
Quantum Physics III (8.06) — Spring 2016

Assignment 9

Readings

The current reading assignments are:

• Supplementary notes on Canonical Quantization and Application to a Charged Par-
ticle in a Magnetic Field by Prof. Jaffe.

• Griffiths Section 10.2.3 is an excellent treatment of the Aharonov-Bohm effect, but
ignore the connection to Berry’s phase for now. We will come back to this later.

• Quite remarkably, given its length, Cohen-Tannoudji never mentions the Aharonov-
Bohm effect. It does have a nice treatment of Landau levels, however, in Ch. VI
Complement E.

• Those of you reading Sakurai should read pp. 130-139. Shankar’s treatment is very
different from the one presented in this course.

Problem Set 9

1. The Dirac Comb (20 points)

The qualitative behavior of solids is dictated to a large extent simply by the fact that
the electrons feel a periodic potential. The example we discussed in lecture and in the
above problem is called the “tight binding model.” The other classic example is the
Dirac comb (or Kronig-Penney model), which Griffiths treats on pages 224-229. You
should read through Griffiths’ treatment.

Do Griffiths problem 5.20. (Make sure you are looking at the second edition.)

2. Analysis of a General One-Dimensional Periodic Potential (40 points)

Consider a one-dimensional periodic potential U(x) that we shall choose to view as
the sum of lots of identical potential barriers v(x) of width a, centered at the points
x = na, where n is an integer.

We shall require v to be even, that is v(x) = v(−x), but other than that we shall allow
the shape of the barrier to be arbitrary. v(x) = 0 for |x| ≥ a/2. In pictures, v(x) looks
like:
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The periodic potential is then given by
∞

U(x) =
n

∑
v(x

=

− na)
−∞

and looks like:

Before we analyze U , let us analyze v. For any energy E > 0, there are two linearly
independent solutions to the Schrödinger equation with the single barrier potential
v(x). One, which we shall call ψL(x) describes a plane wave incident from the left:

ψL(x) = exp(ikx) + r exp(−ikx) , x ≤ −a/2
= t exp(ikx) , x ≥ a/2 , (1)

where k is related to E by E = ~2k2/2m. We shall not need the form of ψ where
the potential is nonzero. The other solution with the same energy describes a wave
incident from the right:

ψR(x) = t exp(−ikx) , x ≤ −a/2
= exp(−ikx) + r exp(ikx) , x ≥ a/2 , (2)

with the same reflection coefficient r and transmission coefficient t as in (1) because
v(x) is even.

We can write the complex number t in terms of its magnitude and phase as

t = |t| exp(iδ) , (3)

where δ is a real number known as the phase shift since it specifies the phase of the
transmitted wave relative to the incident one. Conservation of probability requires
that

|t|2 + |r|2 = 1. (4)

To this point, we have reviewed 8.04 material and established notation.
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(a) Let ψ1 and ψ2 be any two solutions of the Schrödinger equation

~2−
2m

d2ψi
+ v(x)ψi = Eψi

dx2

with the same energy. Define the “Wronskian” of these two solutions by

d
W (ψ1, ψ2) = ψ2(x)

dx
ψ1(x)− ψ1(x)

d
ψ2(x) .

dx

Prove that W is independent of x by showing that dW/dx = 0.

(b) By evaluating W (ψL, ψR
∗ ), prove that rt∗ is pure imaginary, so r must have the

form
r = ±i|r| exp(iδ) (5)

where δ is the same as in (3).

(c) Now, we begin our analysis of solutions of the Schrödinger equation in the periodic
potential U . Since U = v in the region −a/2 ≤ x ≤ a/2, in that region any
solution to the Schrödinger equation with potential U must take the form

ψ(x) = AψL(x) +BψR(x) , −a/2 ≤ x ≤ a/2 , (6)

with ψL and ψR given by (1) and (2). Bloch’s theorem tells us that

ψ(x+ a) = exp(iKa)ψ(x)

and, with ψ′ ≡ dψ/dx,

ψ′(x+ a) = exp(iKa)ψ′(x) .

By imposing these conditions at x = −a/2, show that the energy of the electron
is related to K by

t2 2

Ka =
− r

cos
2t

exp(ika) +
1

exp(
2t

−ika) (7)

with k specifying the energy via

E = ~2k2/2m .

[Note that some of you may succeed in deriving an expression relating all the
quantities in (7) — and no other quantities — but then not succeed in reducing
your expression to the form (7). If so, you will not lose many points. And, make
sure to use (7), rather than whatever you obtain, in the following parts.]

