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1. Spin in a time-varying magnetic field [10 points]
 

A spin is placed on an uniform but oscillating magnetic field
 

Bi = B0 cos(ωt)iez . 

The spin is initially in an eigenstate of Sx with eigenvalue n/2. 

(a) Find the unitary operator U(t) that generates time evolution. Note that the 
Hamiltonian is time-dependent but [H(t), H(t ′ )] = 0. 

(b) Calculate the time evolution of the state and describe it by giving the time-
dependent angles θ(t) and φ(t) that define the direction of the spin. 

(c) Find the time dependent probability to find the spin with Sx = −n/2. 

(d) Find the largest value of ω that allows the full flip in Sx. 

2. Heisenberg operators for spin [5 points] 

Consider the time-independent Schrödinger Hamiltonian for a spin in a uniform and 
constant magnetic field of magnitude B along the z-direction: 

H = −λB Sz . 

Here λ is the (real) constant that relates the dipole moment to the spin. Find the 
explicit time evolution for the Heisenberg operators Ŝx(t), Ŝy(t), and Ŝz(t) associated 
with the Schrödinger operators Sx, Sy, and Sz. 

3. The Heisenberg Picture and Newton’s Laws [10 points] 

(a) Consider the Hamiltonian Ĥ = p̂2/(2m)+V (x̂) and derive the Heisenberg equa­
tions of motion for x̂H(t) and p̂H(t). Use your results to obtain Ehrenfest’s 
theorem 

d (p̂) d(x̂) = , (p̂) = −(V ′ (x̂)) , (1) 
dt m dt

where (x̂) = (ψ, 0|x̂H(t)|ψ, 0) = (ψ, t|x̂|ψ, t) etc. Combine them to derive an 
d2 equation for 
dt2 

(x̂). Explain the conditions on the potential such that this 
equation reduces to the classical Newton’s Law. 
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(b) Consider a free particle in a normalized state whose average position and mo­
mentum at t = 0 are x0 and p0. Use Ehrenfest’s theorem to determine (x̂) as a 
function of time. 

(c) Now imagine that this particle has a charge q, and consider applying an electric 
field that varies with time, so V (x̂) = qE0 x̂ sin(ωt). Demonstrate that now 
[Ĥ(t1), Ĥ(t2)]  = 0 for t1  = t2. Look back at the steps underlying the derivation 
of Eq. (1) and explain why it still holds. 

(d) Find (x̂) as a function of time for the situation in part (c). 

4. Virial theorem [10 points] 

Consider a Hamiltonian for a particle in three dimensions under the influence of a 
central potential: 

pi 2 

H = + V (r) ,
2m 

as well as the Schrödinger operator Ω ≡ ir · pi. We let ΩH(t) denote the associated 
Heisenberg operator. 

(a) Use the Heisenberg equation of motion to calculate the time rate of change 
d ΩH(t). Your answer for the right-hand side should be in terms of the Heisen­
dt

berg operators piH
2 , irH , derivatives of V (rH), and constants. 

(b) Consider a stationary state |Ψ, t) and any Heisenberg operator OH(t) arising 
from a time-independent Schrödinger operator. Explain carefully why 

d (Ψ, 0| OH(t)|Ψ, 0) = 0 . 
dt 

(c) Use your results from (a) and (b) to show that for a potential V (r) = c/rk, with 
c constant and k a positive integer 

k (T ) = − (V ) . 
2

Here the expectation value is taken on a stationary state, T denotes the kinetic 
energy operator 
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, and V denotes the potential. 

5. Time Evolution in the Heisenberg Picture [10 points] 

In this problem we’ll study the time evolution of a wave packet acted upon by a 
constant force. This is a case where the Schrödinger equation is hard to solve, but 
the Heisenberg equations of motion for the time dependence of operators can be
 
solved easily and quite a bit can be learned about the motion.
 

Suppose a quantum particle is described the Hamiltonian,
 

ˆ p̂2 

H = x , + gˆ
2m 

−dV which corresponds to the particle subject to a constant force F = 
dx 

= −g. 



� 
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(a) Use the Heisenberg equations of motion to show that the Heisenberg operators 
x̂H(t) and p̂H(t) obey an analog of Newton’s law F = ma. Integrate the Heisen­
berg equations of motion to obtain x̂H(t) in terms of x̂H(0) = x̂ and p̂H(0) = p̂. 

(b) Suppose that at t = 0 a particle has coordinate space wavefunction, 
2 

2Δ2(x|ψ) = ψ(x) = Ne− x 

, 

where N is a constant that normalizes ψ to unity. Compute (ψ|x̂H(t)|ψ) and 
show that it behaves classically. 

(c) Compute the squared uncertainty in x, namely (Δx(t))2 = (x̂2 (t)) − (x̂H(t))2 .H

Show that (Δx(t))2 grows quadratically with time, 

(Δx(t))2 = (Δx(0))2 + λt2 

and find the coefficient λ. How does the spreading of the wavepacket depend on 
the value of g? 

6. Shifted harmonic oscillator [10 points] 

A quantum harmonic oscillator perturbed by a constant force of magnitude F in the 
positive x direction is described by the Hamiltonian 

p̂2 1 
H = + mω2 ˆ2 − F ̂x x . 

2m 2 

Note that if x̂ and p̂ satisfy [x̂, p̂] = in, we also have [x̂ −x0 , p̂] = in, for any constant 
x0, demonstrating that ŷ ≡ x̂− x0 and p̂ form a pair of conjugate variables. 

(a) Find the ground state energy of H . What is (x̂) in the ground state? 
(b) The ground state |0 ′ ) of the H can be written as
 

|0 ′ ) †
a= Neαˆ |0), 
where â† and |0) are respectively the raising operator and ground state of the 
unperturbed F = 0 Hamiltonian. Find the real number α. Hint: consider 
operators ây and ây 

† based on ŷ and p̂. 

7. Wavefunction for a coherent state [10 points] 

Consider the unit-normalized coherent state 

αâ†−α∗ 
ˆ|α) = e a|0) 

where α is a complex number parameterized as 

x0 p0d n 
α = √ + i√ , with d = , x0, p0 ∈ R . 

2d 2n mω 

Calculate the wavefunction ψα(x) = (x|α). Your answer for this wavefunction should 
come out manifestly unit-normalized and can be written in terms of the function that 
represents the ground state of the oscillator. 
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