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Quantum Physics II (8.05) Fall 2013
 
Assignment 1
 

Massachusetts Institute of Technology 
Physics Department Due Friday September 13, 2013 
September 4, 2013 3:00pm 

Announcements 

• Please put you name and section number at the top of your problem set, and place 
it in the 8.05 box labeled with your section number near 8-395 by 3pm Friday. 

• Recommended Reading for the first week: Shankar, sections 5.2, 5.3, and 5.6. Grif­
fiths, sections 2.1, 2.2, 2.5, and 2.6. 

Problem Set 1 

1. Properties of a wavefunction. [10 points] 

A particle of mass m in a one-dimensional potential V (x) has the wave function 

ψ(x) = Nx exp − 
1 
αx2 , α > 0 . 

2 

(a) Normalize ψ(x) to determine N . What is (x̂)? What is (x̂2)? 

(b) What is (p̂)? What is (p̂2)? 

(c) Is ψ(x) a position eigenstate? Is ψ(x) a momentum eigenstate? Explain. 

(d) Suppose that V (x) = 0. What is (Ĥ)? 

(e) Suppose that nothing is known about V (x), but ψ(x) is an energy eigenstate. 
Find the potential V (x) and the energy eigenvalue E, assuming V (0) = 0. Could 
ψ(x) be the ground state wavefunction for the particle? 

2. Energy must exceed the minimum value of the potential.1 [5 points] 

Consider the time-independent Schrödinger equation for a particle of energy E in a 
potential V (x), with x ∈ (−∞, ∞): 

d2ψ 2m 
= [V (x)−E]ψ(x) . (1) 

dx2 72 

1A variation on Griffiths 2.2. 

1
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Without loss of generality one can assume that ψ(x) is real. Assume the potential is 
bounded below, 

V (x) ≥ Vmin , for all x, 

where Vmin is the minimum value of the potential.
 

Prove that E > Vmin for normalizable solutions to exist. To do this, assume E ≤ Vmin
 

and try using equation (1) and integration to reach a clear contradiction.
 

3. Three Delta Functions [15 points] 

A particle of mass m moves in one dimension, subject to a potential energy function 
V (x) which is the sum of three evenly spaced attractive delta functions: 

1 
L

V (x) = −V0 a δ(x − na) , where V0 > 0, a > 0 are constants. 
n=−1 

(a) Calculate the discontinuity in the first derivative of the wavefunction at x = −a, 
0, and a. 

(b) Consider the possible number and locations of nodes in bound state wavefunc­
tions for this system. 

(i) How many nodes are possible in the region x > a? 

(ii) How many nodes are possible in the region 0 < x < a? 

(iii) Can there be a node at x = a? 

(iv) Can there be a node at x = 0? 

(c) For arbitrarily large V0, how many bound states are there? Sketch them quali­
tatively. 

(d) Derive the equation that determines the energy for the lowest energy antisym­
metric bound state. Find the minimum value of V0 for the bound state to exist. 
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4. Estimates on the finite square well [10 points] 

Consider the finite square well potential in section 2.6 of Griffiths: 

V (x) = −V0 for− a ≤ x ≤ a, and V (x) = 0 for |x| > a . 

(a) Number of bound states for deep well. Assume that the well is sufficiently deep 
and/or wide so that z0, defined as 

Ja 
z0 ≡ 2mV0 ,

7

is a large number. Find an estimate for the number of bound states in this well 
using the result that the k-th bound state has k − 1 nodes. Confirm that your 
result is a good approximation by comparing with Figure 2.18 in the book. 

(b) Energy of the bound state for a shallow well. Assume now that the potential is 
very shallow and/or narrow so that z0 is a very small number and as a result 
there is just one bound state. Use the relevant equations of the problem (see 
Griffiths) to estimate the energy E of this state in terms of V0 and z0 (i.e. find 
the leading term of the energy in the expansion in terms of z0, as z0 → 0). 

5. Expectation value (p̂) of the momentum. [5 points] 

(a) A particle’s coordinate space wavefunction is square-integrable and real up to 
an arbitrary multiplicative phase: 

iαφ(x) ,ψ(x) = e 

with α real and constant and φ(x) real. Prove that the expectation value of the 
momentum is zero. 

(b) Consider instead the wavefunction 

iαφ2(x) ,ψ(x) = φ1(x) + e 

where φ1(x) and φ2(x) are each real and square-integrable. What is (p̂)? The 
answer can be expressed as a function of α times an integral that involves the 
functions φ2 and dφ1/dx (or φ1 and dφ2/dx). For what values of α can we be 
sure that (p̂) is zero without having further information about φ1 and φ2? 

(c) Consider this time the wavefunction 

ikxφ(x) ,ψ(x) = e 

with k real and constant and φ(x) real. Calculate (p̂). 
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6. Conserved probability current. [10 points] 

Suppose Ψ(x, t) obeys the one-dimensional Schrödinger equation,
 

7
2 ∂2 ∂
 

− Ψ(x, t) + V (x)Ψ(x, t) = i7 Ψ(x, t). (2) 
2m ∂x2 ∂t

(a) Derive the conservation law for probability, 

∂ρ ∂J 
+ = 0, (3) 

∂t ∂x 

where ρ(x, t) is the probability density and J(x, t) is the probability current 
density 

7 ∂Ψ 
ρ(x, t) = Ψ∗Ψ , J(x, t) = Im Ψ∗ . (4) 

m ∂x 

What are the units of ρ and J? 

(b) Explain why (3) is a conservation law for probability. In order to do so, define 

 b 

Pab(t) ≡ dx ρ(x, t) , 
a 

evaluate dP
dt 
ab in terms of currents, and interpret your answer. Show then that 

a wavefunction Ψ(x, t) that is normalized at time t remains normalized at later 
times. 

(c) In the following we consider stationary states with spatial wavefunctions ψ(x). 
iα(x)φ(x)Compute the probability current J for ψ(x) = e where α(x) and φ(x) 

are real. Show that 
J(x) 7 

= α ′ (x) . 
ρ(x) m 

Explain why the ratio J/ρ can be viewed as the local velocity of the quantum 
particle described by ψ(x). 

Aeipx/7(d) Consider ψ(x) = + Be−ipx/7, with A and B complex constants. Calcu­
late J(x). Are there cross terms in J between the left and right-moving parts 
of ψ? 

7. Griffiths Problem 2.38, p.85 [10 points] 

( )
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