
Chapter 4

Time Dependent Perturbation
Theory

c© B. Zwiebach

4.1 Time dependent perturbations

We will assume that, as before, we have a Hamiltonian H(0) that is known and is time
independent. Known means we know the spectrum of energy eigenstates and the energy
eigenvalues. This time the perturbation to the Hamiltonian, denoted as δH(t) will be time
dependent and, as a result, the full Hamiltonian H(t) is also time dependent

H(t) = H(0) + δH(t) . (4.1.1)

While H(0) has a well-defined spectrum, H(t) does not. Being time dependent, H(t) does
not have energy eigenstates. It is important to remember that the existence of energy
eigenstates was predicated on the factorization of solutions Ψ(x, t) of the full Schrödinger
equation into a space-dependent part ψ(x) and a time dependent part that turned out to be
e−iEt/~, with E the energy. Such factorization is not possible when the Hamiltonian is time
dependent. Since H(t) does not have energy eigenstates the goal is to find the solutions
|Ψ(x, t)〉 directly. Since we are going to focus on the time dependence, we will suppress the
labels associated with space. We simply say we are trying to find the solution |Ψ(t)〉 to the
Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 =

(
H(0) + δH(t)

)
|Ψ(t)〉 . (4.1.2)

In typical situations the perturbation δH(t) vanishes for t < t0, it exists for some finite
time, and then vanishes for t > tf (see Figure 4.1). The system starts in an eigenstate of
H(0) at t < t0 or a linear combination thereof. We usually ask: What is the state of the
system for t > tf? Note that both initial and final states are nicely described in terms of
eigenstates of H(0) since this is the Hamiltonian for t < t0 and t > tf . Even during the
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74 CHAPTER 4. TIME DEPENDENT PERTURBATION THEORY

Figure 4.1: Time dependent perturbations typically exist for some time interval, here from t0 to tf .

time when the perturbation is on we can use the eigenstates of H(0) to describe the system,
since these eigenstates form a complete basis, but the time dependence is very nontrivial.

Many physical questions can be couched in this language. For example, assume we have
a hydrogen atom in its ground state. We turn on EM fields for some time interval. We can
then ask: What are the probabilities to find the atom in each of the various excited states
after the perturbation turned off?

4.1.1 The interaction picture

In order to solve efficiently for the state |Ψ(t)〉 we will introduce the Interaction Picture of
Quantum Mechanics. This picture uses some elements of the Heisenberg picture and some
elements of the Schrödinger picture. We will use the known Hamiltonian H(0) to define
some Heisenberg operators and the perturbation δH will be used to write a Schrödinger
equation.

We begin by recalling some facts from the Heisenberg picture. For any Hamiltonian,
time dependent or not, one can determine the unitary operator U(t) that generates time
evolution:

|Ψ(t)〉 = U(t)|Ψ(0)〉 . (4.1.3)

The Heisenberg operator ÂH associated with a Schrödinger operator Âs is obtained by
considering a rewriting of expectation values:

〈Ψ(t)|Âs|Ψ(t)〉 = 〈Ψ(0)|U†(t)Âs U(t)|Ψ(0)〉 = 〈Ψ(0)|ÂH |Ψ(0)〉 , (4.1.4)

where
AH ≡ U†(t)Âs U(t) . (4.1.5)

This definition applies even for time dependent Schrödinger operators. Note that the oper-
ator U† brings states to rest:

U†(t)|Ψ(t)〉 = U†(t)U(t)|Ψ(0)〉 = |Ψ(0)〉 . (4.1.6)

In our problem the known Hamiltonian H(0) is time independent and the associated unitary
time evolution operator U0(t) takes the simple form

U0(t) = exp
(
− iH

(0)t

~

)
. (4.1.7)
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The state |Ψ(t)〉 in our problem evolves through the effects of H(0) plus δH. Motivated
by (4.1.6) we define the auxiliary ket

∣∣Ψ̃(t)
〉

as the ket |Ψ(t)〉 partially brought to rest

through H(0): ∣∣Ψ̃(t)
〉
≡ exp

( iH(0)t

~

)∣∣Ψ(t)
〉
. (4.1.8)

Expect that Schrödinger equation for
∣∣Ψ̃(t)

〉
will be simpler, as the above must have taken

care of the time dependence generated by H(0). Of cours, if we can determine
∣∣Ψ̃(t)

〉
we

can easily get back the desired state
∣∣Ψ(t)

〉
inverting the above relation to find

∣∣Ψ(t)
〉

= exp
(
− iH

(0)t

~

)∣∣Ψ̃(t)
〉
. (4.1.9)

Our objective now is to find the Schrödinger equation for
∣∣Ψ̃(t)

〉
. Taking the time

derivative of (4.1.8) and using (4.1.2)

i~
d

dt

∣∣Ψ̃(t)
〉

= −H(0)
∣∣Ψ̃(t)

〉
+ exp

( iH(0)t

~

)
(H(0) + δH(t))

∣∣Ψ(t)
〉

=

[
−H(0) + exp

( iH(0)t

~

)
(H(0) + δH(t)) exp

(
− iH

(0)t

~

)]∣∣Ψ̃(t)
〉

= exp
( iH(0)t

~

)
δH(t) exp

(
− iH

(0)t

~

)∣∣Ψ̃(t)
〉
, (4.1.10)

where the dependence on H(0) cancelled out. We have thus found the Schrödinger equation

i~
d

dt

∣∣Ψ̃(t)
〉

= δ̃H(t)
∣∣Ψ̃(t)

〉
. (4.1.11)

where the operator δ̃H(t) is defined as

δ̃H(t) ≡ exp
( iH(0)t

~

)
δH(t) exp

(
− iH

(0)t

~

)
. (4.1.12)

Note that as expected the time evolution left in
∣∣Ψ̃(t)

〉
is generated by δ̃H(t) via a Schrödinger

equation. The operator δ̃H(t) is nothing else but the Heisenberg version of δH generated
using H(0)! This is an interaction picture, a mixture of Heisenberg’s and Schrödinger pic-
ture. While we have some Heisenberg(0) operators there is still a time dependent state∣∣Ψ̃(t)

〉
and a Schrödinger equation for it.
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How does it all look in an orthonormal basis? Let |n〉 be the complete orthonormal basis
of states for H(0):

H(0)|n〉 = En|n〉 . (4.1.13)

This time there is no need for a (0) superscript, since neither the states nor their energies
will be corrected (there are no energy eigenstates in the time-dependent theory). We then
write an ansatz for our unknown ket:∣∣Ψ̃(t)

〉
=
∑
n

cn(t)|n〉 . (4.1.14)

Here the functions cn(t) are unknown. This expansion is justified since the states |n〉 form
a basis, and thus at all times they can be used to describe the state of the system. The
original wavefunction is then:

∣∣Ψ(t)
〉

= exp
(
− iH

(0)t

~

)∣∣Ψ̃(t)
〉

=
∑
n

cn(t) exp

(
− iEnt

~

)
|n〉 . (4.1.15)

Note that the time dependence due to H(0) is present here. If we had δH = 0 the state∣∣Ψ̃(t)
〉

would be a constant, as demanded by the Schrödinger equation (4.1.11) and the
cn(t) would be constants. The solution above would give the expected time evolution of the
states under H(0).

To see what the Schrödinger equation tells us about the functions cn(t) we plug the
ansatz (4.1.14) into (4.1.11):

i~
d

dt

∑
m

cm(t)|m〉 = δ̃H(t)
∑
n

cn(t)|n〉 (4.1.16)

Using dots for time derivatives and introducing a resolution of the identity on the right-hand
side we find ∑

m

i~ċm(t)|m〉 =
∑
m

|m〉〈m|δ̃H(t)
∑
n

cn(t)|n〉

=
∑
m

|m〉
∑
n

〈m|δ̃H(t)|n〉cn(t)

=
∑
m,n

δ̃Hmn(t)cn(t)|m〉 . (4.1.17)

Here we have used the familiar matrix element notation

δ̃Hmn(t) ≡ 〈m|δ̃H(t)|n〉 . (4.1.18)

Equating the coefficients of the basis kets |m〉 in (4.1.17) we get the equations

i~ ċm(t) =
∑
n

δ̃Hmn(t) cn(t) . (4.1.19)



4.1. TIME DEPENDENT PERTURBATIONS 77

The Schrödinger equation has become an infinite set of coupled first-order differential equa-
tions. The matrix elements in the equation can be simplified a bit by passing to un-tilde
variables:

δ̃Hmn(t) =
〈
m
∣∣ exp

( iH(0)t

~

)
δH(t) exp

(
− iH

(0)t

~

)∣∣n〉
= exp

[
i

~
(Em − En)t

]
〈m|δH(t)|n〉 .

