MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Solutions to Problem Set \#3

Problem 1: Clearing Impurities

Since we are asked for an approximate answer we will resort to the central limit theorem. For this we need $\langle x\rangle$ and $\left\langle x^{2}\right\rangle$ for a single sweep of the laser beam.

$$
\begin{aligned}
& <x>=\int_{\infty}^{\infty} x p(x) d x=\frac{2}{3} a \underbrace{\int_{0}^{\infty} \xi \exp (-\xi) d \xi}_{1}=\frac{2}{3} a \\
& <x^{2}>=\int_{\infty}^{\infty} x^{2} p(x) d x=\frac{2}{3} a^{2} \underbrace{\int_{0}^{\infty} \xi^{2} \exp (-\xi) d \xi}_{2}=\frac{4}{3} a^{2} \\
& \operatorname{Var}(x)=<x^{2}>-<x>^{2}=\left(\frac{4}{3}-\frac{4}{9}\right) a^{2}=\frac{8}{9} a^{2}
\end{aligned}
$$

The general form of the central limit theorem is

$$
p(d) \approx \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-(d-<d>)^{2} / 2 \sigma^{2}\right]
$$

with

$$
\begin{aligned}
<d> & =36 \times<x>=24 a \\
\sigma^{2} & =36 \times \operatorname{Var}(x)=32 a^{2}
\end{aligned}
$$

Although it was not asked for, here is a sketch of the resulting probability density.

Problem 2: Probability Densities of Macroscopic verses Microscopic Variables
a) Let E_{1} be the kinetic energy of a single atom in the gas. We can begin with the expression for $p\left(E_{1}\right)$ found in problem 4 on Problem Set 2.

$$
\begin{aligned}
p\left(E_{1}\right) & =\frac{2}{\sqrt{\pi}} \frac{1}{k T} \sqrt{\frac{E_{1}}{k T}} \exp \left(-E_{1} / k T\right) \\
<E_{1}> & =\frac{2}{\sqrt{\pi}} \frac{1}{k T} \int_{0}^{\infty} E_{1} \sqrt{\frac{E_{1}}{k T}} \exp \left(-E_{1} / k T\right) d E_{1} \\
& =\frac{2}{\sqrt{\pi}} k T \underbrace{\int_{0}^{\infty} \xi \sqrt{\xi} \exp (-\xi) d \xi}_{0} \underbrace{\Gamma(5 / 2)}_{(3 / 4) \sqrt{\pi}} \\
& =(3 / 2) k T \\
<E_{1}^{2}> & =\frac{2}{\sqrt{\pi}} \frac{1}{k T} \int_{0}^{\infty} E_{1}^{2} \sqrt{\frac{E_{1}}{k T}} \exp \left(-E_{1} / k T\right) d E_{1} \\
& =(k T)^{2} \underbrace{\infty}_{0} \xi^{2} \sqrt{\xi} \exp (-\xi) d \xi \\
& (15 / 4)(k T)^{2} \\
\operatorname{Var}\left(E_{1}\right) & =<E_{1}^{2}>-<E_{1}>^{2}=(3 / 2)(k T)^{2} \\
\sigma_{E_{1}} /<E_{1}> & =\sqrt{\frac{2}{3}}=0.82
\end{aligned}
$$

b) For the sum of N statistically independent variables, the mean is the sum of the means and the variance is the sum of the variances. Thus if E_{N} is the total kinetic energy of the gas

$$
\sigma_{E_{N}} /<E_{N}>=\frac{\sqrt{N} \sqrt{3 / 2} k T}{N(3 / 2) k T}=\frac{1}{\sqrt{N}} \sqrt{\frac{2}{3}}=1.6 \times 10^{-10}
$$

Problem 3: Temperature
a) Solve each equation for V .

$$
V=\left(\frac{n R}{P}\right)\left(\frac{c H}{M}\right) \quad V=\left(\frac{n R}{P}\right)\left(\Theta+\frac{c^{\prime} H^{\prime}}{M^{\prime}}\right)
$$

Equate these two and factor out $n R / P$.

$$
\frac{c H}{M}=\Theta+\frac{c^{\prime} H^{\prime}}{M^{\prime}}=\begin{aligned}
& \text { some constant }, \\
& \text { call it } h
\end{aligned}
$$

Substitution into the first equation gives $P V / n R=h$, so at equilibrium

$$
\frac{P V}{n R}=\frac{c H}{M}=\Theta+\frac{c^{\prime} H^{\prime}}{M^{\prime}}
$$

b) $P V / n R=h$ looks like the ideal gas law with $h \rightarrow T$, so call $h \equiv T$ and thus find the following equations of state.

