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1 Introduction 

1.1 Adiabatic approximation in Classical Mechanics 

Let’s go back to classical mechanics, with a harmonic oscillator performing motion but with ω(t) not 
constant. The hamiltonian of the system would be 

2p 1 2H(x, p, ω(t)) = + mω2(t)x (1.1)
2m 2 

where x and p are going to be functions of time. 
In general 

dH ∂H ∂H ∂H 
= ẋ+ ṗ+ . (1.2)

dt ∂x ∂p ∂t 

Hamilton’s equation of motion read 

∂H ∂H 
= ˙ = − ̇ (1.3)x , p . 

∂p ∂x 
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Even if you are not familiar with these, you probably know well their quantum analogs: � � � � 
d hxi ∂H d hxi ∂H 

i~ 
dt 

= h[x, H]i = i~ � 
∂p � 

→ 
dt 

= 
∂p � � 

d hpi 
i~ 

dt 
= h[p, H]i = 

∂H −i~ 
∂x 

→ 
d hpi 
dt 

= − 
∂H 
∂x 

(1.4) 

At any rate, equations (1.3) imply that the first two terms in the right-hand side of (1.2) vanish and 
we have 

dH ∂H 
= = mω ˙ .ωx2 (1.5)

dt ∂t 
We have an adiabatic change if the time scale τ for change is much greater than time scale of the 
oscillation, T = 2π .ω(t) 

What remains roughly constant as ω(t) changes adiabatically? 

H(t)
Claim: I(t) ≡ is almost constant in adiabatic changes of ω. (1.6)

ω(t) 

I(t) is called the adiabatic invariant. 
Let us see why this is so: � �� � � 2 �dI 1 dH 1 � � p− H(t) ˙ mω ˙ 1 2 = ω ω = ω ωx2 − + mω2(t)x ω̇ = 

ω2 ω2 2dt dt 2m � � 
ω̇ p2 ω̇1 = mω2(t)x 2 − = (V (t) − K(t)) , (1.7)
ω2 2 2m ω2 

where V and K are the potential and kinetic energies, respectively. We want to understand why this 
right-hand side is small. Clearly, ω̇ is slowly varying if ω̇ is slowly varying, but the term in parenthesis 

ω2 

is actually quickly varying. Indeed, with 

x = A sin ωt and p = Amω cos ωt 

then the parenthesis goes like � �
2 

1 mω2 x 2 − 
p ∼ 1 mω2(sin2 ωt − cos 2 ωt) ∼ −1 mω2 cos 2ωt , (1.8)2 2 22m 
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which is a fast variation. Let us see, however, how much I(t) changes over one period Z Zt+T t+TdI ω̇ � � 
I(t + T ) − I(t) = dt0 = (t0) V (t0) − K(t0) dt0 (1.9)

dt0 ω2 
t t 

Since ω(t) is slowly varying, it changes very little over a period T and we can take the factor ω̇/ω out 
of the integral: Z t+T 

I(t + T ) − I(t) ' 
ω̇
(t) (V (t) − K(t)) dt0 (1.10)

ω2 
t 

In harmonic motion with ω constant, the average over a period of the potential energy V (t) is exactly 
equal to the average of the kinetic energy K(t), and the two terms above would cancel exactly. When 
ω is slowly changing they roughly cancel 

I(t + T ) − I(t) ' 
ω̇(t) 
ω2 · 0 ' 0 (1.11) 

What is the geometrical interpretation of the adiabatic invariant E/ω? For this we consider the 
motion of a classical oscillator in phase space (x, p) where periodic oscillations trace the ellipse defined 
by energy conservation: 

2p 1 2+ mω2 x = E (ω, E, constants) 
2m 2 

We quickly see that the semi-major and semi-minor axes have lengths r 
2E √ 

a = 
mω2 and b = 2mE (1.12) 

Therefore 

E 
Area of the ellipse = πab = 2π 

ω 
(1.13) 

The adiabatic invariant is proportional to the area of the ellipse. That’s neat! We can rewrite the 
area as an integral that takes a familiar form: I 

Area of the ellipse = p dx 

3 



� � 

� 

� 

where we integrate over the whole closed trajectory with the orientation shown in the picture so that 
the area above the x axis is obtained as we go from left to right and the area under the x axis is 
obtained as we go from right to left. In this example I 

p dx = 2πI . (1.14) 

More generally, for other systems the left-hand side is an adiabatic invariant. The value of the invariant 
is different for different systems, for the oscillator it is 2πE/ω . 