(4.1.20)

If we define

ωmn ≡
Em − En

~
, (4.1.21)

we then have
δ̃Hmn(t) = eiωmntδHmn(t) . (4.1.22)

The coupled equations (4.1.19) for the functions cn(t) then become

i~ ċm(t) =
∑
n

eiωmntδHmn(t)cn(t) . (4.1.23)

4.1.2 Example (based on Griffiths Problem 9.3)

Consider a two-state system with basis states |a〉 and |b〉, eigenstates of H(0) with energies
Ea and Eb, respectively. Call

ωab ≡ (Ea − Eb)/~ . (4.1.24)

Now take the perturbation to be a matrix times a delta function at time equal zero. Thus
the perturbation only exists for time equal zero:

δH(t) =

(
0 α
α∗ 0

)
δ(t) ≡ U δ(t) , (4.1.25)

where α is a complex number. With the basis vectors ordered as |1〉 = |a〉 and |2〉 = |b〉 we
have

U =

(
Uaa Uab
Uba Ubb

)
, with Uaa = Ubb = 0 and Uab = U∗ba = α . (4.1.26)

There is a sudden violent perturbation at t = 0 with off-diagonal elements that should
produce transition. Take the system to be in |a〉 for t = −∞, what is the probability that
it is in |b〉 for t = +∞?

Solution: First note that if the system is in |a〉 at t = −∞ it will remain in state |a〉 until
t = 0−, that is, just before the perturbation turns on. This is because |a〉 is an energy
eigenstate of H(0). In fact we have, up to a constant phase,

|Ψ(t)〉 = e−iEat/~|a〉 , for −∞ < t ≤ 0− . (4.1.27)
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We are asked what will be the probability to find the state in |b〉 at t =∞, but in fact, the
answer is the same as the probability to find the state in |b〉 at t = 0+. This is because the
perturbation does not exist anymore and if the state at t = 0+ is

|Ψ(0+)〉 = γa|a〉+ γb |b〉 , (4.1.28)

with γ1 and γ2 constants, then the state for any time t > 0 will be

|Ψ(t)〉 = γa|a〉e−iEat/~ + γb|b〉e−iEbt/~ . (4.1.29)

The probability pb(t) to find the state |b〉 at time t will be

pb(t) = |〈b|Ψ(t)〉|2 =
∣∣∣γbe−iEbt/~∣∣∣ = |γb|2 , (4.1.30)

and, as expected, this is time independent. It follows that to solve this problem we must
just find the state at t = 0+ and determine the constants γ1 and γ2.

Since we have two basis states the unknown tilde state is∣∣Ψ̃(t)
〉

= ca(t)|a〉+ cb(t)|b〉 , (4.1.31)

and the initial conditions are stating that the system begins in the state |a〉 are

ca(0
−) = 1 , cb(0

−) = 0 . (4.1.32)

The differential equations (4.1.23) take the form

i~ ċa(t) = eiωabtδHab(t)cb(t) ,

i~ ċb(t) = eiωbatδHba(t)ca(t) .
(4.1.33)

The couplings are off-diagonal because δHaa = δHbb = 0. Using the form of the δH matrix
elements,

i~ ċa(t) = eiωabt α δ(t) cb(t) ,

i~ ċb(t) = e−iωabt α∗δ(t) ca(t) .
(4.1.34)

We know that for functions f continuous at t = 0 we have f(t)δ(t) = f(0)δ(t). We now
ask if we are allowed to use such identity for the right-hand side of the above equations. In
fact we can use the identity for e±iωabt but not for the functions ca(t) and cb(t) that, are
expected to be discontinuous at t = 0. They must be so, because they can only change at
t = 0, when the delta function exists. Evaluating the exponentials at t = 0 we then get the
simpler equations

i~ ċa(t) = α δ(t) cb(t) ,

i~ ċb(t) = α∗δ(t) ca(t) .
(4.1.35)
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With such singular right-hand sides, the solution of these equations needs regulation. We
will regulate the delta function and solve the problem. A consistency check is that the
solution has a well-defined limit as the regulator is removed. We will replace the δ(t) by
the function ∆t0(t), with t0 > 0, defined as follows:

δ(t) → ∆t0(t) =

{
1/t0 , for t ∈ [0, t0] ,

0 , otherwise .
(4.1.36)

Note that as appropriate,
∫
dt∆t0(t) = 1, and that ∆t0(t) in the limit as t0 → 0 approaches

a delta function. If we replace the delta functions in (4.1.37) by the regulator we find, for
t ∈ [0, t0]

For t ∈ [0, t0] : i~ ċa(t) =
α

t0
cb(t) ,

i~ ċb(t) =
α∗

t0
ca(t) .

(4.1.37)

For any other times the right-hand side vanishes. By taking a time derivative of the first
equation and using the second one we find that

c̈a(t) =
1

i~
α

t0

1

i~
α∗

t0
ca(t) = −

(
|α|
~t0

)2

ca(t) . (4.1.38)

This is a simple second order differential equation and its general solution is

ca(t) = β0 cos

(
|α|t
~t0

)
+ β1 sin

(
|α|t
~t0

)
. (4.1.39)

This is accompanied with cb(t) which is readily obtained from the first line in (4.1.37):

cb(t) =
i~t0
α
ċa(t) =

i|α|
α

(
−β0 sin

( |α|t
~t0

)
+ β1 cos

( |α|t
~t0

))
. (4.1.40)

The initial conditions (4.1.32) tell us that in this regulated problem ca(0) = 1 and cb(0) = 0.
Given the solutions above, the first condition fixes β0 = 1 and the second fixes β1 = 0. Thus,
our solutions are:

For t ∈ [0, t0] : ca(t) = cos

(
|α|t
~t0

)
, (4.1.41)

cb(t) = −i |α|
α

sin

(
|α|t
~t0

)
. (4.1.42)

When the (regulated) perturbation is turned off (t = t0), ca and cb stop varying and the
constant value they take is their values at t = t0. Hence

ca(t > t0) = ca(t0) = cos

(
|α|
~

)
, (4.1.43)

cb(t > t0) = cb(t0) = −i |α|
α

sin

(
|α|
~

)
. (4.1.44)
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Note that these values are t0 independent. Being regulator independent, we can safely take
the limit t0 → 0 to get

ca(t > 0) = cos

(
|α|
~

)
, (4.1.45)

cb(t > 0) = −i |α|
α

sin

(
|α|
~

)
. (4.1.46)

Our calculation above shows that at t = 0+ the state will be

|Ψ(0+)〉 = |Ψ̃(0+)〉 = cos

(
|α|
~

) ∣∣ a 〉 − i
|α|
α

sin

(
|α|
~

) ∣∣ b 〉 . (4.1.47)

With only free evolution ensuing for t > 0 we have (as anticipated in (4.1.29))

|Ψ(t)〉 = cos

(
|α|
~

) ∣∣ a 〉e−iEat/~ − i
|α|
α

sin

(
|α|
~

) ∣∣b〉 e−iEbt/~ . (4.1.48)

The probabilities to be found in |a〉 or in |b〉 are time-independent, we are in a superposition
of energy eigenstates! We can now easily calculate the probability pb(t) to find the system
in |b〉 for t > 0 as well as the probability pa(t) to find the system in |a〉 for t > 0:

pb(t) = |〈b|Ψ(t)〉|2 = sin2

(
|α|
~

)
,

pa(t) = |〈a|Ψ(t)〉|2 = cos2

(
|α|
~

)
.

(4.1.49)

Note that pa(t)+pb(t) = 1, as required. The above is the exact solution of this system. If we
had worked in perturbation theory, we would be taking the strength |α| of the interaction
to be small. The answers we would obtain would form the power series expansion of the
above formulas in the limit as |α|/~ is small.

4.2 Perturbative solution

In order to set up the perturbative expansion properly we include a unit-free small parameter
λ multiplying the perturbation δH in the time-dependent Hamiltonian (4.1.1):

H(t) = H(0) + λδH(t) . (4.2.1)

With such a replacement the interaction picture Schrödinger equation for |Ψ̃(t)〉 in (4.1.11)
now becomes

i~
d

dt

∣∣Ψ̃(t)
〉

= λδ̃H(t)
∣∣Ψ̃(t)

〉
. (4.2.2)

As we did in time-independent perturbation theory we start by expanding
∣∣Ψ̃(t)

〉
in powers

of the parameter λ:∣∣Ψ̃(t)
〉

=
∣∣Ψ̃(0)(t)

〉
+ λ
∣∣Ψ̃(1)(t)

〉
+ λ2

∣∣Ψ̃(2)(t)
〉

+O
(
λ3
)
. (4.2.3)
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We now insert this into both sides of the Schrödinger equation (4.2.2), and using ∂t for time
derivatives, we find

i~∂t
∣∣Ψ̃(0)(t)

〉
+ λ i~∂t

∣∣Ψ̃(1)(t)
〉

+ λ2 i~∂t
∣∣Ψ̃(2)(t)

〉
+ λ3 i~∂t

∣∣Ψ̃(2)(t)
〉

+O
(
λ4
)

= λ δ̃H
∣∣Ψ̃(0)(t)

〉
+ λ2 δ̃H

∣∣Ψ̃(1)(t)
〉

+ λ3 δ̃H
∣∣Ψ̃(2)(t)

〉
+O

(
λ4
)
.

(4.2.4)

The coefficient of each power of λ must vanish, giving us

i~∂t
∣∣Ψ̃(0)(t)

〉
= 0 ,

i~∂t
∣∣Ψ̃(1)(t)

〉
= δ̃H

∣∣Ψ̃(0)(t)
〉
,

i~∂t
∣∣Ψ̃(2)(t)

〉
= δ̃H

∣∣Ψ̃(1)(t)
〉
,

... =
...

i~∂t
∣∣Ψ̃(n+1)(t)

〉
= δ̃H

∣∣Ψ̃(n)(t)
〉
.

