partial S}{\partial A}\right)_{T}=\left(\frac{\partial \mathcal{S}}{\partial T}\right)_{A}=-\frac{N k}{A-b}
$$

Substitute this result into the expression for the derivative of the heat capacity.

$$
\left(\frac{\partial C_{A}}{\partial A}\right)_{T}=T \frac{\partial}{\partial T}\left(\frac{N k}{A-b}\right)_{A}=0
$$

This shows that the heat capacity at constant area does not depend on the area: $C_{A}(T, A)=$ $C_{A}(T)$.
b) Now we find the exact differential for the energy and integrate up.

$$
\begin{aligned}
d E & =T d S+\mathcal{S} d A \\
& =\underbrace{T\left(\frac{\partial S}{\partial T}\right)_{A}}_{C_{A}(T)} d T+\underbrace{\left(T\left(\frac{\partial S}{\partial A}\right)_{T}+\mathcal{S}\right)}_{-\frac{N k T}{A-b}+\mathcal{S}=0} d A \\
& \Rightarrow\left(\frac{\partial E}{\partial A}\right)_{T}=0 \\
E(T, A) & =E(T) \\
& =\int_{0}^{T} C_{A}\left(T^{\prime}\right) d T^{\prime}+E(T=0)
\end{aligned}
$$

Problem 3: Bose-Einstein Gas
a) In this problem, we just follow the directions.

$$
\begin{aligned}
d E & =T d S-P d V \\
& =\underbrace{T\left(\frac{\partial S}{\partial T}\right)_{V}}_{C_{V}} d T+\left(T\left(\frac{\partial S}{\partial V}\right)_{T}-P\right) d V \\
d F & =d E-d(T S)=-S d T-P d V \\
& \Rightarrow-\left(\frac{\partial S}{\partial V}\right)_{T}=-\left(\frac{\partial P}{\partial T}\right)_{V} \\
\left(\frac{\partial P}{\partial T}\right)_{V} & =(5 / 2) a T^{3 / 2}+3 b T^{2}=\left(\frac{\partial S}{\partial V}\right)_{T} \\
\left(T\left(\frac{\partial S}{\partial V}\right)_{T}-P\right) & =(5 / 2) a T^{5 / 2}+3 b T^{3}-a T^{5 / 2}-b T^{3}-c V^{-2} \\
& =(3 / 2) a T^{5 / 2}+2 b T^{3}-c V^{-2}
\end{aligned}
$$

Collecting this all together gives

$$
d E=\left(d T^{3 / 2} V+e T^{2} V+f T^{1 / 2}\right) d T+\left((3 / 2) a T^{5 / 2}+2 b T^{3}-c V^{-2}\right) d V
$$

b) Use the fact that the energy is a state function which requires that the cross derivatives must be equal.

$$
\begin{aligned}
\frac{\partial}{\partial V}\left(\left(\frac{\partial E}{\partial T}\right)_{V}\right)_{T} & =\frac{\partial}{\partial T}\left(\left(\frac{\partial E}{\partial V}\right)_{T}\right)_{V} \\
d T^{3 / 2}+e T^{2} & =(15 / 4) a T^{3 / 2}+6 b T^{2} \\
& \Rightarrow d=(15 / 4) a, \quad e=6 b
\end{aligned}
$$

c) Use the results from b) to simplify the expression for $d E$ in a).

$$
d E=\left((15 / 4) a T^{3 / 2} V+6 b T^{2} V+f T^{1 / 2}\right) d T+\left((3 / 2) a T^{5 / 2}+2 b T^{3}-c V^{-2}\right) d V
$$

Integrate with respect to T first.

$$
\begin{aligned}
E & =(3 / 2) a T^{5 / 2} V+2 b T^{3} V+(2 / 3) f T^{3 / 2}+\mathcal{F}(V) \\
\left(\frac{\partial E}{\partial V}\right)_{T} & =(3 / 2) a T^{5 / 2}+2 b T^{3}+\mathcal{F}^{\prime}(V) \quad \text { from above } \\
& =(3 / 2) a T^{5 / 2}+2 b T^{3}-c V^{-2} \quad \text { from } d E \\
& \Rightarrow \mathcal{F}^{\prime}=-c V^{-2}, \quad \mathcal{F}=c V^{-1}+K_{E} \\
E & =(3 / 2) a T^{5 / 2} V+2 b T^{3} V+(2 / 3) f T^{3 / 2}+c V^{-1}+K_{E}
\end{aligned}
$$

d) Proceed just as we did above for E.

$$
\begin{aligned}
d S & =\underbrace{\left(\frac{\partial S}{\partial T}\right)_{V}}_{C_{V} / T} d T+\underbrace{\left(\frac{\partial S}{\partial V}\right)_{T}}_{\left(\frac{\partial P}{\partial T}\right)_{V} \text { from a) }} d V \\
& =\left(d T^{1 / 2} V+e T V+f T^{-1 / 2}\right) d T+\left((5 / 2) a T^{3 / 2}+3 b T^{2}\right) d V
\end{aligned}
$$

