MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Physics Department

Problem Set \#3

Due in hand-in box by 12:40 PM, Wednesday, February 27
Problem 1: Clearing Impurities

In an effort to clear impurities from a fabricated nano-wire a laser beam is swept repeatedly along the wire in the presence of a parallel electric field. After one sweep an impurity initially at $x=0$ has the following probability density of being found at a new position x

$$
\begin{aligned}
p(x) & =\frac{1}{3} \delta(x)+\frac{2}{3 a} \exp [-x / a] & & 0 \leq x \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

where a is some characteristic length.
Give an approximate probability density for the total distance d the impurity has moved along the wire after 36 sweeps of the laser beam.

Problem 2: Probability Densities of Macroscopic verses Microscopic Variables
Consider one cubic centimeter of a dilute gas of atoms of mass M in thermal equilibrium at temperature $\mathrm{T}=0^{\circ} \mathrm{C}$ and atmospheric pressure. (Recall that Lochmidt's number - the number of atoms (or molecules) in a cubic meter of an ideal gas at $\mathrm{T}=0^{\circ} \mathrm{C}$ and atmospheric pressure - has the value $2.69 \times 10^{25} \mathrm{~m}^{-3}$.)
a) For the kinetic energy of a single atom, find a numerical value for the ratio of standard deviation (the square root of the variance) to the mean. You may use the results you found in problem 4 on Problem Set 2.
b) Find the same ratio for total energy of the gas, assumed to be all kinetic.

Problem 3: Temperature
Systems A and B are paramagnetic salts with coordinates H, M and H^{\prime}, M^{\prime} respectively. System C is a gas with coordinates P, V. When A and C are in thermal equilibrium, the equation

$$
n R C H-M P V=0
$$

is found to hold. When B and C are in thermal equilibrium, we get

$$
n R \Theta M^{\prime}+n R C^{\prime} H^{\prime}-M^{\prime} P V=0
$$

where n, R, C, C^{\prime}, and Θ are constants.
a) What are the three functions that are equal to one another at thermal equilibrium?
b) Set each of these functions equal to the ideal gas temperature T and see if you recognize any of these equations of state.

Problem 4: Work in a Simple Solid

In the simplest model of an elastic solid

$$
d V=-V \mathcal{K}_{T} d P+V \alpha d T
$$

where \mathcal{K}_{T} is the isothermal compressibility and α is the thermal expansion coefficient. Find the work done on the solid as it is taken between state $\left(P_{1}, T_{1}\right)$ and $\left(P_{2}, T_{2}\right)$ by each of the three paths indicated in the sketch. Assume that the fractional volume change is small enough that the function $V(P, T)$ which enters the expression for $d V$ can be taken to be constant at $V=V_{1}=V\left(P_{1}, T_{1}\right)$ during the process.

Problem 5: Work and the Radiation Field

The pressure P due to the thermal equilibrium radiation field inside a cavity depends only on the temperature T of the cavity and not on its volume V,

$$
P=\frac{1}{3} \sigma T^{4}
$$

In this expression σ is a constant. Find the work done on the radiation field as the cavity is taken between states $\left(V_{1}, T_{1}\right)$ and $\left(V_{2}, T_{2}\right)$ along the two paths shown in the diagram.

Practice Problem, do not hand this in: Exact Differentials
Which of the following is an exact differential of a function $S(x, y)$? Find S where possible.
a) $2 x\left(x^{3}+y^{3}\right) d x+3 y^{2}\left(x^{2}+y^{2}\right) d y$

$$
S(x, y)=\left(2 x^{5}+5 x^{2} y^{3}+3 y^{5}\right) / 5+C
$$

b) $e^{y} d x+x\left(e^{y}+1\right) d y$

$$
S(x, y) \text { does not exist. }
$$

c) $(y-x) e^{x} d x+\left(1+e^{x}\right) d y$

$$
S(x, y)=y+(1+y-x) e^{x}+C
$$

Problem 6: Equation of State for a Ferromagnet

For a ferromagnetic material in the absence of an applied field, $H=0$, the spontaneous magnetization is a maximum at $T=0$, decreases to zero at the critical temperature $T=T_{c}$, and is zero for all $T>T_{c}$.

For temperatures just below T_{c} the magnetic susceptibility and the temperature coefficient of M might be modeled by the expressions

$$
\begin{aligned}
\chi_{T} & \equiv\left(\frac{\partial M}{\partial H}\right)_{T}=\frac{a}{\left(1-T / T_{c}\right)}+3 b H^{2} \\
\left(\frac{\partial M}{\partial T}\right)_{H} & =\frac{1}{T_{c}} \frac{f(H)}{\left(1-T / T_{c}\right)^{2}}-\frac{1}{2} \frac{M_{0}}{T_{c}} \frac{1}{\left(1-T / T_{c}\right)^{1 / 2}}
\end{aligned}
$$

where M_{0}, T_{c}, a, and b are constants and $f(H)$ is a function of H alone with the property that $f(H=0)=0$.
a) Find $f(H)$ by using the fact that M is a state function.
b) Find $M(H, T)$.

MIT OpenCourseWare
http://ocw.mit.edu

8.044 Statistical Physics I

Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