(4.2.5)

The origin of the pattern is clear. Since the Schrödinger equation has an explicit λ multi-
plying the right-hand side, the time derivative of the n-th component is coupled to the δ̃H
perturbation acting on the (n− 1)-th component.

Let us consider the initial condition in detail. We will assume that the perturbation
turns on at t = 0, so that the initial condition is given in terms of |Ψ(0)〉. Since our
Schrödinger equation is in terms of |Ψ̃(t)〉 we use the relation ((4.1.8)) between them to
conclude that both tilde and un-tilde wavefunctions are equal at t = 0:

|Ψ̃(0)〉 = |Ψ(0)〉 . (4.2.6)

Given this, the expansion (4.2.3) evaluated at t = 0 implies that:∣∣Ψ̃(0)
〉

= |Ψ(0)〉 =
∣∣Ψ̃(0)(0)

〉
+ λ

∣∣Ψ̃(1)(0)
〉

+ λ2
∣∣Ψ̃(2)(0)

〉
+O

(
λ3
)
. (4.2.7)

This must be viewed, again, as an equation that holds for all values of λ. As a result, the
coefficient of each power of λ must vanish and we have∣∣Ψ̃(0)(0)

〉
=
∣∣Ψ(0)

〉
,∣∣Ψ̃(n)(0)

〉
= 0 , n = 1, 2, 3 . . . .

(4.2.8)

These are the relevant initial conditions.

Consider now the first equation in (4.2.5). It states that
∣∣Ψ̃(0)(t)

〉
is time independent.

This is reasonable: if the perturbation vanishes, this is the only equation we get and we
should expect

∣∣Ψ̃(t)
〉

constant. Using the time-independence of
∣∣Ψ̃(0)(t)

〉
and the initial

condition we have ∣∣Ψ̃(0)(t)
〉

=
∣∣Ψ̃(0)(0)

〉
=
∣∣Ψ(0)

〉
, (4.2.9)
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and we have solved the first equation completely:

∣∣Ψ̃(0)
〉

=
∣∣Ψ(0)

〉
. (4.2.10)

Using this result, the O(λ) equation reads:

i~∂t
∣∣Ψ̃(1)(t)

〉
= δ̃H

∣∣Ψ̃(0)(t)
〉

= δ̃H(t)
∣∣Ψ(0)

〉
. (4.2.11)

The solution can be written as an integral:

∣∣Ψ̃(1)(t)
〉

=

∫ t

0

δ̃H(t′)

i~
∣∣Ψ(0)

〉
dt′ . (4.2.12)

Note that by setting the lower limit of integration at t = 0 we have implemented correctly
the initial condition |Ψ̃(1)(0)〉 = 0. The next equation, of order λ2 reads:

i~∂t
∣∣Ψ̃(2)(t)

〉
= δ̃H

∣∣Ψ̃(1)(t)
〉
, (4.2.13)

and its solution is ∣∣Ψ̃(2)(t)
〉

=

∫ t

0

δ̃H(t′)

i~
∣∣Ψ̃(1)(t′)

〉
dt′ , (4.2.14)

consistent with the initial condition. Using our previous result to write
∣∣Ψ̃(1)(t′)

〉
we now

have an iterated integral expression:

∣∣Ψ̃(2)(t)
〉

=

∫ t

0

δ̃H(t′)

i~
dt′
∫ t′

0

δ̃H(t′′)

i~
∣∣Ψ(0)

〉
dt′′ . (4.2.15)

It should be clear from this discussion how to write the iterated integral expression for∣∣Ψ̃(k)(t)
〉
, with k > 2. The solution, setting λ = 1 and summarizing is then

∣∣Ψ(t)
〉

= exp
(
− iH

(0)t

~

)(
|Ψ(0)〉+ |Ψ̃(1)(t)〉+ |Ψ̃(2)(t)〉+ · · ·

)
(4.2.16)

Let us use our perturbation theory to calculate the probability Pm←n(t) to transition
from |n〉 at t = 0 to |m〉, with m 6= n, at time t, under the effect of the perturbation. By
definition

Pm←n(t) =
∣∣〈m|Ψ(t)〉

∣∣2 . (4.2.17)

Using the tilde wavefunction, for which we know how to write the perturbation, we have

Pm←n(t) =
∣∣〈m|e−iH(0)t/~∣∣Ψ̃(t)

〉∣∣2 =
∣∣〈m|Ψ̃(t)〉

∣∣2 , (4.2.18)
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since the phase that arises from the action on the bra vanishes upon the calculation of the
norm squared. Now using the perturbation expression for |Ψ̃(t)〉 (setting λ = 1) we have

Pm←n(t) =
∣∣∣〈m|(∣∣Ψ(0)

〉
+
∣∣Ψ̃(1)(t)

〉
+
∣∣Ψ̃(2)(t)

〉
+ . . .

)∣∣∣2 . (4.2.19)

Since we are told that |Ψ(0)〉 = |n〉 and |n〉 is orthogonal to |m〉 we find

Pm←n(t) =
∣∣∣〈m∣∣Ψ̃(1)(t)

〉
+ 〈m

∣∣Ψ̃(2)(t)
〉

+ . . .
∣∣∣2 . (4.2.20)

To first order in perturbation theory we only keep the first term in the sum and using our
result for |Ψ̃(1)(t)〉 we find

P (1)
m←n(t) =

∣∣∣∣∣〈m|
∫ t

0

δ̃H(t′)

i~
|n〉 dt′

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ t

0

〈m|δ̃H(t′)|n〉
i~

dt′

∣∣∣∣∣
2

. (4.2.21)

Recalling the relation between the matrix elements of δ̃H and those of δH we finally have
our result for the transition probability to first order in perturbation theory:

P (1)
m←n(t) =

∣∣∣∣∫ t

0
eiωmnt

′ δHmn(t′)

i~
dt′
∣∣∣∣2 . (4.2.22)

This is a key result and will be very useful in the applications we will consider.

Exercise: Prove the remarkable equality of transition probabilities

P (1)
m←n(t) = P (1)

n←m(t) , (4.2.23)

valid to first order in perturbation theory.

It will also be useful to have our results in terms of the time-dependent coefficients cn(t)
introduced earlier through the expansion∣∣Ψ̃(t)

〉
=
∑
n

cn(t)|n〉 . (4.2.24)

Since
∣∣Ψ(0)

〉
=
∣∣Ψ̃(0)

〉
the initial condition reads∣∣Ψ(0)

〉
=
∑
n

cn(0)|n〉 =
∣∣Ψ̃(0)(0)

〉
, (4.2.25)

where we also used (4.2.9). In this notation, the cn(t) functions also have a λ expansion,
because we write ∣∣Ψ̃(k)(t)

〉
=
∑
n

c(k)
n (t)|n〉 , k = 0, 1, 2, . . . (4.2.26)
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and therefore the earlier relation∣∣Ψ̃(t)
〉

=
∣∣Ψ̃(0)(t)

〉
+ λ
∣∣Ψ̃(1)(t)

〉
+ λ2

∣∣Ψ̃(2)(t)
〉

+O
(
λ3
)
. (4.2.27)

now gives

cn(t) = c(0)
n (t) + λc(1)

n (t) + λ2c(2)
n (t) + . . . (4.2.28)

Since |Ψ̃(0)(t)〉 is in fact constant we have

c(0)
n (t) = c(0)

n (0) = cn(0) , (4.2.29)

where we used (4.2.25). The other initial conditions given earlier in (4.2.8) imply that

c(k)
n (0) = 0 , k = 1, 2, 3 . . . . (4.2.30)

Therefore, using our result (4.2.12) for
∣∣Ψ̃(1)(t)

〉
we have

∣∣Ψ̃(1)(t)
〉

=
∑
n

c(1)
n (t)|n〉 =

∫ t

0

δ̃H(t′)

i~
dt′
∑
n

cn(0)|n〉 , (4.2.31)

and as a result,

c(1)
m (t) ≡ 〈m

∣∣Ψ̃(1)(t)
〉

=
∑
n

∫ t

0

〈m|δ̃H(t′)|n〉
i~

cn(0) dt′ . (4.2.32)

We therefore have

c(1)
m (t) =

∑
n

∫ t

0
dt′ eiωmnt

′ δHmn(t′)

i~
cn(0) . (4.2.33)

The probability Pm(t) to be found in the state |m〉 at time t is

Pm(t) = |〈m|Ψ(t)〉|2 =
∣∣∣〈m|Ψ̃(t)〉

∣∣∣2 = |cm(t)|2 . (4.2.34)

To first order in perturbation theory the answer would be (with λ = 1)

P (1)
m (t) =

∣∣cm(0) + c(1)
m (t)

∣∣2
=
∣∣cm(0)

∣∣2 + cm(0)∗c(1)
m (t) + c(1)

m (t)∗cm(0) +O(δH2) .
(4.2.35)

Note that the |c(1)
m (t)|2 term cannot be kept to this order of approximation, since it is of

the same order as contributions that would arise from c
(2)
m (t).
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4.2.1 Example NMR

The Hamiltonian for a particle with a magnetic moment inside a magnetic field can be
written in the form

H = ω · S , (4.2.36)

where S is the spin operator and ω is precession angular velocity vector, itself a function
of the magnetic field. Note that the Hamiltonian has properly units of energy (ω~). Let us
take the unperturbed Hamiltonian to be

H(0) = ω0Sz = ~
2 ω0σz . (4.2.37)

For NMR applications one has ω0 ≈ 500 Hz and this represents the physics of a magnetic
field along the z axis. Let us now consider some possible perturbations.