1.2 Quantum mechanics systems 

What does it suggest for quantum mechanics? 
First, for the harmonic oscillator �

1 �E ~ω n + 2 1 
2 (1.15)= ~ n += 

ω ω 
EFixed is fixed quantum number! This suggests that in QM the quantum number doesn’t tend to ω 

change under adiabatic changes. Indeed, we get the same intuition from WKB: consider a potential 
with two turning points a, b. We have the Bohr-Sommerfield quantization condition 

Z b1 �
1 
2p(x)dx = πn +

~ a 

�I 
1 
2rewritten as p(x)dx = 2π~ n + (1.16) 

f

The left hand side, as noted before is an adiabatic invariant, so in the semiclassical approximation for 
arbitrary potential we find that the quantum number may not change under adiabatic changes! We 
will see that indeed that is the case. 

The formula for transitions at first order in perturbation theory gives complementary intuition: 

δHfi(t
0) 

����� 
����� 

Z 2 
t 

dt0iωfitPf←i(t) = (1.17)e 
i~ 0 

For constant perturbations, fδHfi is time-independent and �� iωfiT − 1 
��2 | fδHfi|2 

~2 

���� Z t 

e iωfit dt0 
���� 2 

= 
| fδHfi|2 

~2 

e
Pf ←i(t) = (1.18). 

ω2 
fi 0 

1 
ω2 
fi 

• If the spectrum is discrete, it is hard to jump a big energy gap because of the suppression. 

• For slowly varying perturbations (compared to ωfi) the 1 
ω2 
fi 
suppression will remain. 

So it is difficult in general to change state with constant or slow perturbations, suggesting again that 
quantum numbers are adiabatic invariants. That is why transitions to the continuum with constant 
perturbations essentially conserve energy. And why you need oscillatory perturbations for efficient 
transitions between energy levels. 
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2 Adiabatic Evolution 

Suppose you have found a ψ(t) such that 

H(t)|ψ(t)i = E(t)|ψ(t)i (2.1) 

we’ll call |ψ(t)i, defined by (2.1), an instantaneous eigenstate. I’d like to emphasize from the 
start that, in general, an instantaneous eigenstate is not a solution of the time dependent Schrödinger 
equation. As it turns out, it is a useful tool to construct approximate solutions to the Schrödinger 
equation. 
Let us try to understand the relation between |ψ(t)i and |Ψ(t)i, the solution to the Schrödinger 

equation 
i~∂t|Ψ(t)i = H(t)|Ψ(t)i . (2.2) 

Let us try an ansatz, building the solution |Ψ(t)i using the instantaneous eigenstate: � Z t � 
1 |Ψ(t)i = c(t) exp E(t0)dt0 |ψ(t)i , (2.3)
i~ 0 

with c(t) a function of time to be determined and where we have included a familiar time dependent 
phase. There is no guarantee this ansatz will work but it seems a good try. 
The LHS of the Schrödinger equation then looks like � Z � � t � 

1 t 1 
Z 

i~∂t|Ψ(t)i = ċ (t) exp E(t0)dt0 |ψ(t)i + E(t)|Ψ(t)i + c(t) exp E(t0)dt0 |ψ̇(t)i (2.4)
i~ i~ 0 0 

For the RHS, using the instantaneous eigenstate equation, we have � Z � 
1 t 

H(t)|Ψ(t)i = c(t) exp E(t0)dt0 H(t)|ψ(t)i = E(t)|Ψ(t)i . (2.5)
i~ 0 

Equating the two sides, we get � Z � � Z � 
1 t 1 t 

ċ(t) exp E(t0)dt0 |ψ(t)i + c(t) exp E(t0)dt0 |ψ̇(t)i = 0 
i~ i~ 0 0 

and canceling the two exponentials we have 

ċ(t) |ψ(t)i = −c(t) |ψ̇(t)i . (2.6) 

Multiply by hψ(t)| we get a differential equation for c(t): 

ċ(t) = −c(t) hψ(t)|ψ̇(t)i , (2.7) 

which happily we can solve. Letting c(t = 0) = 1 we can write � Z �t 

c(t) = exp − hψ(t0)|ψ̇(t0)idt0 . (2.8) 
0 
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The above exponential is a phase because the bracket in the integrand is actually purely imaginary: Z Z Z 
d dψ∗ 

hψ(t)|ψ̇(t)i = dx ψ ∗ dψ 
= dx (ψ ∗ ψ) − dx ψ 

dt dt dt 
(2.9)Z 

d 
= dx ψ ∗ ψ − h ψ̇(t)|ψ(t)i 
dt 

Since the wavefunction is normalized we have 

hψ(t)|ψ̇(t)i = − h ψ̇(t)|ψ(t)i = −hψ(t)|ψ̇(t)i ∗ (2.10) 

showing that indeed hψ(t)|ψ̇(t)i is purely imaginary. To emphasize this fact we write � Z t � 

c(t) = exp i ihψ(t0)|ψ̇(t0)idt0 (2.11) 
0 

Having apparently solved for c(t) we now return to our ansatz (2.3), we get � Z � � t �t 1 
Z 

|Ψ(t)i ' c(0) exp i ihψ(t0)|ψ̇(t0)idt0 exp E(t0)dt0 |ψ(t)i . (2.12)
i~ 0 0 

But there is a mistake in this analysis. We really did not solve the Schrödinger equation! That’s why 
we put a ' instead of an equality. 
The equation we had to solve, (2.6), is a vector equation, and forming the inner product with hψ(t)|

gives a necessary condition for the solution, but not a sufficient one. We must check the equation form-
ing the overlap with a full basis set of states. Indeed since |ψ(t)i is known, the equation can only have a 
solution if the two vectors |ψ̇(t)i and |ψ(t)i are parallel. This does not happen in general. So we really 
did not solve equation (2.6). The conclusion is that, ultimately, the ansatz in (2.3) is not good enough! 