$$
\begin{array}{rlrl}
P V & =n R T & & \text { for an ideal gas } \\
M & =c \frac{H}{T} & & \text { for a Curie Law Paramagnet } \\
M^{\prime} & =c^{\prime} \frac{H^{\prime}}{T-\Theta} & & \begin{array}{l}
\text { Paramagnet with ordering } \\
\text { phase transition to a }
\end{array} \\
\text { ferromasnet at } t=\Theta
\end{array}
$$

Problem 4: Work in a Simple Solid
Substitute the given model expression relating volume changes to changes in the pressure and the temperature, $d V=-V \mathcal{K}_{T} d P+V \alpha d T$, into the differential for work. As a simplification we are told to replace the actual volume V by its value at the starting point V_{1} in the coefficients entering the differential for the work. Of course the volume itself can not really remain constant, for in that case $\not d W=-P d V=0$.

$$
\not d W=-P d V=\mathcal{K}_{T} P V_{1} d P-\alpha P V_{1} d T
$$

Along path "a"

$$
\begin{aligned}
W_{1 \rightarrow 2} & =\int_{\text {where } \mathrm{dP}=0} \not d W+\int_{\text {where } \mathrm{dT}=0} \not d W \\
& =-\alpha P_{1} V_{1} \int_{1}^{2} d T+\mathcal{K}_{T} V_{1} \int_{1}^{2} P d P \\
& =-\alpha P_{1} V_{1}\left(T_{2}-T_{1}\right)+\frac{1}{2} \mathcal{K}_{T}\left(P_{2}^{2}-P_{1}^{2}\right) V_{1}
\end{aligned}
$$

Along path "b"

$$
\begin{aligned}
W_{1 \rightarrow 2} & =\int_{\text {where } \mathrm{dT}=0} d W+\int_{\text {where } \mathrm{dP}=0} d d W \\
& =\mathcal{K}_{T} V_{1} \int_{1}^{2} P d P-\alpha P_{2} V_{1} \int_{1}^{2} d T \\
& =\underline{\frac{1}{2} \mathcal{K}_{T}\left(P_{2}^{2}-P_{1}^{2}\right) V_{1}-\alpha P_{2} V_{1}\left(T_{2}-T_{1}\right)}
\end{aligned}
$$

Along "c" $d T$ and $d P$ are related at every point along the path,

$$
d T=\frac{T_{2}-T_{1}}{P_{2}-P_{1}} d P
$$

so the expression for the differential of work can be written as

$$
\begin{aligned}
\not d W & =\mathcal{K}_{T} P V_{1} d P-\alpha P V_{1}\left(\frac{T_{2}-T_{1}}{P_{2}-P_{1}}\right) d P \\
& =\left(\mathcal{K}_{T} V_{1}-\alpha V_{1} \frac{T_{2}-T_{1}}{P_{2}-P_{1}}\right) P d P
\end{aligned}
$$

Now we can carry out the integral along the path.

$$
\begin{aligned}
& W_{1 \rightarrow 2}=\left(\mathcal{K}_{T} V_{1}-\alpha V_{1} \frac{T_{2}-T_{1}}{P_{2}-P_{1}}\right) \underbrace{\frac{1}{2}\left(P_{2}^{2}-P_{1}^{2}\right)=} \\
& \frac{1}{2}\left(P_{1}+P_{2}\right)\left(P_{2}-P_{1}\right) \\
&= \underline{\frac{1}{2} \mathcal{K}_{T}\left(P_{2}^{2}-P_{1}^{2}\right) V_{1}-\frac{1}{2} \alpha\left(P_{1}+P_{2}\right)\left(T_{2}-T_{1}\right) V_{1}}
\end{aligned}
$$

Note that the work done along each path is different due to the different contributions from the α (thermal expansion) term. Path "b" requires the least work; path "a" requires the most.