Case 1: Time independent perturbation Let us consider adding at t = 0 a constant
perturbation associated with an additional small uniform magnetic field along the x axis:

H = H(0) + δH , with δH = ΩSx , (4.2.38)

For this to be a small perturbation we will take

Ω� ω0 . (4.2.39)

Hence, for the full Hamiltonian H we have ω = (Ω, 0, ω0)

H = (Ω, 0, ω0)︸ ︷︷ ︸
ω

·(Sx, Sy, Sz) (4.2.40)

The problem is simple enough that an exact solution is possible. The perturbed Hamiltonian
H has energy eigenstates |n;±〉, spin states that point with n = ω

|ω| with energies ±~
2 |ω|.

These eigenstates could be recovered using time-independent non-degenerate perturbation
theory using Ω/ω0 as a small parameter and starting with the eigenstates |±〉 of H(0).

In time-dependent perturbation theory we obtain the time-dependent evolution of initial
states as they are affected by the perturbation. Recalling (4.2.12) we have

∣∣Ψ̃(1)(t)
〉

=

∫ t

0

δ̃H(t′)

i~
∣∣Ψ(0)

〉
dt′ (4.2.41)
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The calculation of δ̃H requires a bit of computation. One quickly finds that

δ̃H(t) = exp
[
iω0t

σz
2

]
ΩŜx exp

[
−iω0t

σz
2

]
= Ω

(
Ŝx cosω0t− Ŝy sinω0t

)
. (4.2.42)

As a result we set:∣∣Ψ̃(1)(t)
〉

=
Ω

i~

∫ t

0

(
Ŝx cosω0t

′ − Ŝy sinω0t
′
) ∣∣Ψ(0)

〉
dt′

=
1

i~
Ω

ω0

[
Ŝx sinω0t+

(
cos(ω0t

′)− 1
)
Ŝy

] ∣∣Ψ(0)
〉
. (4.2.43)

As expected, the result is first order in the small parameter Ω/ω0. Following (4.2.16) the
time-dependent state is, to first approximation

∣∣Ψ(t)
〉

= exp
[
−iω0t

σz
2

](
1 +

1

i~
Ω

ω0

[
Ŝx sinω0t+

(
cos(ω0t

′)− 1
)
Ŝy

])
|Ψ(0)〉

+O((Ω/ω0)2) .

(4.2.44)

Physically the solution is clear. The original spin state
∣∣Ψ(0)

〉
precesses about the direction

of ω with angular velocity ω.

Case 2: Time dependent perturbation. Suppose that to the original Hamiltonian we
add the effect of a rotating magnetic field, rotating with the same angular velocity ω0 that
corresponds to the Larmor frequency of the original Hamiltonian:

δH(t) = Ω
(
Ŝx cosω0t+ Ŝy sinω0t

)
. (4.2.45)

To compute the perturbation δ̃H we can use (4.2.42) with t replaced by −t so that the
right-hand side of this equation is proportional to δH:

exp
[
−iω0t

σz
2

]
ΩŜx exp

[
iω0t

σz
2

]
= Ω

(
Ŝx cosω0t+ Ŝy sinω0t

)
. (4.2.46)

Moving the exponentials on the left-hand side to the right-hand side we find

ΩŜx = exp
[
iω0t

σz
2

]
Ω
(
Ŝx cosω0t+ Ŝy sinω0t

)
exp

[
−iω0t

σz
2

]
. (4.2.47)

The right-hand side is, by definition, δ̃H. Thus we have shown that

δ̃H(t) = ΩŜx , (4.2.48)

is in fact a time-independent Hamiltonian. This means that the Schrödinger equation for∣∣Ψ̃〉 is immediately solved

∣∣Ψ̃(t)
〉

= exp

[
−i δ̃Ht

~

]∣∣Ψ̃(0)
〉

= exp

[
−iΩŜx t

~

]∣∣Ψ(0)
〉
. (4.2.49)
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The complete and exact answer is therefore

∣∣Ψ(t)
〉

= exp
[
− iH

(0)t

~

]∣∣Ψ̃(t)
〉

= exp
[
−iω0t

σz
2

]
exp

[
−iΩtσx

2

] ∣∣Ψ(0)
〉
. (4.2.50)

This is a much more non trivial motion! A spin originally aligned along ẑ will spiral into
the x, y plane with angular velocity Ω.

4.3 Fermi’s Golden Rule

Let us now consider transitions where the initial state is part of a discrete spectrum but the
final state is part of a continuum. The ionization of an atom is perhaps the most familiar
example: the initial state may be one of the discrete bound states of the atom while the
final state includes a free electron a momentum eigenstate that is part of a continuum of
non-normalizable states.

As we will see, while the probability of transition between discrete states exhibits pe-
riodic dependence in time, if the final state is part of a continuum an integral over final
states is needed and the result is a transition probability linear in time. To such probability
function we will be able to associate a transition rate. The final answer for the transition
rate is given by Fermi’s Golden Rule.

We will consider two different cases in full detail:

1. Constant perturbations. In this case the perturbation, called V turns on at t = 0 but
it is otherwise time independent:

H =

{
H(0) , for t ≤ 0 ,

H(0) + V for t > 0 .
(4.3.1)

This situation is relevant for the phenomenon of auto-ionization, where an internal
transition in the atom is accompanied by the ejection of an electron.
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2. Harmonic perturbations. In this case the time dependence of the perturbation δH is
periodic, namely,

H(t) = H(0) + δH(t) , (4.3.2)

with

δH(t) =

{
0 , for t ≤ 0 ,

2H ′ cosωt , for t > 0 .
(4.3.3)

Note the factor of two entering the definition of δH in terms of the time independent
H ′. This situation is relevant to the interaction of electromagnetic fields with atoms.

Before starting with the analysis of these two cases let us consider the way to deal
with continuum states, as the final states in the transition will belong to a continuum.
The fact is that we need to be able to count the states in the continuuum, so we will
replace infinite space by a very large cubic box of side length L and we will impose periodic
boundary conditions on the wavefunctions. The result will be a discrete spectrum where
the separation between the states can be made arbitrarily small, thus simulating accurately
a continuum in the limit L → ∞. If the states are energetic enough and the potential is
short range, momentum eigenstates are a good representation of the continuum.

To count states use a large box, which can be taken to be a cube of side L:

We call L a regulator as it allows us to deal with infinite quantities (like the volume of
space or the number of continuum states). At the end of our calculations the value of L
must drop out. This is a consistency check. The momentum eigenstates ψ(x take the form

ψ(x) =
1√
L3
eikxxeikyyeikzz , (4.3.4)

with constant k = (kx, ky, kz). It is clear that the states are normalized correctly∫
box
|ψ(x)|2d3x =

1

L3

∫
d3x = 1 . (4.3.5)

The k′s are quantized by the periodicity condition on the wavefunction:

ψ(x+ L, y, z) = ψ(x, y + L, z) = ψ(x, y, z + L) = ψ(x, y, z) . (4.3.6)

The quantization gives

kxL = 2πnx → Ldkx = 2πdnx ,

kyL = 2πny → Ldky = 2πdny ,

kzL = 2πnz → Ldkz = 2πdnz .

(4.3.7)
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Define ∆N as the total number of states within the little cubic volume element d3k. It
follows from (4.3.7) that we have

∆N ≡ dnx dny dnz =

(
L

2π

)3

d3k . (4.3.8)

Note that ∆N only depends on d3k and not on k itself: the density of states is constant in
momentum space.

Now let d3k be a volume element determined in spherical coordinates k, θ, φ and by
ranges dk, dθ, dφ. Therefore

d3k = k2dk sin θdθ dφ = k2dk dΩ (4.3.9)

We now want to express the density of states as a function of energy. For this we take
differentials of the relation between the wavenumber k and the energy E:

E =
~2k2

2m
→ kdk =

m

~2
dE . (4.3.10)

Back in (4.3.9) we have

d3k = k
m

~2
dE dΩ , (4.3.11)

hence

∆N =

(
L

2π

)3

k
m

~2
dΩ dE . (4.3.12)

We now equate
∆N = ρ(E)dE , (4.3.13)

where ρ(E) is a density of states, more precisely, it is the number of states per unit energy
at around energy E and with momentum pointing within the solid angle dΩ. The last two
equations determine for us this density:

ρ(E) =
L3

8π3

m

~2
k dΩ . (4.3.14)

With a very large box, a sum over states can be replaced by an integral as follows∑
states

· · · →
∫
· · · ρ(E)dE (4.3.15)

where the dots denote an arbitrary function of the momenta k of the states.
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4.3.1 Constant transitions.