We can see the complication more formally. At t = 0 equation (2.6) reads 

ċ(0)|ψ(0)i = −c(0)|ψ̇(0)i . (2.13) 

Using Gram-Schmidt we can construct an orthonormal basis B for the state space with the choice 
|ψ(0)i for the first basis vector: n o 

B = |1i = |ψ(0)i, |2i, |3i , . . . . (2.14) 

Equation (2.13) requires 
hn|ψ̇(0)i = 0 n = 2, 3, . . . (2.15) 

This will not hold in general. The key insight, however, is that (2.12) is a fairly accurate solution if 
the Hamiltonian is slowly varying. Making the definitions: Z Z t1 t 

θ(t) ≡ − E(t0)dt0 , ν(t) ≡ ihψ(t)|ψ̇(t)i , γ(t) ≡ ν(t0)dt0 (2.16)
~ 0 0 

so that θ, ν and γ are all real, the state reads 

|Ψ(t)i ' c(0) exp (iγ(t)) exp(iθ(t))|ψ(t)i . (2.17) 
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The phase θ(t) is called the dynamical phase and the phase γ(t) is called the geometric phase. 

Comment: Instantaneous eigenstates are rather ambiguous. If one has the |ψ(t)i, they can be modified 
by the multiplication by an arbitrary phase: 

|ψ(t)i → |ψ0(t)i = e −iχ(t)|ψ(t)i . (2.18) 

3 Systematic approach 

Must use a basis to see the error terms and get a more general picture. We will do this now sys-
tematically. But first let us state precisely the idea in adiabatic approximation. Consider a family of 
instantaneous eigenstates: 

H(t)|ψn(t)i = En(t)|ψn(t)i (3.1) 

with E1(t) < E2(t) < . . . , so that there are no degeneracies. 
Adiabatic approximation: If at t = 0 |Ψ(0)i = |ψn(0)i for some n, then if H(t) is slowly varying for 
0 ≤ t ≤ T then at time T we have |ψ(T )i ' |ψn(T )i up to a calculable phase. 
Key facts: 

1. The probability to jump to another state |ψk(t)i with k 6= n is highly suppressed. 

2. The phases can sometimes be relevant and have geometric meaning. An overall phase cannot be 
observed but if we have a superposition 

|Ψ(0)i = c1|ψ1(0)i + c2|ψ2(0)i + . . . (3.2) 

the relative phases acquired by |ψ1(0)i and |ψ2(0)i after time evolution can matter. 

Calculation: X 
|Ψ(t)i = cn(t)|ψn(t)i (3.3) 

n 

Schrödinger equation : � �X X 
i~ ċn|ψn(t)i + cn|ψn ̇(t)i = cn(t)En(t)|ψn(t)i (3.4) 

n n 

act with hψk(t)| from the left: X 
i~ċk = Ekck − i~ hψk|ψ̇ 

nicn 
n� � X 

i~ċk = Ek − i~hψk|ψ̇ 
kick − i~ hψk|ψ̇ 

nicn (3.5) 
n6=k 

We can relate hψk|ψ̇ 
ni to a matrix element of H(t) in the space of instantaneous eigenvectors 

H(t)|ψni = En(t)|ψni (3.6) 

take time derivative 
H (̇t)|ψni + H(t)|ψ̇ 

ni = Ė 
n(t)|ψni + En(t)|ψ̇  

ni (3.7) 
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multiplty by hψk(t)| with k 6= n 

hψk(t)|H (̇t)|ψni + Ek(t)hψk(t)|ψ̇ 
ni = Ė 

n(t)hψk(t)|ψ̇ 
ni (3.8) 

hence 
˙hψk(t)|H (̇t)|ψni Hkn hψk(t)|ψ̇ 

ni = ≡ (3.9)
En(t) − Ek(t) En − Ek 

We can use plug (3.9) back in Eq.(3.5) to get 

� � X Ḣkn 
i~ċk = Ek − i~hψk|ψ̇ 

kick − i~ cn (3.10)
En − Ek 

n6=k 

˙
Note that if the term proportional to Hkn vanishes, then |ck| = 1, hence if you start in |ψki you En−Ek 

stay in |ψki. 
If we ignore the extra term: � Z �t � �1 

ck(t) = ck(0) exp Ek(t
0) − i~hψk|ψ̇ 

ki dt0 
i~ 0� Z � � Z � 
1 t t 

= ck(0) exp Ek(t
0)dt0 exp i ihψk|ψ̇ 

kidt0 
i~ 0 0 

iθk(t) iγk (t)= ck(0)e e (3.11) 

where Z 
1 t 

θk(t) = − Ek(t
0)dt0 (3.12)

