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Problem 1 (30 points) Entropy of a Surface Film

γ and CA are given in terms of T and A so it is reasonable to choose T and A as the variables
in which to expand the entropy.
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To find (∂S/∂A)T use a Maxwell Relation. You may either use the magic square or derive
the required relation as follows.
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Substituting in these results gives
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[Note: One can make the arguments of the logs dimensionless by distributing part of the
additive constant c among the various other terms.]
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Problem 2 (40 points) Crystal Field Splitting

a)
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2∆ exp[ ∆/kBT ] 1
< ε > =

∑
ε p(state) =state

−
= 2∆

1 + 2 exp[−∆/kBT ] exp[∆/k
states BT ] + 2

1
U(T,N) = N < ε >= 2∆N

exp[∆/kBT ] + 2

b) At T = 0 only the non-degenerate ground state is occupied. S(T = 0, N) = kBN ln(1) = 0.

As T →∞, all three states are equally probable. S(T,N)→ kBN ln(3).
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energy gap behavior

d)
F (T,N) = −kBT lnZ = −NkBT lnZ1 = −NkBT ln(1 + 2 exp[−∆/kBT ])

∂F ∂F d∆ ∆ ∂F
P (T,N) = −

(
=

∂

)
−
(
∂∆

)
= γ

V T T dV

(
V

)(
∂∆

)
= −NkBTγ

(
∆

V

)
1

Z1

( ) T

−2
exp[

kBT
−∆/kBT ](

∆
)

exp[ ∆
= 2Nγ

− /kBT ]

V 1 + 2 exp[−∆/kBT ]

γ 1 U
=

( )
2N∆ = γ

V exp[∆/kBT ] + 2 V

3



Problem 3 (30 points) Heating a Shell

a) For the shell,

P = 4πr2σT 4
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Note that the power is coming from the central object (not from the shell) and from its
surface (not volume). Thus this result is proportional to r2.
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This is an example of a poor absorber being a poor emitter

(
R

)
(Kirchoff’s law, on the information

sheet). The shell does not absorb beyond ω0, thus it does not radiate beyond ω0.
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