The Hamiltonian, as given in (4.3.1) takes the form

H =

{
H(0) for t ≤ 0

H(0) + V for t > 0 .
(4.3.16)

We thus identify δH(t) = V for t ≥ 0. Recalling the formula (4.2.33) for transition ampli-
tudes to first order in perturbation theory we have

c(1)
m (t) =

∑
n

∫ t

0
dt′eiωmnt

′ Vmn
i~

cn(0) . (4.3.17)

To represent an initial state i at = 0 we take cn(0) = δn,i. For a transition to a final state
f at time t0 we set m = f and we have an integral that is easily performed:

c
(1)
f (t0) =

1

i~

∫ t0

0
Vfi e

iωfi t
′
dt′ =

Vfi
i~

eiωfi t
′

iωfi

∣∣∣∣∣
t0

0

(4.3.18)

Evaluating the limits and simplifying

c
(1)
f (t0) =

Vfi
Ef − Ei

(
1− eiωfi t0

)
=
Vfi e

iωfit0/2

Ef − Ei
(−2i) sin

(
ωfi t

0

2

)
. (4.3.19)

The transition probability to go from i at t = 0 to f at t = t0 is then |c(1)
f (t0)|2 and is

therefore

Pf←i(t0) = |Vfi|2
4 sin2

(
ωfi t0

2

)
(Ef − Ei)2

. (4.3.20)

This first order result in perturbation theory is expected to be accurate at time t0 if
Pf←i(t0) � 1. Certainly a large transition probability at first order could not be trusted
and would require examination of higher orders.

To understand the main features of the result for the transition probability we examine
how it behaves for different values of the final energy Ef . If Ef 6= Ei the transition is said
to be energy non-conserving. Of course, energy is conserved overall, as it would be supplied
by the perturbation. If Ef = Ei we have an energy conserving transition. Both are possible
and let us consider them in turn.

1. Ef 6= Ei. In this case the transition probability Pf←i(t0) as a function of t0 is shown
in Figure 4.2. The behavior is oscillatory with frequency |ωfi. If the amplitude of the
oscillation is much less than one

4|Vfi|2

(Ef − Ei)2
� 1 (4.3.21)
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Figure 4.2: The transition probability as a function of time for constant perturbations.

then this first order transition probability Pf←i(t0) is accurate for all times t0 as it is
always small. The amplitude is suppressed as |Ef − Ei| grows, due to the factor in
the denominator. This indicates that the larger the energy ‘violation’ the smaller the
probability of transition. This is happening because a perturbation that turns on and
then remains constant is not an efficient supply of energy.

2. Ef → Ei. In this limit ωfi approaches zero and therefore

sin2

(
ωfi t0

2

)
'

(Ef − Ei)2

4~2
t20 . (4.3.22)

It follows from (4.3.20) that

lim
Ef→Ei

Pf←i(t0) =
|Vfi|2

~2
t20 . (4.3.23)

The probability for an energy-conserving transition grows quadratically in time, and
does so without bound! This result, however, can only be trusted for small enough t0
such that Pf←i(t0)� 1.

Note that a quadratic growth of Pf←i is also visible in the energy non-conserving Ef 6=
Ei case for very small times t0. Indeed, (4.3.20) leads again to limt0→0 Pf←i(t0) =
|Vfi|2t20/~2, while Ef 6= Ei. This behavior can be noted near the origin in Figure 4.2.

Our next step is to integrate the transition probability over the now discretized contin-
uum of final states. Remarkably, upon integration the oscillatory and quadratic behaviors
of the transition probability as a function of time will conspire to create a linear behavior!

The sum of transition probabilities over final states is approximated by an integral, as
explained in (4.3.15). We thus have

∑
f

Pf←i(t0) =

∫
Pf←i(t0)ρ(Ef )dEf = 4

∫
|Vfi|2

sin2
(
ωfi t0

2

)
(Ef − Ei)2

ρ(Ef )dEf . (4.3.24)
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We have noted that Pf←i in the above integrand is suppressed as |Ef −Ei| becomes large.
We therefore expect that the bulk of the contribution to the integral will occur for a narrow
range ∆Ef of Ef near Ei. Let us assume now that |Vfi|2 and ρ(Ef ) are slow varying
and therefore approximately constant over the narrow interval Ef (we will re-examine this
assumption below). If this is the case we can evaluate them for Ef set equal to Ei and take
them out of the integrand to find∑

f

Pf←i(t0) =
4|Vfi|2

~2
ρ(Ef = Ei) · I(t0) , (4.3.25)

where the integral I(t0) is given by

I(t0) ≡
∫

1

ω2
fi

sin2

(
ωfi t0

2

)
dEf = ~

∫
sin2

(
ωfi t0

2

)
dωfi
ω2
fi

. (4.3.26)

As it stands, the integral extends from minus infinity to plus infinity. It is useful to plot the
final integrand for I(t0) as a function of the integration variable ωfi. The result is shown
in Figure 4.3 and exhibits a main central lobe followed by symmetrically arranged lobes of
decreasing amplitude. The lobes are separated by zeroes occurring for ωfi = 2πk/t0, with
k integer. Note that for

Figure 4.3: Plot of 1
ω2

fi
sin2

(
ωfi t0

2

)
, the integrand of I.

The largest contribution to I(t0) arises from the main lobe

−2π

t0
< ωfi <

2π

t0
. (4.3.27)

In terms of energies this corresponds to the range

Ei −
2π~
t0

< Ef < Ei +
2π~
t0

. (4.3.28)
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We need this range to be a narrow, thus t0 must be sufficiently large. The narrowness
is required to justify our taking of the density of states ρ(E) and the matrix element |Vfi|2
out of the integral. If we want to include more lobes this is can be made consistent with a
narrow range of energies by making t0 larger.

The linear dependence of I(t0) as a function of t0 is intuitively appreciated by noticing
that the height of the main lobe is proportional to t20 and its width is proportional to 1/t0.
In fact, the linear dependence is a simple mathematical fact made manifest by a change of
variables. Letting

u =
ωfit0

2
=⇒ du =

t0
2
dωfi , (4.3.29)

so that

I(t0) =
2~
t0

∫ ∞
−∞

sin2 u

u2 · 4
t20

=
~t0
2

∫ ∞
−∞

sin2 u

u2
, (4.3.30)

making the linear dependence in t0 manifest. The remaining integral evaluates to π and we
thus get

I(t0) = π
2 ~t0 . (4.3.31)

Had restricted the integral to the main lobe, concerned that the density of states and matrix
elements would vary over larger ranges, we would have gotten 90% of the total contribution.
Including the next two lobes, one to the left and one to the right, brings the result up to
95% of the total contribution. By the time we include ten or more lobes on each side we
are getting 99% of the answer. For sufficiently large t0 is is still a narrow range.

Having determined the value of the integral I(t0) we can substitute back into our ex-
pression for the transition probability (4.3.26). Replacing t0 by t

∑
k

Pk←i(t) =
4|Vfi|2

~2
ρ(Ef )

π

2
~t =

2π

~
|Vfi|2ρ(Ef ) t . (4.3.32)

This holds, as discussed before, for sufficiently large t. Of course t cannot be too large as it
would make the transition probability large and unreliable. The linear dependence of the
transition probability implies we can define a transition rate w, or probability of transition
per unit time, by dividing the transition probability by t:

w ≡ 1

t

∑
f

Pf←i(t) . (4.3.33)

This finally gives us Fermi’s golden rule for constant perturbations:

Fermi’s golden rule: w =
2π

~
|Vfi|2ρ(Ef ) , Ef = Ei . (4.3.34)

Not only is the density of states evaluated at the energy Ei, the matrix element Vfi is also
evaluated at the energy Ei and other observables of the final state, like the momentum. In
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this version of the golden rule the integration over final states has been performed. The
units are manifestly right: |Vfi|2 has units of energy squared, ρ has units of one over energy,
and with an ~ in the denominator the whole expression has units of one over time, as
appropriate for a rate. We can also see that the dependence of w on the size-of-the-box
regulator L disappears: The matrix element

Vfi = 〈f |V |i〉 ∼ L−3/2 , (4.3.35)

because the final state wavefunction has such dependence (see (4.3.4)). Then the L depen-
dence in |Vfi|2 ∼ L−3 cancels with the L dependence of the density of states ρ ∼ L3, noted
in (4.3.14).

Let us summarize the approximations used to derive the golden rule. We have two
conditions that must hold simultaneously:

1. We assumed that t0 is large enough so that the energy range

Ei − k
2π~
t0

< Ef < Ei + k
2π~
t0

, (4.3.36)

with k some small integer, is narrow enough that ρ(E) and |Vfi|2 are approximately
constant over this range. This allowed us to take them out of the integral simplifying
greatly the problem and making a complete evaluation possible.

2. We cannot allow t0 to be arbitrarily large. As we have∑
f

Pf←i(t0) = w t0 , (4.3.37)

we must keep wt0 � 1 for our first order calculation to be accurate.

Can the two conditions on t0 be satisfied? There is no problem if the perturbation can
be made small enough: indeed, suppose condition 1 is satisfied for some suitable t0 but
condition 2 is not. Then we can make the perturbation V smaller making w small enough
that the second condition is satisfied. In practice, in specific problems, one could do the
following check. First compute w assuming the golden rule. Then fix t0 such that wt0 is
very small, say equal to 0.01. Then check that over the range ∼ ~/t0 the density of states
and the matrix elements are roughly constant. If this works out the approximation should
be very good!