~ 0 

νk(t) = ihψk(t)|ψ̇ 
k(t)i (3.13) Z t 

γ(t)k = νk(t
0)dt0 (3.14) 

0 
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4 Landau-Zener transitions 

Take ψ1(x; R) and ψ2(x; R) to be the electronic configurations of a molecule with fixed nuclei separated 
at a distance R. 
We have 

H(R)ψi(x; R) = Ei(R)ψi(x; R) (4.1) 

Depending on R the states are polar or non po-
lar changing characteristic near R = R0. If R 
changes slowly, ψ1 remains ψ1 or ψ2 will remain 
ψ2. But if R varies quickly, then ψ1 → ψ2 near 
R0. This would be a non-adiabatic transition. 
Thinking of R as a function of time, we have a 
time dependent hamiltonian � � 

H R(t) 

with instantaneous energy eigenstates � � � � 
ψi x; R(t) , Ei R(t) 

˙we can now plot the energies for constant velocity R 

We can sometimes think of this as a 2-level problem; if no other eigenstates are relevant. 
So consider a slightly idealized 2 × 2 system � � � �

αt 0 12H(t) = −αt , α > 0 |1i = (spin up) 
0 02 � � 
αt αt 0 

E1(t) = , E2(t) = − |2i = (spin down) (4.2)
2 2 1 
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The instantaneous eigenstates |1i, |2i are actually time independent. Take � � � � 
1 0 |ψ1i = |ψ2i = (4.3)
0 1 

then � Z � � �t1 iαt2 

|ψ1(t)i = exp E1(t
0)dt0 |1i = exp − |1i solves the Schrödinger equation (4.4)

i~ 4~ 0� Z � � �t1 iαt2 

|ψ2(t)i = exp E2(t
0)dt0 |2i = exp + |2i solves the Schrödinger equation (4.5)

i~ 4~ 0 � � 
1 

Time evolution is clear: if |ψi = at t = −∞ it will remain in that state forever. Same for 
0� � 

0 |ψi = . 
1 

Now make the problem more interesting by perturbing the hamiltonian � �
αt 
2 H12H(t) = (4.6)−αtH∗ 
12 2 

with H12 constant. 
At t = 0 the energy eigenvalues are ±|H12| 
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αt 
H = σz + <(H12)σx −=(H12)σy (4.7)

2 r 
α2t2 

E±(t) = ± |H12|2 + (4.8)
4 

we can write H in a compact form by defining the vector � � 
αt 

a = H12, 0, = |a|n = E+(t)n (4.9)
2 

taking H12 to be real 
so that 

H = a · σ (4.10) 

The instantaneous energy eigenstates are � ��±n(t) with energies E±(t) 

The instantaneous energy eigenstates change type � � � � 
0 1 → (polar - non polar) 
1 0 � � � � 
1 0 → (non polar - polar) 
0 1 

|H12|An adiabatic process will keep you there. Consider τd for the duration of the change |α| ≡ τα , since 

αt |α|t 
E1 = → |H12| = (see fig) (4.11)

2 2 

|H12|Also ≡ ω12 and it is called Rabi frequency. It’s relevant for the transitions at t = 0 since ~� � 
0 H12H(0) = . 
H12 0 

Process is adiabatic when 
|H12|2 

=⇒ � 1 (4.12) ω12τα � 1 
~|α| 
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i.e. 
2π 

= T12 � τα (4.13)
ω12 

hence, the adiabatic change is much slower than the natural time scale of the system. 
Alternatively: The Hamiltonian should not vary much over the time scale T associated with the relevant 
energy difference ΔE ���T 

dH ���� H (4.14)
dt 

~ Approximate T = if ΔE ' HH ���� ~ dH 
H2 dt 

���� ���� ����� or 

����∂t � 
~ 
E 

������ 
d 1 
dt H 

� 1 =⇒ � 1 (4.15)~ 

analog of 
��� � �

~ ∂x p 

���� 1 in WKB. 
For our case ������ 

������ d ? 
� 1 (4.16) 

~ q
dt α2t2 |H12|2 + 4 

Let’s check! 