Problem 5: Work and the Radiation Field
The differential of work is $\not d W=-P d V$ and one immediately thinks about trying to express P in terms of V in order to simplify the integral. However, along path "a" this is not necessary: along one part $d V=0$ and along the other the temperature, and hence the pressure, is a constant.

$$
\begin{aligned}
W_{1 \rightarrow 2} & =\int_{1 \mathrm{~T} \text { constant }}^{2} P d V-\underbrace{\int_{1 \mathrm{~V} \text { constant }}^{2} P d V}_{0} \\
& =-\frac{1}{3} \sigma T_{1}^{4} \int_{1}^{2} d V=-\frac{1}{3} \sigma T_{1}^{4}\left(V_{2}-V_{1}\right) \\
& =\frac{1}{3} \sigma T_{1}^{4} V_{2}\left(\frac{V_{1}}{V_{2}}-1\right)
\end{aligned}
$$

Since the figure in the problem indicates that $V_{1}>V_{2}$, the underlined result is positive.
Along path "b" there are no shortcuts and we must prepare to carry out the integral. Since $\not d W$ is expressed in terms of $d V$, we convert the T dependence of P into a function of V.

$$
\begin{aligned}
V T^{3} & =\text { a constant } \equiv V_{1} T_{1}^{3} \\
T & =\left(\frac{V_{1}}{V}\right)^{1 / 3} T_{1} \\
T^{4} & =T_{1}^{4}\left(\frac{V_{1}}{V}\right)^{4 / 3}=T_{1}^{4}\left(\frac{V}{V_{1}}\right)^{-4 / 3}
\end{aligned}
$$

Now we can carry out the integral over the path to obtain the total work done.

$$
\begin{aligned}
W_{1 \rightarrow 2} & =-\int_{1}^{2} P d V=-\frac{1}{3} \sigma \int_{1}^{2} T^{4}(V) d V \\
& =-\frac{1}{3} \sigma T_{1}^{4} \int_{1}^{2}\left(\frac{V}{V_{1}}\right)^{-4 / 3} d V \\
& =-\frac{1}{3} \sigma T_{1}^{4} V_{1} L_{1}^{2}-\frac{1}{1 / 3}\left(\frac{V}{V_{1}}\right)^{-1 / 3} \\
& =\sigma T_{1}^{4} V_{1}\left(\left(\frac{V_{2}}{V_{1}}\right)^{-1 / 3}-1\right) \\
& =\sigma T_{1}^{4} V_{1}\left(\left(\frac{V_{1}}{V_{2}}\right)^{1 / 3}-1\right)
\end{aligned}
$$

Since $V_{1}>V_{2}$, this quantity is also positive.

Problem 6: Equation of State for a Ferromagnet
a) We are looking for the magnetization as a function of the field and the temperature, $M(H, T)$, so we form the differential of M as follows.

$$
d M=\left(\frac{\partial M}{\partial H}\right)_{T} d H+\left(\frac{\partial M}{\partial T}\right)_{H} d T
$$

We are given the two coefficients in the expansion, but must make sure that their cross derivatives are equal as is required for an exact differential.

$$
\begin{aligned}
\frac{\partial}{\partial T}\left(\frac{\partial M}{\partial H}\right)_{T} & =\frac{1}{T_{c}} \frac{a}{\left(1-T / T_{c}\right)^{2}} \\
\frac{\partial}{\partial H}\left(\frac{\partial M}{\partial T}\right)_{H} & =\frac{1}{T_{c}} \frac{f^{\prime}(H)}{\left(1-T / T_{c}\right)^{2}}
\end{aligned}
$$

The equality of these two expressions requires that $f^{\prime}(H)=a$. Integration gives $f(H)=$ $a H+c$ but we are told that $f(0)=0$ so we know that $c=0$. Thus

$$
\underline{f(H)=a H}
$$

b) Now we must integrate the exact differential to find the state function $M(H, T)$.

$$
\begin{aligned}
M(H, T) & =\int\left(\frac{\partial M}{\partial T}\right)_{H} d T+g(H) \\
& =\frac{f(H)}{\left(1-T / T_{c}\right)}+M_{0}\left(1-T / T_{c}\right)^{1 / 2}+g(H) \\
\left(\frac{\partial M}{\partial H}\right)_{T} & =\frac{f^{\prime}(H)}{\left(1-T / T_{c}\right)}+g^{\prime}(H) \quad \text { by calculation from above } \\
& =\frac{a}{1-T / T_{c}}+3 b H^{2} \quad \text { as given }
\end{aligned}
$$

Now we set about finding an expression for $g(H)$.

$$
\begin{aligned}
g^{\prime}(H) & =3 b H^{2} \\
g(H) & =b H^{3}+K \\
M\left(H=0, T=T_{c}\right) & =0 \quad \Rightarrow \quad K=0
\end{aligned}
$$

Now putting all the pieces together gives

$$
M(H, T)=M_{0}\left(1-T / T_{c}\right)^{1 / 2}+\frac{a H}{\left(1-T / T_{c}\right)}+b H^{3}
$$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