Helium atom and autoionization. The helium has two protons (Z = 2) and two
electrons. Let H(0) be the Hamiltonian for this system ignoring the the Coulomb repulsion
between the electrons:

H(0) =
p2

1

2m
− e2

r1
+

p2
2

2m
− e2

r2
. (4.3.38)
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Here the labels 1 and 2 refer to each one of the two electrons. The spectrum of this
Hamiltonian consists of hydrogenic states, with n1, n2 the principal quantum numbers for
the electrons. The energies are then

En1,n2 = −(13.6 eV)Z2

(
1

n2
1

+
1

n2
2

)
= −(54.4 eV)

(
1

n2
1

+
1

n2
2

)
. (4.3.39)

Figure 4.4: Hydrogenic states in helium and continuum states of negative total energy.

For the hydrogen atom we have bound states of negative energy and continuum states
of positive energy that can be described to a good approximation as momentum eigenstates
of the electron which is no longer bound to the proton. Since we have two electrons in the
case of helium, there are continuum states in the spectrum with negative energy.

This first happens for n1 = 1 in the limit as n2 → ∞. For n1 = 1 and n2 = ∞ the
second electron is essentially free and contributes no energy. Thus a continuum appears for
energy E1,∞ = −54.4eV. This (1S)(∞) continuum extends for all E ≥ −54.4eV as the free
electron can have arbitrary positive kinetic energy. The state (2S)(∞) is the beginning of
a second continuum, also including states of negative energy. In general the state (nS)(∞)
with n ≥ 1 marks the beginning of the n-th continuum. In each of these continua one
electron is still bound and the other is free. A diagram showing some discrete states and a
couple of continua is given in Figure 4.4.

Self-ionizing energy-conserving transitions can occur because discrete states can find
themselves in the middle of a continuum. The state (2S)2, for example, with two electrons
on the 2S configuration and with energy E2,2 = −27eV is in the middle of the (1S)(∞)
continuum. We can view the original (2S)2 hydrogenic state as a t = 0 eigenstate of H(0)

and treat the Coulomb repulsion as a perturbation. We thus have a total Hamiltonian H
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that takes the form

H = H(0) + V , V =
e2

|r1 − r2|
. (4.3.40)

The perturbation V produces “auto-ionizing” Auger transitions to the continuum. We have
a transition from a state with energy E2,2 = −27eV to a state of one bound electron with
energy −54.4eV and one free electron with kinetic energy of 27eV. That final state is part
of a continuum. Radiative transitions from (2S)2 to 1S2S, with photo-emission, are in fact
a lot less likely than auto-ionizing transitions!

We will not do the quantitative analysis required to determine lifetime of the (2S)2 state.
In general auto-ionization is a process in which an atom or a molecule in an excited state
spontaneously emits one of the outer-shell electrons. Auto-ionizing states are in general
short lived. Auger transitions are auto-ionization processes in which the filling of an inner
shell vacancy is accompanied by the emission of an electron. Our example of the (2S)2

state is an Auger transition. Molecules can have auto ionizing Rydberg states, in which the
little energy needed to remove the Rydberg electron is supplied by a vibrational excitation
of the molecule.

4.3.2 Harmonic Perturbation

It is now time to consider the case when the perturbation is harmonic. We will be able
to derive a similar looking Fermi golden rule for the transition rate. The most important
difference is that now the transitions are of two types. They involve either absorption of
energy or a release of energy. In both cases that energy (absorbed or released) is equal to
~ω where ω is the frequency of the perturbation.

As indicated in (4.3.3) we have

H(t) = H(0) + δH(t) , (4.3.41)

where the perturbation δH(t) takes the form

δH(t) =

{
0 , for t ≤ 0 ,

2H ′ cosωt , for t > 0 .
(4.3.42)

Here ω > 0 and H ′ is some time independent Hamiltonian. The inclusion of an extra factor
of two in the relation between δH and H ′ is convenient because it results in a golden rule
does not have additional factors of two compared to the case of constant transitions.

We again consider transitions from an initial state i to a final state f . The transition
amplitude this time From (4.2.33)

c
(1)
f (t)) =

1

i~

∫ t0

0
dt′ eiωfit

′
δHfi(t

′) . (4.3.43)
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Using the explicit form of δH the integral can be done explicitly

c
(1)
f (t0) =

1

i~

∫ t0

0
eiωfit

′
2H ′fi cosωt′dt′

=
H ′fi
i~

∫ t0

0

(
ei(ωfi+ω)t′ + ei(ωfi−ω)t′

)
dt′

= −
H ′fi
~

[
ei(ωfi+ω)t0 − 1

ωfi + ω
+
ei(ωfi−ω)t0 − 1

ωfi − ω

]
.

(4.3.44)

Comments:

• The amplitude takes the form of a factor multiplying the sum of two terms, each one a
fraction. As t0 → 0 each fraction goes to it0. For finite t0, which is our case of interest,
each numerator is a complex number of bounded absolute value that oscillates in time
from zero up to two. In comparing the two terms the relevant one is the one with the
smallest denominator.1

• The first term is relevant as ωfi + ω ≈ 0, that is, when there are states at energy
Ef = Ei − ~ω. This is “stimulated emission”, the source has stimulated a transition
in which energy ~ω is released.

• The second term relevant if ωfi − ω ≈ 0, that is, when there are states at energy
Ef = Ei + ~ω. Energy is transferred from the perturbation to the system, and we
have a process of “absorption”.

Both cases are of interest. Let us do the calculations for the case of absorption; the
answer for the case of spontaneous emission will be completely analogous. We take i to be
a discrete state, possibly bound, and f to be a state in the continuum at the higher energy
Ef ≈ Ei + ~ω. Since ωfi ' ω, the second term in the last line of (4.3.44) is much more
important than the first. Keeping only the second term we have

c
(1)
f (t0) = −

H ′fi
~
e
i
2

(ωfi−ω)t0

ωfi − ω
2i sin

(
ωfi − ω

2
t0

)
, (4.3.45)

and the transition probability is

Pf←i(t0) = |c(1)
f (t0)|2 =

4|H ′fi|2

~2

sin2
(
ωfi−ω

2 t0

)
(ωfi − ω)2

(4.3.46)

The transition probability is exactly the same as that for constant perturbations (see
(4.3.20)) with V replaced by H ′ and ωfi replaced by ωfi − ω. The analysis that follows is

1This is like comparing two waves that are being superposed. The one with larger amplitude is more
relevant even though at some special times, as it crosses the value of zero, it is smaller than the other wave.
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completely analogous to the previous one so we shall be brief. Summing over final states
we have

∑
k

Pk←i(t0) =

∫
Pf←i ρ(Ef )dEf =

∫
4|H ′fi|2

~2

sin2
(
ωfi−ω

2 t0

)
(ωfi − ω)2

ρ(Ef )dEf . (4.3.47)

This time the main contribution comes from the region

−2π

t0
< ωfi − ω <

2π

t0
(4.3.48)

In terms of the final energy this is the band

Ei + ~ω − 2π~
t0

< Ef < Ei + ~ω +
2π~
t0

(4.3.49)

For sufficiently large t0 this is the narrow band of states illustrated in Figure 4.5. Assume

Figure 4.5: In the absorption process we must integrate over a narrow band of states about
the final energy Ei + ~ω.

that over the band H ′fi and the density of states is constant so that we get

∑
k

Pk←i(t0) =
4

~
|H ′fi|2ρ(Ei + ~ω)

∫ sin2
(
ωfi−ω

2 t0

)
(ωfi − ω)2

dωfi . (4.3.50)

Defining

u ≡ 1
2 (ωfi − ω) t0 → du = 1

2dωfi t0 , (4.3.51)

the integral in (4.3.50) becomes∫ ∞
−∞

sin2 u(
2u
t0

)2

2

t0
du =

t0
2

∫ ∞
−∞

sin2 u

u2
du =

t0
2
π . (4.3.52)
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Finally, the transition probability is∑
k

Pk←i(t0) =
2π

~
|H ′fi|2ρ(Ei + ~ω) t0 . (4.3.53)

The transition rate w is finally given by

Fermi’s golden rule: w =
2π

~
ρ(Ef )|H ′fi|2 , Ef = Ei + ~ω . (4.3.54)

Here H ′(t) = 2H ′ cosωt. Equation (4.3.54) is known as Fermi’s golden rule for the case of
harmonic perturbations. For the case of spontaneous emission the only change required in
the above formula is Ef = Ei − ~ω.

4.4 Ionization of hydrogen

We aim to find the ionization rate for hydrogen when hit by the harmonically varying
electric field of an electromagnetic wave. We assume the hydrogen atom has its electron
on the ground state. In this ionization process a photon ejects the bound electron, which
becomes free.