= 

������� � �3/2 

������� 
������� �3/2 

������� 
������ 

������ ~α2

|H12|2 + ������� 

d αt ~ t 
= ~αq �dt α2t2 α2t2 α2t2|H12|2 + |H12|2 +4 4 4 ������� 

~α|H12|
|H12|3 

αt ~α � 1 X≤ max ≈~α � �3/2 
= 
|H12|2t α2t2|H12|2 + 4 

(4.17) Max of 
(a2+x

x 
2)3/2 

2 
happens for x 2 = a 

2Probability for a non-adiabatic transition � � 
|H12|2 

~|α| 
Pn.ad. = exp (−2πω12τα) = exp −2π (4.18) 

5 Berry’s phase 

Adiabatic theorem: |ψ(t = 0)i = |ψn(0)i and with instantaneous eigenstates 
|ψn(t)i we find 

|ψ(t)i ' e iθn(t)e iγn(t)|ψn(t)i (5.1) 

with, as in (3.12) Z t1 0)dt0θn(t) = − En(t (5.2)
~ 0 

(t)|ψ̇ 
n(t) = ihψn (t)iνn (5.3) Z t 

γn(t) = νn(t
0)dt0 (5.4) 

0 

We now understand the relevance of γn(t), the geometrical phase: 
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Assume H depends on a set of coordinates 

R(t) = (R1(t), R2(t), . . . , RN (t)) (5.5) 

several parameters that are tune dependent. 

Instantaneous states 

H(R)|ψn(R)i = E(R)|ψn(R)i 

Evaluate the geometric phase. Start by computing 

(5.6) 

�� �� � 
ψn(R(t)) (5.7) 

d 
νn(t) = i ψn(R(t)) 

NX 

dt �� �
dwe need dt ψn(R(t)) 

�� �� ��� �dRi �d d dR(t)~ψn(R(t)) ψn(R(t)) ψn(R(t)) (5.8)rR ·= = 
dt dRi dt dt 

i=1 

so that �� �� � dR(t)~ rRνn(t) = i ψn(R(t)) ψn(R(t)) (5.9)· 
dt 

and Z τ Z τ 

γn(τ ) ≡ νn(t)dt = i ψn(R(t)) 
��~ rR 

�� � dR(t)
ψn(R(t)) dt (5.10)· 

dt0 0 

hence the geometrical phase γn(tf ), also known as Berry phase, is 

�����Z Rf 
~γn(tf ) = i ψn(R) rR ψn(R) · dR 

Ri 

(5.11) 

The integral depends on the path, but does not depend on time!! Whether you take a nano second or 
a year to make transition, the geometric phase is the same! 

i ψn(R) 
��~ rR 

�� � 
ψn(R) is an N−component object that lives in the parameter space. It is called the 

Berry connection An(R), associated with |ψn(t)i ��

f

(R) 

In this way we can rewrite the Berry phase as Z Rf 

γn = An(R) · dR (5.13) 
Ri 

If we redefine the instantaneous states by an overall phase 

ψn

�� � 
~An(R) = i ψn ψn(R) (5.12)rR 

�� � 
ψn(R) → | (R)i = e −iβ(R) 

�� � 
ψn(R) (5.14) 
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where β(R) is an arbitrary real function, what happens to An(R)? � � �f f �~ �fAn(R) = i ψn(R) rR ψn(R) = � � �
iβ(R) ~ −iβ(R)= i ψn(R)�e rRe �ψn(R) � � 

~ = i −irRβ(R) hψn(R)|ψn(R)i + An(R) (5.15)| {z }
1 

Afn(R) = An(R) + r~ 
Rβ(R) (5.16) 

analogous to the vector potential in EM ( A~ 0 → A~0 + rE ). 
What about the Berry phase? Z Rf 

Z Rf f ~γfn(Rf ) = An(R) · dR = γn(Rf ) + rRβ(R) · dR =⇒ (5.17) 
Ri Ri 

γfn(Rf ) = γn(Rf ) + β(Rf ) − β(Ri) (5.18) 

The geometrical phase is completely well defined for closed paths in parameter space. 
Comments: 

• If the ψn(t) are real, then the Berry phase vanishes: Z 
d 

νn = ihψn(t)| ˙ (t)i = i dx ψ ∗ (t, x) ψn(t, x)ψn n dtZ Z � �2d i d 
= i dx ψn(t, x) ψn(t, x) = dx ψn(t, x) = 

dt 2 dtZ 
i d 

= dx |ψn(t, x)|2 = 0 , (5.19)
2 dt 

since the wavefunction is normalized. This should not be surprising. In general grounds we 
have seen that hψn(t)|ψ̇n(t)i is purely imaginary. But if ψn is real this overlap cannot produce 
a complex number, so it can only be zero. 

• If there is just one coordinate, i.e. R = R, Berry’s phase vanishes for a loop 

I 
An(R)dR = 0 (5.20) 

In here the integral from Ri to Rf is cancelled by the integral back from Rf to Ri. 