Integrate with respect to T first.

$$
\begin{array}{rlr}
S & =\underbrace{(2 / 3) d V T^{3 / 2}}_{(5 / 2) a V T^{3 / 2}}+\underbrace{(1 / 2) e V T^{2}}_{3 b V T^{2}}+2 f T^{1 / 2}+\mathcal{G}(V) \\
\begin{array}{rlr}
\left(\frac{\partial S}{\partial V}\right)_{T} & =(5 / 2) a T^{3 / 2}+3 b T^{2}+\mathcal{G}^{\prime}(V) & \text { from above } \\
& =(5 / 2) a T^{3 / 2}+3 b T^{2} \quad & \text { from } d S \\
& \Rightarrow \mathcal{G}^{\prime}(V)=0, \quad \mathcal{G}(V)=K_{S} & \\
S(T, V) & =\underline{(5 / 2) a V T^{3 / 2}+3 b V T^{2}+2 f T^{1 / 2}+K_{S}}
\end{array}{ } \begin{array}{l}
\\
\end{array}
\end{array}
$$

Problem 4: Paramagnet

a) This is virtually identical in approach to problem 2.

$$
\begin{array}{rlrl}
C_{M} & \left.\equiv \frac{d Q}{d T}\right|_{M} & \\
& =T\left(\frac{\partial S}{\partial T}\right)_{M} & & \text { by the second law } \\
\left(\frac{\partial C_{M}}{\partial M}\right)_{T} & =T \frac{\partial^{2} S}{\partial M \partial T} & & \\
& =T \frac{\partial}{\partial T}\left(\left(\frac{\partial S}{\partial M}\right)_{T}\right)_{M} & & \text { interchanging order of the derivatives }
\end{array}
$$

We will need $H(T, M)$ for what follows.

$$
M=\frac{A}{T-T_{0}} H \quad \Rightarrow \quad H=\frac{M}{A}\left(T-T_{0}\right)
$$

We use a Maxwell relation to find $(\partial S / \partial M)_{T}$.

$$
\begin{aligned}
& d E=T d S+H d M \\
& d F=d E-d(T S)=-S d T+H d M
\end{aligned}
$$

Since F is a state function, the cross derivatives must be equal.

$$
-\left(\frac{\partial S}{\partial M}\right)_{T}=\left(\frac{\partial H}{\partial T}\right)_{M}=\frac{M}{A}
$$

Substitute this result into the expression for the derivative of the heat capacity.

$$
\left(\frac{\partial C_{M}}{\partial M}\right)_{T}=T \frac{\partial}{\partial T}\left(-\frac{M}{A}\right)_{M}=0
$$

This shows that the heat capacity at constant magnetization does not depend on the magnetization: $\underline{C_{M}(T, M)=C_{M}(T)}$.
b)

$$
\begin{aligned}
d E & =T d S+H d M \\
& =\underbrace{T\left(\frac{\partial S}{\partial T}\right)_{M}}_{C_{M}(T)} d T+\underbrace{\left(T\left(\frac{\partial S}{\partial M}\right)_{T}+H\right)}_{-M T / A+H=-M T_{0} / A} d M
\end{aligned}
$$

Do the T integration first.

$$
\begin{array}{rlr}
E(T, M) & =\int_{0}^{T} C_{M}\left(T^{\prime}\right) d T^{\prime}+f(M) \\
& \left.=\frac{\partial E}{\partial M}\right)_{T} & =f^{\prime}(M) \quad \text { from above } \\
& =-\frac{M T_{0}}{A} \quad \text { from } d E \\
& \Rightarrow f(M)=-\frac{M^{2} T_{0}}{2 A}+K_{E} \\
E(T, M) & =\underline{\int_{0}^{T} C_{M}\left(T^{\prime}\right) d T^{\prime}-\frac{M^{2} T_{0}}{2 A}+K_{E}}
\end{array}
$$

c)

$$
\begin{aligned}
d S & =\underbrace{\left(\frac{\partial S}{\partial T}\right)_{M}}_{C_{M}(T) / T} d T+\underbrace{\left(\frac{\partial S}{\partial M}\right)_{T}}_{-M / A \text { from a) }} d M \\
S(T, M) & =\int_{0}^{T} \frac{C_{M}\left(T^{\prime}\right)}{T^{\prime}} d T^{\prime}+g(M)
\end{aligned}
$$

$$
\begin{array}{rlr}
\left(\frac{\partial S}{\partial M}\right)_{T} & =g^{\prime}(M) & \text { from above } \\
& =-\frac{M}{A} & \text { from } d S \\
& \Rightarrow g(M)=-\frac{M^{2}}{2 A}+K_{S} & \\
S(T, M) & =\int_{0}^{T} \frac{C_{M}\left(T^{\prime}\right)}{T^{\prime}} d T^{\prime}-\frac{M^{2}}{2 A}+K_{S}
\end{array}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

