
MITOCW | L14.3 Particle in a constant magnetic field: Landau levels

PROFESSOR: OK. Let's do another application. I leave one thing. So this is going to be-- but it's called

Landau levels. And they're pretty interesting. So it's the problem of solving for the motion of an

electrode in a magnetic field.

So it's called Landau levels for the physicist Lev Landau from Russia that discovered or did

this calculation first. So you have a mass m charge q, and the magnetic field b in the z

direction. We will solve it. And I think you will find it pretty interesting.

Well, you will be left with a little of an uneasy feeling, I think, at the end of the lecture, because

the problem of gauging variance is so dramatic that the physics will look a little strange and a

bit unrecognizable.

So let me remind you that in classical physics, if you have a magnetic field, b, you can have

electrons that perform circular orbits, and the main property of those orbits is that they all run

at the same frequency called cyclotron frequency, qb over mc.

So this is just Newton's law, and the force being v over c cross b should be a couple of lines

for you to remember that particle in the magnetic field goes in circles with that angular

frequency.

So OK, there's lots of comments we could make about this, but let's assume we're going to

solve for the motion of this particle. We're going to ignore spin. Sometimes spin is important.

And when you have spin, you have a Zeeman effect, spin in a magnetic field. So that can

change the energy levels by some quantities.

Let's ignore it for the moment. It is sometimes relevant. Sometimes it's not relevant, and you

can easily take care of it. So again, we're faced with having to represent the magnetic field. So

you have the magnetic field [INAUDIBLE] of a, and we'll take a solution in which a this time is

minus by 0 and 0.

Remember, that b is dx ay minus dy ax. And therefore this works out. It has an ax component,

the derivative with respect to y gives you the magnetic field b. So what happens to your

Hamiltonian?

Your Hamiltonian is now 1 over 2m px minus q over c times ax plus 1 over 2m py squared plus

1 over 2m pz squared. I will not consider z motion. It's too simple. It's not too interesting. It's



1 over 2m pz squared. I will not consider z motion. It's too simple. It's not too interesting. It's

just motion, plane waves in the z direction. It's not interesting. All the physics is really

happening in the plane. It's the idea that we can constrain ourselves to have orbits of electrons

that go like this in circles.

OK. So our Hamiltonian is here. Let's write it once again, 2m px plus q by over c squared plus

1 over 2m py squared. In order to solve a system like that, it's convenient to see what is

conserved, and px is conserved. px commutes with the Hamiltonian, because the Hamiltonian

has no x dependence.

So h commutes with px. It doesn't commute with py, because there is a y in there. And, OK, so

if it commutes with px, we can hope for eigenstates, energy eigenstates that are also

eigenstates of px. So I will write my wave function of x and y as a wave function that depends

on y times e to the i kx x.

And it's already a little strange. We're looking for circular orbits maybe, and the x dependence

is really a little funny here. It's almost like plane waves in the x direction. OK, well, it's a fact.

It's true. You could not do that if you would have chosen a more symmetric gauge. You see, if

you had chosen a more symmetric gauge, in which a doesn't have just an x component, but a

y component. The y component would have depended on x, and then x would-- px and py,

neither one would have commuted with the Hamiltonian.

So things would have been different. But this gauge is easy to solve equations. It's called a

Landau gauge. And let's just explore what this says. Trust that if you're solving the equations,

and you get a legal solution, it must mean the right thing.

So here, in this solution here, px is just h bar kx, and though we can restrict the action of the

Hamiltonian to that subspace of momentum, px equal h kx, we can look at the Hamiltonian, it

is like looking at the Hamiltonian for this wave function, we already constrain ourselves to have

this kind of momentum.

So the Hamiltonian that acts on the y function is the Hamiltonian constrained to the momentum

kx, and it's equal to 1 over 2 m py squared, the second term, plus 1 over 2 m qb over cy plus h

kx. It's the q by over c plus the value of px, which is h kx, and I should square it.