Let us first do a few estimates to understand the validity of the approximations that will
be required. If the electromagnetic field has frequency ω the incident photons have energy

Eγ = ~ω . (4.4.1)

The energy Ee and the magnitude k of the momentum of the ejected electron are given by

Ee =
~2k2

2m
= Eγ −Ry , (4.4.2)

where the Rydberg Ry is the magnitude of the energy of the ground state:

2Ry =
e2

a0
=

~2

ma2
0

= α
~c
a0
, Ry ' 13.6 eV . (4.4.3)

Inequalities

1. Any electromagnetic wave has spatial dependence. We can ignore the spatial depen-
dence of the wave if the wavelength λ of the photon is much bigger than the Bohr
radius a0:

λ

a0
� 1 . (4.4.4)

Such a condition puts an upper bound on the photon energy, since the more energetic
photon the smaller its wavelength. To bound the energy we first write

λ =
2π

kγ
=

2πc

ω
=

2π~c
~ω

, (4.4.5)
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and then find

λ

a0
=

2π

~ω
~c
a0

=
4π

α

Ry
~ω
' 1722

Ry
~ω

(4.4.6)

The inequality (4.4.4) then gives

~ω � 1722Ry ' 23 keV (4.4.7)

2. For final states we would like to use free particle momentum eigenstates. This requires
the ejected electron to be energetic enough not to be much effected by the Coulomb
field. As a result, the photon to be energetic enough, and this constraint provides a
lower bound for its energy. We have

Ee = Eγ −Ry � Ry → ~ω � Ry . (4.4.8)

The two inequalities above imply

Ry � ~ω � 1722Ry . (4.4.9)

If consider that 1� 10 we could take

140eV ≤ ~ω ≤ 2.3 keV . (4.4.10)

Note that even for the upper limit the electron is non relativistic: 2.3 keV� mec
2 ' 511keV.

Exercise: Determine ka0 in terms of ~ω and Ry.
Solution:

~2k2

2m
= ~ω −Ry = Ry

(
~ω
Ry
− 1

)
=

~2

2ma2
0

(
~ω
Ry
− 1

)
(4.4.11)

k2a2
0 =

~ω
Ry
− 1 → ka0 =

√
~ω
Ry
− 1 . (4.4.12)

This is the desired result. In the range of (4.4.10) we have

3 ≤ ka0 ≤ 13 . (4.4.13)

Calculating the matrix element. Our perturbation Hamiltonian is

δH = −eΦ , (4.4.14)

where Φ is the electric scalar potential. Let the electric field at the atom be polarized in
the ẑ direction

E(t) = E(t)ẑ = 2E0 cosωt ẑ (4.4.15)
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The associated scalar potential is
Φ = −E(t)z , (4.4.16)

and therefore

δH = eE(t)z = eE(t)r cos θ = 2 eE0r cos θ︸ ︷︷ ︸
H′

cosωt ≡ 2H ′ cosωt (4.4.17)

We have thus identified, in our notation,

H ′ = eE0r cos θ . (4.4.18)

We want to compute the matrix element between an initial state |i〉 that is the ground state
of hydrogen, and a final state |f〉 which is an electron plane wave with momentum ke. The
associated wavefunctions are

Final state: uk(x) =
1

L3/2
eik·r (4.4.19)

Initial state: ψ0(r) =
1√
πa3

0

e
− r
a0 (4.4.20)

The only physical angle here is that between the ejected electron momentum ke and the
electric field polarization E. We expect electron to be ejected maximally along E. This
suggests rearranging the axes to have the electron momentum along the z axis and and
letting θ be the angle between the electron momentum and the electric field. The integration
variable r will have angles θ′, φ′, and the angle between the electric field and r is now called
θ′′ as shown in the figure, so that H ′ = eE0r cos θ′′:

〈f |H ′|i〉 =

∫
d3x

1

L3/2
eik·r eE0r cos θ′′

1√
πa3

0

e
− r
a0

=
eE0√
πa3

0L
3

∫
r2dr sin θ′dθ′dφ′eikr cos θ′r cos θ′′e

− r
a0 (4.4.21)
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The main complication with doing the integral is the factor cos θ′′. The dot product of unit
vectors along E and n is cos θ′′:

cos θ′′ = (sin θ cosφ)(sin θ′ cosφ′) + (sin θ sinφ)(sin θ′ sinφ′) + cos θ cos θ′

= sin θ sin θ′ cos(φ− φ′) + cos θ cos θ′ (4.4.22)

Since the following integral vanishes∫
dφ′ cos(φ− φ′) = 0 (4.4.23)

the first term in the expression for cos θ′′ will vanish upon φ′ integration. We therefore can
replace cos θ′′ → cos θ cos θ′ to find

〈f |H ′|i〉 =
eE0√
πa3

0L
3

∫
r3dr sin θ′dθ′dφ′eikr cos θ′ cos θ cos θ′e

− r
a0

=
eE0√
πa3

0L
3
(cos θ)(2π)

∫
r3dr e

− r
a0

∫ 1

−1
d(cos θ′) cos θ′eikr cos θ′ (4.4.24)

Now let r = a0u and do the radial integration:

〈f |H ′|i〉 =
eE0√
πa3

0L
3
2π cos θa4

0

∫ 1

−1
d(cos θ′) cos θ′

∫
u3du e−u(1+ika0 cos θ′)

=
eE0√
πa3

0L
3
2π cos θa4

0

∫ 1

−1
d(cos θ′) cos θ′

3!

(1 + ika0 cos θ′)4
. (4.4.25)

Writing x = cos θ′ the angular integral is not complicated:

〈f |H ′|i〉 =
eE0√
πa3

0L
3

2π cos θa4
0

3!

(ika0)4

∫ 1

−1

x(
x+ 1

ika0

)4dx

=
eE0√
πa3

0L
3

2π cos θa4
0

3!

(ika0)4

8
(

1
ika0

)
3
(

1 + 1
k2a20

)3

= −i32πeE0a0√
πa3

0L
3

ka4
0

(1 + k2a2
0)3

cos θ (4.4.26)

Hence, with a little rearrangement

〈f |H ′|i〉 = −i32
√
π (eE0a0)

ka4
0√

a3
0L

3

1

(1 + k2a2
0)3

cos θ . (4.4.27)

The above matrix element has the units of (eE0a), which is energy. This is as expected.
Squaring we find

|H ′fi|2 = 1024π (eE0a)2 k
2a5

0

L3

cos2 θ

(1 + k2a2
0)6

(4.4.28)
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At this point, with θ the angle between ke and E, it is more convenient to align E along
the z-axis and let ke be defined by the polar angles θ, φ. The density of states was given in
(4.3.14)

ρ(Ee) =
L3

8π3

m

~2
k dΩ (4.4.29)

so that using Fermi’s Golden rule, the rate dw to go into final states in the solid angle dΩ
is

dw =
2π

~
ρ(Ee)|H ′fi|2

=
2π

~
L3

8π3

m

~2
k dΩ 1024π(eE0a0)2k

2a5
0

L3

cos2 θ

(1 + k2a2
0)6

. (4.4.30)

It follows that

dw

dΩ
=

256

π

ma2
0

~2

(eE0a0)2

~
k3a3

0

(1 + k2a2
0)6

cos2 θ . (4.4.31)

dw
dΩ is the probability of ionization per unit time and per unit solid angle. All the ejected
electrons will have the same momentum ~k. Note that the units have worked out: w ∼
[E]2

~ ·
1

[E] ∼
1
T as expected. In here 2E0 is the peak amplitude of the electric field in the

wave. The cos2 θ implies that the electron tends to be ejected in the direction of the electric
field.

The total ionization probability per unit time is obtained by integration over solid angle.
Using ∫

cos2 θ dΩ = 1
3 4π , (4.4.32)

and recalling that ~2
ma20

= 2Ry

w =

∫
dΩ

dw

dΩ
=

512

3

(eE0a0)2

~Ry
k3a3

0

(1 + k2a2
0)6

. (4.4.33)

For the window of validity (4.4.13) we have 9 ≤ (ka0)2 ≤ 169, and we neglect the “one” in
the denominator to get

w =
512

3

(eE0a0)2

~Ry
1

(ka0)9
. (4.4.34)

This is our final answer. For numerical calculations it is useful to note the atomic units in
which the answer takes the form

w =
256

3

(Ep
E∗

)2 1

t∗

1

(ka0)9
. (4.4.35)
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Here Ep = 2E0 is the peak amplitude of the electric field. Moreover, the atomic electric
field E∗ and the atomic time t∗ are given by

E∗ =
2Ry
ea0

=
e

a2
0

= 5.14× 1011V/m

t∗ =
a0

αc
= 2.42× 10−17 sec.

(4.4.36)

Note that E∗ is the electric field of a proton at a distance a0 while t∗ is the time it takes
the electron to travel a distance a0 at the velocity αc in the ground state. A laser intensity
of 3.55× 1016W/cm2 has an peak electric field of magnitude E∗.

4.5 Light and atoms

4.5.1 Absorption and stimulated emission

The physical problem we are trying to solve consists of a collection of atoms with two
possible energy levels interacting with light at a temperature T . We want to understand
the processes of absorption and emission of radiation and how they can produce thermal
equilibrium.

Let us first consider a single atom and the possible processes. Consider two possible
levels of an electron in an atom

Define

ωab ≡
Eb − Ea

~
.

Imagine now shining light into the atom at a frequency ωab. There are two possibilities
depending on the initial state of the atom:

(i) Electron initially in |a〉: there will be an absorption rate at which a photon is absorbed
and the electron goes from |a〉 → |b〉.

