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Solutions to Problem Set #6

Problem 1: Sound Waves in a Solid

We need to find (∂T/∂P )∆Q=0 . To do this we will use in sequence the first law, the energy
derivative given in the statement of the problem, and the chain rule for partial derivatives.
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Problem 2: Energy of a Film

a) The best approach to take here is to find a general expression for CA and then show that
its derivative with respect to A is zero.
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We use a Maxwell relation to find (∂S/∂A)T . Note that S and S are different variables. I
would normally construct a magic square to find the equivalent derivatives, but for clarity I
will go through the more fundamental route here.

dE = T dS + S dA

dF = dE − d(TS) = −S dT + S dA

Since F is a state function, the cross derivatives must be equal.
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Substitute this result into the expression for the derivative of the heat capacity.
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This shows that the heat capacity at constant area does not depend on the area: CA(T,A) =
CA(T ).
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b) Now we find the exact differential for the energy and integrate up.
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Problem 3: Bose-Einstein Gas

a) In this problem, we just follow the directions.
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Collecting this all together gives

dE = (dT 3/2V + eT 2V + fT 1/2)dT + ((3/2)aT 5/2 + 2bT 3 − cV −2)dV
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b) Use the fact that the energy is a state function which requires that the cross derivatives
must be equal.
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dT 3/2 + eT 2 = (15/4)aT 3/2 + 6bT 2

⇒ d = (15/4)a, e = 6b

c) Use the results from b) to simplify the expression for dE in a).

dE = ((15/4)aT 3/2V + 6bT 2V + fT 1/2)dT + ((3/2)aT 5/2 + 2bT 3 − cV −2)dV

Integrate with respect to T first.
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d) Proceed just as we did above for E.
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Integrate with respect to T first.

S = (2/3)dV T 3/2 2 1/2
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S(T, V ) = (5/2)aV T 3/2 + 3bV T 2 + 2fT 1/2 +KS

Problem 4: Paramagnet

a) This is virtually identical in approach to problem 2.
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We will need H(T,M) for what follows.
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We use a Maxwell relation to find (∂S/∂M)T .

dE = T dS +H dM

dF = dE − d(TS) = −S dT +H dM

Since F is a state function, the cross derivatives must be equal.
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Substitute this result into the expression for the derivative of the heat capacity.
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This shows that the heat capacity at constant magnetization does not depend on the mag-
netization: CM(T,M) = CM(T ).
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