If you look at it carefully, you see that this is a simple harmonic oscillator, Hamiltonian. There's

py squared, and there's a y where the origin shifted. It's not just a y squared, but it's some sort

of y minus y0 at some point squared.



So let's write it like that. So I have to make it look like a harmonic oscillator, py squared plus 1

over 2. For a harmonic oscillator, I should have an m here. So I'm going to have an m squared

in the denominator, so m. Let's get the qb mc squared out. y, I got that out, minus-- I have to

put all these things. Minus h bar kx over-- times the c over qb.

Look at all that. So we factor out qb over c. With the m squared here, and the m-- this is the 1

over m there. y, and I put two minus signs, because I always like to write y minus some y0,

which is the equilibrium position of the oscillator.

Here, as you pull the c and the qb out, you get all these things. So this is a p squared y over

2n, plus 1 over m qb over mc squared y minus y0 squared with y0 equal minus h bar k xc over

qb.

That's it. That's the system. One good thing happened already. While this thing is a little funny

or strange, I think, at first sight, this harmonic oscillator is resonating with an omega, which is

the cyclotron frequency. So that's nice. The harmonic oscillator is that.

And therefore, already, you know you're going to get levels that are going to be separated by

h bar omega cyclotron. So that classical cyclotron frequency is going to separate the levels,

and these levels are called the Landau levels, the various Landau levels.

OK, so let's see what this means, or how it looks like. For that, let's imagine a solution. So how

does a solution look? So here is x and y. And suppose I take a kx, which is negative. This kx is

any number you wish at this moment.

So kx negative means y0 positive. So here is the y0 is here. And the wave function is certainly

the probability densities independent of x. So the wave function sort of has support all over x

here.

And it represents an oscillator in the y direction. In the y direction, you're oscillating, and well,

you're going to oscillate a little. We know, in particular, is a length scale associated with the

oscillator. So let's look at that length scale.

The length scale on an oscillator h bar over m omega, in general. But now, we have an

expression for omega. So h bar over m, and omega is qb over mc. So this is square root of hc

over qb. And we're going to call this the magnetic length. So this is for an oscillator, an

arbitrary oscillator takes these values. So let's call the magnetic length hc over qb. This



magnetic length.

So that's a nice definition. And that's roughly the width of the state. Imagine you're in the

ground state, you oscillate from the harmonic oscillator, the typical length scale, and in this

case, is the magnetic length. So in the ground state, this size is lb. And that's how your orbit

looks. In particular, y0 has a simple interpretation here.

y0 is equal to minus kx times the square of this magnetic length is a [? right ?] squared. So it's

minus kx times lb squared. And the units work out because k has units of 1 over length, and

you have a length squared. So that's y0.

So that's how the orbits look. Now, you would say OK, so where are the circular orbits? Well,

they're not quite so visible here. You have to do some work to find them. And in particular,

what is happening here is a very strange thing.

I think-- well, I'll say one more thing. If you have this as your harmonic oscillator, your

energies, that may depend of kx and ny, those are the quantum numbers you have already.

Well, this is just a harmonic oscillator. So it's h bar, the cyclotron frequency. Some people call

the Landau frequency. Occupation number for the oscillator times 1/2, the usual formula for a

harmonic oscillator.

And here is the energy. And well, you had the plane wave. Why don't we have the p squared

over 2m of a plane wave? It's nowhere to be found. That doesn't show and doesn't contribute

to the energy. The mathematics was shown for us. So this kind of dependence doesn't do

anything. It's the absolute degeneracy, the kx.

So you could construct the superposition of states here, using Fourier transforms in which you

somehow localize this in the x direction, by superimposing degenerate energy eigenstate. So

this is the most important thing about this Landau levels. The Landau levels are the different

levels of ny, so ny equals 0 is the lowest Landau level. Then you go ny equal 1, ny equal 2, ny

equal 3. But each Landau level is infinitely degenerate because you can put different values of

kx, and the energy doesn't change.