(ii) Electron initially in |b〉: there will be a stimulated emission rate at which the photon
field stimulates an electronic transition |b〉 → |a〉 with the release of an additional
photon.
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These processes are illustrated in the figure below:

A LASER, Light Amplification by Stimulated Emission of Radiation, works by having pop-
ulation inversion, namely most of the atoms are in the excited energy level. Then any small
number of photons can trigger larger and larger numbers of stimulated emission processes!

4.5.2 Einstein’s Argument

Atoms in states a or b with Eb > Ea, with populations Na and
Nb respectively. The atoms are in equilibrium with a bath of
photons all at temperature T . Einstein discovered a number
of relations from the condition of equilibrium.

Fact 1: Equilibrium values for populations:

Ṅa = Ṅb = 0 (4.5.1)

Fact 2: Equilibrium populations governed by thermal distribu-
tion

Na

Nb
=
e−βEb

e−βEa
= e−β~ωab , β ≡ 1

kbT
(4.5.2)
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Fact 3: For a thermal blackbody, the energy U(ω)dω per unit
volume in the frequency range dω is known to be

U(ω)dω =
~

π2c3

ω3dω

eβ~ω − 1
(4.5.3)

Process Rate

Absorption: |a〉 → |b〉 BabU(ωba)Na

photon absorbed

Stimulated emission: |b〉 → |a〉 BbaU(ωba)Nb

photon released

In the table above we have indicated the two obvious processes: absorption and stim-
ulated emission. The rate indicated is the number of transitions per unit time. For ab-
sorption, this rate is proportional to the number Na of atoms in the ground state, capable
of absorbing a photon, times U(ωab) which captures the information about the number of
photons available, times a B coefficient Bab that we want to determine. For stimulated
emission, the rate is proportional to the number Nb of atoms in the excited state, thus
capable of emitting a photon, times U(ωab) times a B coefficient Bba. The inclusion of
U(ωab) reflects the “stimulated” character of the transition.

Can we make this work, that is, can we achieve equilibrium? We will see that we cannot.
With the two processes above, the rate of change of Nb is

Ṅb = rate absorption− rate stimulated emission (4.5.4)

At equilibrium Ṅb = 0, hence

0 = Ṅb = BabU(ωba)Na −BbaU(ωba)Nb

= (BabNa −BbaNb)U(ωba)

0 = Na

(
Bab −Bbae−β~ωba

)
U(ωba) (4.5.5)

This is a strange result: in order to have equilibrium we need Bab − Bbae−β~ωba = 0. The
B coefficients, however, depend on the electronic configurations in the atom and not on
the temperature T . Thus this cancellation is not possible for arbitrary temperature. We
also note that the photon energy density does not feature in the equilibrium condition. In
conclusion, equilibrium is not possible.

What are we missing? Another process: spontaneous emission!!, an emission rate that
does not depend on the thermal photons. The rate is proportional to the number of atoms
Nb in the excited state, with a coefficient of proportionality called A:
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Process Rate

Spontaneous emission: |b〉 → |a〉 ANb

photon released

Reconsider now the equilibrium condition with this extra contribution to Ṅb:

0 = Ṅb = BabU(ωba)Na − BbaU(ωba)Nb − ANb

=⇒ A =

(
Bab

Na

Nb
−Bba

)
U(ωba)

=⇒ U(ωba) =
A

Bab

1

eβ~ωba − Bba
Bab

(4.5.6)

The equilibrium condition indeed gives some important constraint on U(ωab). But from Eq.
(4.5.3) we know

U(ωba) =
~ω3

ba

π2c3

1

eβ~ωba − 1
(4.5.7)

Hence comparing the two equations we get

Bab = Bba and
A

Bab
=

~ω3
ba

π2c3
(4.5.8)

As we’ll see, we’ll be able to calculate Bab, but A is harder. Happily, thanks to (4.5.8), we
can obtain A from Bab.

Spontaneous emission does not care about U(ωba); the photons flying around. At a
deep level one can think of spontaneous emission as stimulated emission due to vacuum
fluctuation of the EM field.

For a given atomic transition expect stimulated emission rate to dominate at higher
temperature, the there are more photons around. Spontaneous emission should dominate
at very low temperature. Indeed from (4.5.6)

A

BabU(ωba)
= exp

(
~ωba
kbT

)
− 1
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4.5.3 Atom/light interaction

Focus on ~E field. Effects of ~B are weaker by O
(
v
c

)
∼ α. For optical frequencies λ ∼

4000− 8000 Å and since a0 ' 0.5 Å, we can ignore the spatial dependence of the field (even
for ionization frequencies λ

a0
∼ 1700)

Electric field at the atom

E(t) = E(t)n = 2E0 cos(ωt)n

where n is the direction of the field.

Φ(r, t) = −r ·E(t) , ∇Φ = −E (4.5.9)

as expected. The perturbation is therefore

δH = +qΦ(r) = −qr ·E(t) (4.5.10)

By defining the dipole moment d as d ≡ qr, we can rewrite the perturbation as

δH = −d ·E(t) = −d · n2E0 cos(ωt) = 2(−d · nE0) cos(ωt) . (4.5.11)

Since we defined δH = 2H ′ cosωt we can read

H ′ = −d · nE0 . (4.5.12)

Recall that to first order in perturbation theory Pb←a(t) = Pa←b(t) so let’s consider just
Pa←b(t), the stimulated emission process, from (4.3.46)

Pa←b(t) =
4|H ′ab|2

~2

sin2
(
ωba−ω

2 t
)

(ωba − ω)2
=

4E2
0 |(d · n)ab|2

~2

sin2
(
ωba−ω

2 t
)

(ωba − ω)2
(4.5.13)

Now think in terms of energy. The energy density uE in the electric field E(t) = 2E0 cos(ωt)n
is

uE =
|E(t)|2

8π
=

4E2
0

8π
cos2 ωt =⇒ 〈uE〉time =

4E2
0

8π
· 1

2
=
E2

0

4π
. (4.5.14)

In a wave the electric and magnetic energy are the same and therefore

〈u〉time = 2〈uE〉time =
E2

0

2π
=⇒ E2

0 = 2π〈u〉 (4.5.15)
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The superposition of light is incoherent, so we will add probabilities of transition due to
each component of light. For this we must turn a sum of electric field intensities into an
integral.

∑
i

E2
0(ωi) = 2π

∫
U(ω)dω (4.5.16)

where U(ω) is the energy density per unit frequency. In this way the transition rate in
terms of energy reads

Pa←b(t) =
|(d · n)ab|2

~2
2π

∫
U(ω)dω

sin2
(
ωba−ω

2 t
)

(ωba − ω)2

=
|(d · n)ab|2

~2
(2π)U(ωab)

∫
dω

sin2
(
ωba−ω

2 t
)

(ωba − ω)2
(4.5.17)

As usual, take x ≡
(
ωba−ω

2 t
)

=⇒ dω = 2dxt , so that (4.5.17) is

2

t
· t2
∫

sin2 x

x2
dx = 2tπ (4.5.18)

Ra←b =
4π2

~2
|(d · n)ab|2U(ωba) (4.5.19)

So far we have two vectors: d which depends on the atom geometry and n which is the
direction of the electric field. Since light comes in all possible polarization, this amounts to
averaging over all possible directions of n〈

|dab · n|2
〉

=
〈∣∣∑

i

diabni
∣∣2〉 =

〈(∑
i

diabni

)∗(∑
j

djabnj

)〉
=
∑
i,j

(diab)
∗(djab)〈ninj〉

(4.5.20)
Expect

〈nxnx〉 = 〈nyny〉 = 〈nznz〉 (4.5.21)

Since 〈∑
i

nini

〉
= 〈n2〉 = 1 (4.5.22)

then

〈ninj〉 =
1

3
δij (4.5.23)
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〈
|dab · n|2

〉
=

1

3
d∗ab · dab ≡

1

3
|dab|2 (4.5.24)

This is the magnitude of a complex vector!

Ra←b =
4π2

3~2
|dab|2U(ωba) (4.5.25)

This is the transition probability per unit time for a single atom

Bab =
4π2

3~2
|dab|2 (4.5.26)

thus recalling (4.5.8)

A =
~ω3

ba

π2c3
Bab =

~ω3
ba

π2c3

4π2

3~2
|dab|2 (4.5.27)

hence we have that A, the transition probability per unit time for an atom to go from
|b〉 → |a〉, is

A =
4

3

ω3
ba

~c3
|dab|2 . (4.5.28)

The lifetime for the state is τ = 1
A . The number N of particles decays exponentially in time

dN

dt
= −AN =⇒ N(t) = e−At = N0e

−t/τ (4.5.29)

If there are various decay possibilities A1, A2, . . . , the transition rates add

Atot. = A1 +A2 + . . . and τ =
1

Atot.
(4.5.30)

4.5.4 Selection rules

(to be covered in recitation) Given two states |n`m〉 and |n′`′m′〉, when 〈n`m|r|n′`′m′〉 6= 0?
One can learn that

〈n`m|z|n′`′m′〉 = 0 for m′ 6= m (4.5.31)

〈n`m|x|n′`′m′〉 = 〈n`m|y|n′`′m′〉 = 0 for m′ 6= m± 1 (4.5.32)

Hence no transition unless
∆m ≡ m′ −m = 0, ±1 (4.5.33)

Additionally
∆` ≡ `′ − ` = ±1 (4.5.34)
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