• In 3D we can make use of Stoke’s theorem to simplify the calculation of γn[C] I ZZ ZZ � � 
~ ~ ~γn[C] = An(R) · dR = r× An(R) · dS ≡ Dn · dS (5.21) 

C S S 

where S is the surface with boundary C and we defined the Berry curvature Dn 

~Dn ≡ r× An(R) (5.22) 
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ZZ 

If we think of the Berry connection as the vector potential, the Berry curvature is the associated 
magnetic field. Note that the curvature is invariant under phase redefinition � � 

~Dn → Dn 
0 = r× Afn(R) = r× ~ An(R) + r~ β(R) 

(5.23) 
~ ~ ~ = r× An r× ~ r× An(R) = Dn .(R) + ���r�β(�R

� 
) = 

Example: Berry phase for an electron in a slowly varying magnetic field. Take a magnetic 
field with fixed intensity and slowly varying direction B(t) = B~n(t), put an electron inside this 
magnetic field, so that we get an interaction described by the hamiltonian 

H(t) = −µ · B(t) = µB B~n(t) · ~σ (5.24) 

The direction of the B field, ~n(t) swipes a closed loop C on the 
~ surface of an imaginary sphere of radius ρ in a time scale T � . µB B� � �� 

Think of the instantaneous eigenstates �χ± R(t) satisfying � � �� � � �� 
H(t)�χ± R(t) = ±µBB�χ± R(t) (5.25) 

where 
R(t) = (r(t) , θ(t) , φ(t)) (5.26)|{z}

=ρ (fixed) 

We get ZZ ZZ 
1 1 1 Ω ~ ~ ~D± =   r ⇒ γ±[C] = D± · dS =   ˆ rr 2dΩ =   dΩ =  
2 ˆ = 2 r · ˆ (5.27)

2r 2r 2 2S S S 

6 Molecules and Born-Oppenheimer 

Molecules are much harder to treat than atoms. Atoms are hard because even though the potential 
created by the nucleus is spherically symmetric, the Coulomb interactions between the electrons breaks 
the spherical symmetry. In molecules even ignoring Coulomb repulsion between electrons, the potential 
created by nuclei that are spatially separated is not spherically symmetric. 
In some approximation one can view a molecule as a system in which nuclei in classical equilibrium 

with well localized positions while the electrons move around in the Coulomb potential created by the 
mnuclei. This approximation is reasonable since typically M ' 10−4 where m is the electron mass and 

M the nuclear one. In this picture slow nuclear vibrations adiabatically deform the electronic states. 

In order to make estimates, consider a molecule of size a, so that 

~2 

pelectron ∼ and Eelectron ∼ (6.1) 
~ 

2a ma

The positively charged nuclei repell each other but the electrons in between create an effective attrac-
tion that, at equilibrium, cancels the repulsive forces. There will be nuclear vibrations around the 
equilibrium configuration. Consider the nuclear oscillations governed by the nuclear Hamiltonian 

P 2 
1HN = + kx2 (6.2)22M 
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The restoring force is determined by k, and it is due to the electron system, with no reference to the 
mass M . Since k has units of energy over length-square, we must have 

~2Energy
k = ∼ . (6.3)

4L2 ma

But k = Mω2, with ω the frequency of nuclear oscillations so we have r 
~2 ~2 ~2 

ω2 ∼ 
m m 

Mω2 ∼ → → ~ω ∼ . (6.4)
4 2 4 2ma M m a M ma

We thus find that the nuclear vibrational energies are r 
m 

Evibration ∼ Eelectron . (6.5)
M 

There are also rotations and their energy Erot is even smaller, as they involve essentially no distortion 
of the molecule 

L2 ~2`(` + 1) m ~ m 
Erot = ' ∼ 

2 =⇒ (6.6)Erotation ' Eelectron
2I Ma2 M ma M 

Therefore we have the following hierarchy of energies r 
m m 

Eelectron : Evibration : Erotation = 1 : : . (6.7)
M M 

6.1 Born-Oppenheimer approximation 

Consider a molecule with N nuclei and n electrons. The Hamiltonian takes the form 

N nX P2 X 2p
H = α + VNN (R) + i + VeN (R, r) + Vee(r) , (6.8)

2Mα 2m 
α=1 i=1 

where Mα with α = 1, . . . , N are the nuclear masses and 

Pα, Rα : nuclei canonical variables VNN : nuclei-nuclei interaction 

pi, ri : electron canonical variables Vee : electron-electron interaction 

R ≡ (R1, . . . , RN ) VeN : electron-nuclei interaction 

r ≡ (r1, . . . , rn) 

The wavefunction ψ(R, r) for the molecule is, in position space, a function of all the nuclear positions 
and all the electron positions. 
In the limit when Mα/m →∞ the nuclear skeleton may be considered fixed, making the positions 