(d) Show that as a consequence of (4), (5) and (7) the energy and K of the Bloch
electron are related by

cos(ka+ δ)
cosKa =

|t|
. (8)
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Note that |t| is always less than one, and becomes closer and closer to one for larger
and larger k because at high incident energies, the barrier becomes increasingly
less effective. Because |t| < 1, at values of k in the neighborhood of those satisfying
ka+ δ = nπ, with n an integer, the right hand side of (8) is greater than one, and
no solution can be found. The regions of E corresponding to these regions of k
are the energy gaps.

(e) Suppose the barrier is very strong, so that |t| ≈ 0, |r| ≈ 1. Show that the allowed
bands of energies are then very narrow, with widths of order |t|. [Note: this is
the tight-binding case, discussed in lecture. This is the case that applies to a
deeply bound atomic energy level which in a crystal becomes a narrow band. In
this case, because the energy level is well below the top of the barrier between
single-atom potential wells, “transmission” requires tunnelling, meaning that |t|
is small.]

(f) Suppose the barrier is very weak (so that |t| ≈ 1, |r| ≈ 0, δ ≈ 0). Show that
the energy gaps are then very narrow, the width of the gap containing k = nπ/a
being Cn|r| where you have to determine C. [Note: this shows that the continuum
states – namely those whose energies are above the top of the barriers – are also
separated into bands. The gaps between the bands get narrower and narrower for
higher and higher energy continuum states.]

(g) Show that in the special case where v(x) = +αδ(x) where δ(x) is the Dirac delta
function — i.e. the Dirac comb model discussed in Griffiths p.224-229 — the
phase shift and transmission coefficent are given by

~2k
cot δ = −

mα

and
|t| = cos δ

and that (8) becomes the expression derived in Griffiths.

3. Gauge Invariance and the Schrödinger Equation (15 points)

The time-dependent Schrödinger equation for a particle in a electromagnetic field is
given by

∂ψ
i~
∂t

=
1

2m

(
−i~~∇− q 2

~A(~x, t) ψ(~x, t) + qφ(~x, t)ψ(~x, t) . (9)
c

(a) Consider a gauge transformation

)

~A′ ~(~x, t) = A(~x, t)−∇~ f(~x, t),

1
φ′(~x, t) = φ(~x, t) +

c

∂f
(~x, t) . (10)

∂t

~ ′ ′ ~ ~ ~(A , φ ) and (A, φ) describe the same E and B. Show that if ψ(~x, t) solves the
~Schrödinger equation with (A, φ) (which we will call “unprimed gauge”), then

iq
ψ′(~x, t) ≡ exp

(
−
~c
f(~x, t)

)
ψ(~x, t) (11)
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~solves the Schrödinger equation with (A′, φ′) (which we will call “primed gauge”).

(b) Physical observables should be gauge invariant. Check whether the following
quantities are gauge invariant or not:

i. 〈ψ|x̂i|ψ〉
ii. 〈ψ|p̂i|ψ〉

iii. 〈ψ|v̂i|ψ〉, where v̂i = 1
m

(
p̂i − qAic

iv. Energy expectation values (assuming

)
that f is time-independent)

v. Energy eigenvalues (assuming that f is time-independent)

Gauge invariant operators are those whose expectation values in any state are
gauge invariant.

4. Term paper epilogue (25 points) For this problem you should choose one of the
following two possible options. Both are open-ended but we don’t want you to spend
too much time on this problem. Full credit will be given to any good-faith effort. This
part of the assignment should be submitted electronically on stellar under the “Term
Paper Epilogue” assignment, no later than 6pm on May 8.

• Option 1: Edit an article on wikipedia. Create an account on wikipedia.
Find an article on wikipedia concerning some topic in quantum mechanics. Make
some small changes that improve the article. For example, you could add a
sentence, fix an equation or two, clarify some wording, etc. More substantive
changes would be even better! But not required. It might be easiest to find an
article to improve that relates to your term paper, but this is not required.

To show that you have done this, upload to stellar a text file containing a link
to the diff which shows your changes. For example, this link shows the types of
changes you should make and also the format of the link. You can find this link
by clicking the “history” link at the top of the article and the clicking on the
“prev” link next to your revision. If you make more than one change, then put
one link for each change in your text file.

Please try to follow the norms of Wikipedia when editing.

• Option 2: Write a popular summary. Write a 100-200 word summary of your
term paper in a style that is suitable for the general, but science-interested, public.
Imagine publications such as the NYT Science Times, slashdot or Wired. Your
goal should be to communicate what is intellectually exciting and/or practically
useful about your topic without using jargon.
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