MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department

Solutions to Problem Set \#5

Problem 1: Correct Boltzmann Counting
a)

$$
\begin{aligned}
\Phi & =V^{N}\left[\frac{4 \pi e m E}{3 N}\right]^{3 N / 2} \\
& =V^{N}[2 \pi e m k T]^{3 N / 2} \quad \text { using } E=(3 / 2) N k T \\
S(N, V, T) & =k \ln \Phi \\
& =k \ln \left\{V^{N}[2 \pi e m k T]^{3 N / 2}\right\} \\
& =N k \ln V+(3 / 2) N k \ln [2 \pi e m k T]
\end{aligned}
$$

Now let $N \rightarrow \lambda N, V \rightarrow \lambda V$, and $T \rightarrow T$. Then as a result

$$
S \rightarrow \underbrace{\lambda N k \ln (\lambda V)}_{\neq \lambda N k \ln V}+\lambda(3 / 2) N k \ln [2 \pi e m k T]
$$

So $S \nrightarrow \lambda S$ because of the failure in the first term.
b) The pressure is the same on both sides of the partition, so

$$
P=\frac{N_{1} k T}{V_{1}}=\frac{N_{2} k T}{V_{2}} .
$$

Now make use of the definition of α.

$$
\frac{N_{1} k T}{\alpha V}=\frac{N_{2} k T}{(1-\alpha) V}
$$

We can solve this to put N_{1} and N_{2} in terms of α.

$$
\begin{aligned}
N_{2} & =\frac{1-\alpha}{\alpha} N_{1} \\
\frac{N_{1}}{N_{1}+N_{2}} & =\frac{N_{1}}{\left(1+\frac{1-\alpha}{\alpha}\right) N_{1}}=\alpha=\frac{N_{1}}{N} \\
\frac{N_{2}}{N_{1}+N_{2}} & =\frac{N_{2}}{\left(\frac{\alpha}{1-\alpha}+1\right) N_{2}}=1-\alpha=\frac{N_{2}}{N}
\end{aligned}
$$

Since the mixing takes place isothermally (because for ideal gases there is no interaction between the molecules), the T term in our expression for S of each gas does not change.

$$
\begin{aligned}
\Delta S_{1} & =N_{1} k \ln V-N_{1} k \ln \alpha V \\
& =N_{1} k \ln (1 / \alpha)=\underline{N k \alpha \ln (1 / \alpha)} \\
\Delta S_{2} & =N_{2} k \ln V-N_{2} k \ln [(1-\alpha) V] \\
& =N_{2} k \ln (1 / 1-\alpha)=\underbrace{N k(1-\alpha) \ln (1 / 1-\alpha)}_{+} \\
\Delta S_{1}+\Delta S_{2} & =N k[\underbrace{\alpha}_{+} \underbrace{\ln (1 / \alpha)}_{+}+\underbrace{(1-\alpha)}_{+} \underbrace{\ln (1 / 1-\alpha)}>0
\end{aligned}
$$

This result is correct if the two gases are different. What should we expect when the gases are the same? $\Delta E=0$ since the internal energy of an ideal gas does not depend on the volume, $E(T, V)=E(T)$, and the initial and final temperatures are equal. $\Delta W=0$ since no work is necessary to slide the partition in and out (there is no opposing force in the absence of friction). Using these two results in the first law, $\Delta E=\Delta W+\Delta Q$, tells us that $\Delta Q=0$. If the process is reversible $\Delta S=\Delta Q / T$ and it follows that $\Delta S=0$. This is not consistent with the detailed calculation above which indicated a positive ΔS, but which nowhere required that the two gases be different.
c)

$$
\begin{aligned}
\Phi & =\frac{V^{N}}{N!}[2 \pi e m k T]^{3 N / 2} \\
S(N, V, T) & =N k \ln V-N k \ln N \underbrace{+k N}_{\begin{array}{c}
\text { neglect compared to } \\
\text { previous term }
\end{array}}+(3 / 2) N k \ln [2 \pi e m k T] \\
& =N k \ln (V / N)+(3 / 2) N k \ln [2 \pi e m k T]
\end{aligned}
$$

Now let $N \rightarrow \lambda N, V \rightarrow \lambda V$, and $T \rightarrow T$.

$$
S \rightarrow \lambda N k \ln (V / N)+\lambda(3 / 2) N k \ln [2 \pi e m k T]=\lambda S
$$

We can summarize the results for the volume-dependent part of the entropies when the mixing involves only one gas by constructing a table.

VOLUME-DEPENDENT TERM IN THE ENTROPY			
	WITH PARTITION		WITHOUT PARTITION
OLD S	$\alpha N k \ln \alpha V+(1-\alpha) N k \ln (1-\alpha) V$ $=N k[\alpha \ln \alpha V+(1-\alpha) \ln (1-\alpha) V]$ $=N k[\underbrace{\alpha \ln \alpha+(1-\alpha) \ln (1-\alpha)}+\ln V]$	\neq	
NEW S	$\alpha N k \ln \frac{\alpha V}{\alpha N}+(1-\alpha) \ln \frac{(1-\alpha) V}{(1-\alpha) N}$ $=N k[\alpha \ln (V / N)+(1-\alpha) \ln (V / N)]$ $=N k \ln (V / N)$	$=$	$N k \ln (V / N)$

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

