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Problem 1: Heat Capacity at Constant Pressure in a Simple Fluid

For a simple fluid show that CP =(∂U/∂T )P +αV P . Since the thermal expansion coefficient
α can be either positive or negative, CP could be either less than or greater than
(∂U/∂T )P . [Hint: Use the first law to find an expression for d/Q, then expand in terms of
the variables T and P .]

Problem 2: Heat Supplied to a Gas

An ideal gas for which CV = 5Nk is taken from point a to point b in the figure along three
2

paths: acb, adb, and ab. Here P2 = 2P1 and V2 = 2V1. Assume that (∂U/∂V )T = 0.

a) Compute the heat supplied to the gas (in terms of N , k, and T1) in each of the three
processes. [Hint: You may wish to find CP first.]

b) What is the “heat capacity” of the gas for the process ab?
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Problem 3: Thermodynamics of a Curie Law Paramagnet

Simple magnetic systems can be described by two independent variables. State variables
of interest include the magnetic field H, the magnetization M , the temperature T , and the
internal energy U . Four quantities that are often measured experimentally are

χT ≡
(
∂M

∂H

)
, the isothermal magnetic susceptibility,( T

∂M

∂

)
, the temperature coefficient,

T H

CM ≡
(
d/Q
)

, the heat capacity at constant M , and
dT M

/Q
H ≡

(
d

C

)
, the heat capacity at constant H.

dT H

A particular example of a simple magnetic system is the Curie law paramagnet defined by
an equation of state of the form M = aH/T where a is a constant.

For such a system one can show that (∂U/∂M)T = 0 and we shall assume that CM = bT
where b is a constant.

a) Use T and M as independent variables and consider an arbitrary simple magnetic
system (that is, not necessarily the Curie law paramagnet). Express CM as a derivative
of the internal energy. Find an expresson for CH − CM in terms of a derivative of the
internal energy, H, and the temperature coefficient. Write an expression for dU(T,M)
where the coefficients of the differentials dT and dM are expressed in terms of measured
quantities and H(T,M).

b) Find explicit expressions for CH(T,M) and U(T,M) for the Curie law paramagnet.
You may assume that U(T = 0,M = 0) = 0.
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c) Consider again an arbitrary simple magnetic system, but now use H and M as the
independent variables. Write an expression for dU(H,M) where the coefficients of the
differentials dH and dM are expressed in terms of the measured quantities and H. Is
the coefficient of the dM term the same as in part a)?

d) Find explicit expressions for the coefficients in c) in the case of the Curie law paramag-
net. You will need your result from b) for CH . Convert the coefficients to functions of
H and M , that is, eliminate T . Integrate dU(H,M) to find U(H,M). Compare your
result with that found in b).

e) Using T andM as the independent variables, find the general constraint on an adiabatic
change; that is, find (∂T/∂M)∆Q=0 in terms of a derivative of the internal energy,
H(M,T ), and CM(M,T ).

f) Evaluate (∂T/∂M)∆Q=0 for the Curie law paramagnet and integrate the result to find
the equation of an adiabatic path in the T,M plane through the point T0,M0.

g) For the Curie law paramagnet, draw an isothermal path on a plot of M verses H. Pick
a point on that path; show that the slope of an adiabatic path going through that
point is less than the slope of the isothermal path.

Problem 4: Classical Magnetic Moments

Consider a system made up of N independent classical magnetic dipole moments located
on fixed lattice sites. Each moment ~µi has the same length µ, but is free to rotate in 3
dimensions. When a magnetic field of strength H is applied in the positive z direction, the
energy of the ith moment is given by εi = −miH where mi is the z component of ~µi (that
is, ~µi · ẑ = mi).

The magnetization M and the total energy E are given by

∑N ∑N
M = mi E = εi =

i=1 i=1

−MH

a) What are the physically allowed ranges of values associated with mi, M , and E?

b) How many microscopic variables are necessary to completely specify the state of the
system?

3



In a certain limiting case, the accessible volume in phase space for the microcanonical en-
semble is given by

Ω ≈ (2µ)N
M2

exp[− 2 ].
Nµ2
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c) Use the microcanonical ensemble to find the equation of state, M as a function of H
and T .

d) Is there some condition under which the solution to c) is unphysical for the system
under consideration? Explain your answer. For what values of T is the expression for
Ω a good approximation?

e) The probability density p(M) for the z component of a single magnetic moment can
be written as p(m) = Ω′/Ω where Ω is given above. What is Ω′?

f) Find p(m). [Note: For the limit which applies here, an expression for p(m) includ-
ing powers of m no higher than the first is adequate.] Sketch p(m) and check its
normalization.

g) Use p(m) to computed < m >. Compare the result with that which one would expect.

Problem 5: A Strange Chain

l

F

F

A one dimensional chain is made up of N identical elements, each of length l. The angle
between successive elements can be either 00 or 1800, but there is no difference in internal
energy between these two possibilities. For the sake of counting, one can think of each
element as either pointing to the right (+) or to the left (-). Then one has

N = n+ + n−

L = l(n+ − n ) = l(2n− + −N)

a) Use the microcanonical ensemble to find the entropy as a function of N and n+,
S(N, n+).
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b) Find an expression for the tension in the chain as a function of T , N , and n+,
F(T,N, n+). Notice the strange fact that there is tension in the chain even though
there is no energy required to reorient two neighboring elements! The “restoring force”
in this problem is generated by entropy considerations alone. This is not simply an
academic oddity, however. This system is used as a model for elastic polymers such as
rubber.

c) Rearrange the expression from b) to give the length as a function of N , T , and F .

d) Use the result for the high temperature behavior from c) to find an expression for the
thermal expansion coefficient α ≡ L−1(∂L/∂T ) . Note the sign. Find a stout rubberF
band. Hang a weight from it so that its length is extended by about a factor of two.
Now heat the rubber band (a hair drier works well here) and see if the weight goes up
or down.

Problem 6: Classical Harmonic Oscillators

Consider a collection of N identical harmonic oscillators with negligible (but non-zero) in-
teractions. In a microcanonical ensemble with energy E, the system is on a surface in phase
space given by ∑N p2

i mω2q2

+ i = E.
2m 2

i=1

( )

a) Find the volume of phase space enclosed, Φ(E), as follows. Transform to new variables

1
xi = √ pi 1

2m
≤ i ≤ N

√
mω2

xi = qi
2

−N N + 1 ≤ i ≤ 2N

Note that in terms of these variables the constant energy surface is a 2N dimensional
sphere. Find its volume. Find the corresponding volume in p-q space.

b) Find the entropy S in terms of N and E.

c) Find T and express E in terms of N and T .

d) Find the joint probability density for the position coordinate qi and the momentum
coordinate pi of one of the oscillators. Sketch p(pi, qi).
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