R are fixed. The electrons then move under the effect of the nuclear potential VeN (R, r) with fixed R, 
and the electron-electron Coulomb repulsion. The relevant Hamiltonian He for the electrons is then 

nX p2 

He(p, r; R) = i + VeN (R, r) + Vee(r) . (6.9)
2m 

i=1 
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This is a different Hamiltonian each time we change the positions R of the nuclei. The associated 
Schrödinger equation for the electrons is " # 

n~2 X 
2 (i) (i)− r + VeN (R, r) + Vee(r) φ (r) = E(i)(R)φ (r) . (6.10)ri R e R2m 

i=1 

The wavefunction for the electrons, as expected, is a function of the position of the electrons r, which 
appears as the argument of the wavefunction. Since the wavefunction depends on the nuclear positions, 
this dependence is included as a subscript. Finally, the superscript i labels the various wavefunctions 

(i)
that may appear as solutions of this equation. The associated energies Ee (R) depend on the nuclear 

(i)
positions and the label i. If we calculated all the φR (r) we would have a full basis of electronic 
configurations and we could write an ansatz for the full wavefunction of the molecule: X 

ψ(R, r) = η(i)(R)φ
(i)
(r) , (6.11)R 

i 

where the η(i) are the unknowns. Substitution into the full Schrödinger equation 

Hψ(R, r) = Eψ(R, r) , (6.12) 

gives an infinite set of coupled differential equations for η(i)(R). This is too difficult, so we try to 
make do with a single term: 

ψ(R, r) = η(R)φR(r) , (6.13) 

where we would generally use for φR(r) the ground state wavefunction for the electrons in the frozen 
nuclear potential. If we have this wavefunction for all R, as we now assume, we also know the value 
Ee(R) of the associated energy. 

We will do a variational analysis. For this we will compute the expectation value hψ|H|ψi using 
ψ(R, r) = η(R)φR(r). We will then utilize the known φR(r) to integrate the electronic dependence in 
the expectation value Z Z 

hHi = dRdr ψ ∗ (R, r)H ψ(R, r) = dRdr η ∗ (R)φR
∗ (r)H η(R)φR(r) 

(6.14)Z 
= dR η ∗ (R)Heff η(R) , 

thus discovering the effective Hamiltonian Heff for the nuclear degrees of freedom. We begin the 
calculation by rewriting the original Hamiltonian: 

NX P2 
αH = ĤN + Ĥe , ĤN = + VNN (R) . (6.15)

2Mαα=1 
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ˆAs a warmup we calculate the expectation value of He: Z 
hHei = dR dr η ∗ (R)φ ∗ 

R(r)Ĥeη(R)φR(r) Z �Z � 

= dR η ∗ (R) dr φ ∗ 
R(r)ĤeφR(r) η(R) | {z }
Ee(R)Z 

= dR η ∗ (R)Ee(R)η(R) . (6.16) 

This term has contributed to the effective nuclear Hamiltonian the value of the R dependent electron 
energy. Now the nuclear term � � Z 

P2 
α 1 

dR dr η ∗ (R)φ ∗ = R(r)PαPα(η(R)φR(r))
2Mα 2Mα Z h� �i1 � � 

R(r)Pα= dR dr η ∗ (R)φ ∗ Pαη(R) φR(r) + η(R) PαφR(r) (6.17)
2Mα 

We want to move φ∗ (r) closer to the other φR(r) to be able to do the integrals. For that we use R � � 
φ ∗ = Pαφ ∗ Pαφ ∗ 
R(r)Pα R(r) − R(r) , (6.18) 

where in the last term, as indicated by the parenthesis, the derivation is acting only on the field φ∗ (r).R

Hence � � Z n h �iP2 1 � � �
α = dR dr η ∗ (R) φ ∗ φR(r) + φ ∗ Pα R(r) Pαη(R) R(r)η(R) PαφR(r)

2Mα 2Mα � �h� � � �io 
− Pαφ ∗ Pαη(R) PαφR(r) (6.19)R(r) φR(r) + η(R) 

We can now move in the dr integral � � Z � Z Zh iP2 
α =

1 
dR η ∗ (R) Pα Pαη(R) dr φ ∗ 

R(r)φR(r) + η(R) dr φ ∗ 
R(r)PαφR(r)

2Mα 2M Z Z � � � � � � �� � 
− Pαη(R) dr Pαφ ∗ φR(r) + η(R) dr Pαφ ∗ PαφR(r) (6.20)R(r) R(r) 

It is now convenient to define Z Z 
Aα(R) ≡ i~ dr φ ∗ φR(r) = − dr φR

∗ (r)PαφR(r) (6.21)R(r)rRα 

This is a Berry connection! We have a full Berry connection for each nucleus (thus the label α). The 
Berry connection arises from the electronic configuration. With this definition we have � � Z � Z � 

P2 1 � � � �
α �2 

= dR η ∗ (R) P2 
αη(R) − Pαη(R)Aα(R) − Aα(R) Pαη(R) + ~2η(R) dr �rRα φR(r)2Mα 2M Z � Z � 

(Pα − Aα)
2 A2 ~2 � �

α �2 
= dR η ∗ (R) − + dr �rRα φR η(R) (6.22)

