
MITOCW | L13.3 Einstein's B and A coefficients determined. Lifetimes and selection rules

PROFESSOR: All right. We have this, so let's complete the Einstein discussion. And that's practical formulas

that are relevant to some of the exercises you will find in homework.

So when we set up the rates in Einstein's argument, we said that for spontaneous emission,

Einstein's spontaneous emission, he put a rate that was-- he said the number of transitions

that occur due to spontaneous emission is proportional to the number of atoms, Nb, the

number of photons present, times some coefficient that I don't know, Bab.

That's how the rate of atoms changing and going from the top level to the low level was. But

this is the one per atom. This is the transition rate per atom, multiplied by the number of atoms

present in the top level gave you the rate for spontaneous emission. This quantity is the one

that is equal to that omega ab. So this is equal to omega ba, like this.

Therefore, if you compare the Bab of Einstein, it's all except the U. So Bab is 4 pi squared over

3h squared dab vector squared. So Einstein could not do that because he didn't have

quantum theory. But we do, and we now can calculate from first principles this quantity in an

atomic transition.

And the other good thing was that even though there was a rate for spontaneous emission,

that rate was fixed by Einstein's argument to be h bar omega ba cubed over pi c cubed Bab.

So if you knew the b coefficient, you knew the a coefficient for spontaneous emission-- many

times were interested in spontaneous emission. So we calculate the stimulated emission

coefficient, here, and that's given in terms of this matrix element. We might as well give the

general formula.

So you just substitute the Bab, and now we have that A is equal to 4/3 omega ba cubed over h

bar c cubed Bab squared 4/3 omega ba cubed. There's one h bar in the bottom. There's the c

cubed. Yep.

So that completes that argument. We now have combined our development in time dependent

perturbation theory with a statistical physics argument. [INAUDIBLE] to determine those rates.

A little more is needed if you have to compute a practical rate, as you will have to do for the

homework. It's just the concept of a lifetime. And a couple of selection rules.



So let me make a few comments about it. We get, for example, a decay rate, A. It's a rate for

spontaneous emission. You have an atom. There's a decay rate, A. So if you have a

population of atoms, N atoms, at t equals 0, and A being the decay rate per atom, it means

that the number of states that are changing in a little time, dt, is minus A times dt-- the rate

multiplied by the time per atom-- times the number of atoms.

So dN dt is minus AN. And the number of atoms as a function of t go N at t equals 0 times e to

the minus At. So since we always call processes that go e to the minus t over tau-- tau is the

lifetime. That is nothing else than 1 over A.

So you get the decay rate. It's synonymous to a lifetime. You just invert it. No big problem.

Nevertheless, if you have an object, sometimes can decay in different ways. It can decay

maybe to one type of state, another type of state, a third type of state. So the total A might be

equal to A1 plus A2 when there are various decay channels.

You can decay-- a system can decay from an excited state. It can go to one state to another

state to a third state. Each one contributes a total decay rate because a total disappearance of

those atoms is because they either go into one or the other or the third. So this is true that the

total decay rate is that.

So this gives you a relation. The total lifetime, which is 1 over this, is the sum of the inverses of

the partial lifetimes. So if you have a process that can go in various ways, you may want to

combine them to get a total lifetime.

So the last thing we should say about this-- the last thing we're going to do is mention what

happens when you really try to calculate these things for hydrogen levels. You're going to

have the ability to calculate the lifetime of an excited state of hydrogen now. That's quite the

thing, to be able to get a number that is correct up to factors of 2 and is measurable.

So what do you have to consider? Well, the only thing we haven't quite done is computed this

matrix element of the dipole operator. You see, everything else that could be done was done.

We integrated over the incoherent radiation, we found the Fermi golden rule, we have

everything simplified. But still, the matrix element is something that you have to calculate.

So there's some selection rules. Rules. And this will be discussed in recitation. It's pretty

important stuff. I'll just mention the results. It's very readable in Griffiths. And it has to do with

the matrix elements.



So d is the dipole operator, so it boils down to r. So if you really knew n l prime m prime, the

matrix elements of nlm, if you knew all of this, you would be done. You could calculate

anything.

So the question is, when do these elements exist, and when are they nonzero? You need

them to be nonzero to get a nonzero transition rate. So when do they not vanish?

So the only cases these-- I'll summarize the answer-- are nonzero, these can be nonzero--

there can still be accidents and they could cancel-- only if delta m, the change in m from one

side to another, which is m prime minus m, is either equal to 0 or plus or minus 1.

You cannot change that quantum state of a system with a dipole interaction unless m changes

at most by 1. And moreover, the one that is quite interesting as well is that delta l, which is l

prime minus l, must only be plus or minus 1.

So those changes have to happen. So now you can at least get a qualitative understanding of

the hydrogen atom stability. You have the ground state here, 1S. Here is 2S, 2P, 3S, 3P, and

3D. Let's see who can go to who.

Well, the ground state cannot go anywhere. That's at the bottom. So OK. 2S going to 1S. Is it

possible?

AUDIENCE: No.

PROFESSOR: No. Very good. It violates delta l. So this doesn't happen. So if this doesn't happen, this 2S can

almost go nowhere because it doesn't have-- it has to go by spontaneous emission.

Something has to go to something lower, so it almost doesn't go anywhere.

So actually, it has a long lifetime, and it can decay via two photons or more complicated

decays. And we will not consider it. But this is fairly stable.

Now, this one, 2P, can go here because it can go from l equal 1 to l equal 0, and it can change

m by some value. The 3S you would say, oh, it cannot go here, cannot go here, but it can go

laterally in that direction because it can go change l from 1 to 0. So it's a change of l, and that

is possible.

The 3P can go here. And my diagram starting to get cluttered. And it could go here as well, all

the way down. And the 3D can only go here. Cannot go up to here because that would be l



equal 2. So that is your diagram of possible decays of hydrogen. And you're going to be

computing a couple of those.