2Mα 2Mα 2Mα 
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Hence * + " #Z ZX P2 X X A2 X ~2 � � 
α (Pα − Aα)

2 
α �2 

= dR η ∗ (R) − + dr �rRα φR η(R) (6.23)
2Mα 2Mα 2Mα 2Mαα α α α 

so that the total expression reads * + X P2 
αhHi = + VNN (R) + He = 

2Mαα " #Z X (Pα − Aα)
2 X A2 X ~2 Z � �

α = dR η ∗ (R) + VNN (R) + Ee(R) − + dr �rRα φR�2 
η(R)

2Mα 2Mα 2Mαα α α 

(6.24) 

and separating hHi in kinematics and potential term " #Z X (Pα − Aα)
2 

hHi = dR η ∗ (R) + U(R) η(R) (6.25)
2Mαα 

we can read from (6.24) the effective potential U(R) ZX ~2 � � X A2 �2U(R) ≡ VNN (R) + Ee(R) + dr �rRα φR − α(R) (6.26)
2Mα 2Mαα α 

Since � � 
~ ~ i 

Pα − Aα = rRα − Aα = rRα − Aα , (6.27)
i i ~ 

the Schrödinger equation for nuclear motion is " #� �2X ~2 i − rRα − Aα + U(R) η(R) = Eη(R) (6.28)
2Mα ~ 

α R � � 
Berry’s phases are not there if φR(r) can be chosen to be real (note that we still have the dr �rRα φR�2 

term ). Lowest order Born-Oppenheimer: 

X ~2 
2H = − r + VNN (R) + Ee(R) (6.29)Rα2Mαα 

6.2 Following the direct route 

H = ĤN + Ĥe = T̂N + V̂NN + Ĥe (6.30) 

where X ~2 

T̂N = r 2 (6.31)Rα2Mαα 

ˆ (i) 
(R)(i)φ

(i)
HeφR = Ee R (6.32) 
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and X 
η(i)(R)φ

(i)
ψ = R (r) . (6.33) 

i 

Therefore the eigenvalue equation Hψ = Eψ looks like � �X X 
(i) (i)

Hψ = T̂N η
(i)(R)φ (r) + η(i)(R) V̂NN + Ĥe φ (r)R R 

i i h iX XX ~2 � �� �(i) (i) 2 (i)
= (T̂N + V̂NN + E(i)(R))η(i)(R)φ (r) − 2 rRα η

(i)(R) rRα φ (r) + η(i)(R)r φ (r)e R R Rα R2Mαi i α X 
= E η(i)(R)φ

(i)
(r) (6.34)R 

i R ∗(j)
We now multiply by dr φR (r) � Z Z �h i X ~2 � � ∗(j) (i) ∗(j) 2 (i)
T̂N + V̂NN + Ee 

(i)(R) η(j) = Eη(j)+ 2 rRα η
(i) dr φ (r)rRα φ (r) + η(i) drφ (r)rRα 

φ (r)R R R R2Mαi,α 

(6.35) 
Suppose there was no sum over ”i”, so that j = i � Z �X ~2 

η(i) 
1 ∗(j) 2 (i)

2rRα Aα(R) + η(i) drφ (r)r φ (r)R Rα R2Mα i~ 
α � Z � Z 

η(i) 
∗(j) (i) 

η(i))
1 ∗(j) (i)

= rRα drφ (r)rRα φ (r) − (rRα Aα(R) − η(i) drrRα φ (r)rRα φ (r) = R R R Ri~ � � Z � �2i
ηi 
1 

η(i))
1 � (j) � 

���������� 
= Pα Aα − Aα(R) − η(i) dr φ (r)� (6.36)(rRα �rRα R~ i~ i~ 

Back Z Z � �X 1 � � 2� (j) �
Pα η

iAα − AαPαη
(i) −η(i) dr�rRα φR (r)� (6.37)

2Mαα 

would get perfect agreement!! 

6.3 The H2
+ ion 

The electron Hamiltonian is 

� � 
~2 1 1 

He = − r 2 −e 2 + 
2m r1 r2| {z } | {z }
T̂e VNe 

Do a variational ansatz 

1 − r 

ψ = A[ψ0(r1) + ψ0(r2)] ψ0(r) = p e a0 (6.39) 
πa30 

Impose normalization of the wavefunction " #� �21 R R 1 R |ψ|2 = 1 =⇒ |A|2 = with I ≡ e a 1 + + (6.40)
2(1 + I) a 3 a 

(6.38) 

20 



Since hHei ' Ee(R) the full potential is 

Ee(R) + VNN (R) (6.41)| {z }
2e
R 

Experimentally we have R = 1.06˚ = −2.8 eV. A and E 
Ansatz is not very accurate, for small R wavefunction becomes ground state of Hydrogen atom not 
ground state of Helium, as it should. 
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