
Chapter 1

Perturbation theory

c© B. Zwiebach

It is often the case that the Hamiltonian of a system differs slightly from a Hamiltonian
that is well studied and completely understood. This is a situation where perturbation the-
ory can be useful. Perturbation theory allows us to make statements about the Hamiltonian
of the system using what we know about the well studied Hamiltonian.

The well studied Hamiltonian could be the that of the simple harmonic oscillator in one,
two, or three dimensions. In a diatomic molecule, for example, the potential that controls
the vibrations is not exactly quadratic; it has extra terms that make the vibrations slightly
anharmonic. In that situation the extra terms in the potential represent perturbations of the
Hamiltonian. The hydrogen atom Hamiltonian is also a well understood system. If we place
the atom inside a weak external magnetic field or electric field, the situation is described by
adding some small terms to the hydrogen Hamiltonian. Similarly, the interaction between
the magnetic moments of the proton and the electron can be incorporated by modifying the
original hydrogen atom Hamiltonian. The interaction between two neutral hydrogen atoms
at a distance, leading to the van der Waals force can be studied in perturbation theory by
thinking of the two atoms as electric dipoles.

The Hamiltonian of interest is written as the understood, original Hamiltonian H(0),
plus a perturbation δH:

H(0) + δH . (1.0.1)

Since H(0) is Hermitian and the sum must be a Hermitian Hamiltonian, the perturbation
operator δH must also be Hermitian. It is convenient to introduce a unit-free constant
λ ∈ [0, 1] and to consider, instead, a λ-dependent Hamiltonian H(λ) that takes the form

H(λ) = H(0) + λ δH . (1.0.2)

When λ = 1 we have the Hamiltonian of interest, but λ allows us to consider a family of
Hamiltonians that interpolate from H(0), when λ is equal to zero, to the Hamiltonian of
interest for λ equal to one. In many cases perturbations can be turned on and off; think,
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for example, of an atom in an external magnetic field that can be varied continuously. In
that case we can view λ as the parameter that allows us to turn on the perturbation by
letting λ 6= 0. The parameter λ is also useful in organizing the perturbation analysis, as we
will see below.

We spoke of a Hamiltonian that differs slightly from H(0). In order to use perturbation
theory we need λδH to be a ‘small’ perturbation of the Hamiltonian H(0). We will have to
deal with the meaning of small. At first sight we may imagine that small means that, viewed
as matrices, the largest entries in λδH are smaller than the largest entries in H(0). While
this is necessary, more is needed, as we will see in our analysis. An additional advantage of
using λ is that by taking it to be sufficiently small we can surely make λδH small.

We assume that the Hamiltonian H(0) is understood, namely, we know the eigenstates
and eigenvalues ofH(0). We want to know the eigenstates and eigenvalues ofH(λ). One may
be able to calculate those exactly, but this is seldom a realistic possibility. Diagonalizing δH
is seldom useful, since δH andH do not generally commute and therefore δH eigenstates are
not eigenstates of H(λ). In perturbation theory the key assumption is that the eigenvalues
and eigenvectors of H(λ) can be found as series expansions in powers of λ. We hope, of
course, that there are some values of λ for which the series converges, or at least gives useful
information.

Figure 1.1: The energy eigenvalues of H(λ) as λ varies from zero to one. On the λ = 0 vertical
axis the H(0) eigenstates are represented by heavy dots. By the time λ = 1 the dots have shifted.

In Figure 1.1 we illustrate some of the phenomena that we may see in the spectrum
of a system with Hamiltonian H(λ). We show how the energies of the various states may
change as the parameter λ is increased from zero. The two lowest energy eigenstates are
non-degenerate and their energies can go up and down as λ varies. Next up in energy we
have two degenerate states of H(0) (the Hamiltonian as λ = 0). The perturbation splits the
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two levels, and that happens generically. In the figure, the perturbation splits the levels to
first order in λ, as shown by the different slopes of the two curves that meet at λ = 0. In
other words, viewed as power series in λ the energies of the two states have different linear
terms in λ. The last level shown corresponds to four degenerate states. The perturbation
to first order in λ splits the states into a group of three states and a fourth. To second order
in λ the three states split further. A single Hamiltonian can exhibit behavior like this, with
many possible variations.

To analyze the evolution of states and energies as functions of λ we have two possible
cases: (i) we are following a non-degenerate state or, (ii) we are following a collection of
degenerate states. The challenges are quite different and therefore we must analyze them
separately. Clearly both situations can occur for a single Hamiltonian, depending on the
spectrum of H(0). To follow a non-degenerate state we use non-degenerate perturbation

theory. To follow a set of degenerate states we use degenerate perturbation theory. Since
Hamiltonians H(0) generally have both non-degenerate and degenerate states we need to
consider both types of perturbation theory. We begin with non-degenerate perturbation
theory.

1.1 Nondegenerate perturbation theory

We begin by describing the original Hamiltonian H(0). We assume this Hamiltonian has a
discrete spectrum with an orthonormal basis |k(0)〉 of energy eigenstates, where k ∈ Z is a
label that ranges over a possibly infinite set of values:

H(0) |k(0)〉 = E
(0)
k |k(0)〉 , 〈k(0)|l(0)〉 = δkl . (1.1.1)

We will let k = 0 denote the ground state and we order the states so that the energies
generally increase as the value of the label increases, so that

E
(0)
0 ≤ E

(0)
1 ≤ E

(0)
2 ≤ E

(0)
3 ≤ . . . (1.1.2)

The equal signs are needed because some states may be degenerate.

In this section we focus on a non-degenerate state |n(0)〉 with fixed n. This means that
|n(0)〉 is a single state that is separated by some finite energy from all the states with more
energy and from all the states with less energy. In other words the following must be part
of the sequence of inequalities in (1.1.2)

. . . ≤ E
(0)
n−1 < E(0)

n < E
(0)
n+1 ≤ . . . (1.1.3)

If the chosen state is the ground state, we have instead E
(0)
0 < E

(0)
1 .

As the perturbation is turned on by making λ different from zero, the energy eigenstate
|n(0)〉 of H(0) will evolve into some energy eigenstate |n〉λ of H(λ) with energy En(λ):

H(λ)|n〉λ = En(λ) |n〉λ , (1.1.4)
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where
|n〉λ=0 = |n(0)〉 , and En(λ = 0) = E(0)

n . (1.1.5)

As we said, the solution is assumed to take the form of a regular power series expansion
in λ. To make this clear consider a function f(λ) such that its derivatives to all orders exist
for λ = 0. In that case we have a Taylor expansion

f(λ) =

∞∑

n=0

1

n!
f (n)(0)λn = f(0) + f ′(0)λ + 1

2f
′′(0)λ2 + 1

3!f
′′′(0)λ3 + · · · (1.1.6)

The expansion is a power series in λ, with coefficients f(0), f ′(0), etc, that are λ independent
and reflect the value of the function and its derivatives at λ = 0.

For our problem we note the values of |n〉λ and En(λ) for λ = 0 (1.1.5) and write:

|n〉λ = |n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ λ3|n(3)〉+ . . . ,

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + λ3E(3)

n + . . .
(1.1.7)

The superscripts on the states and energies denote the power of λ that accompanies them
in the above expressions. The above equations are a natural assumption; they state that
the perturbed states and energies, being functions of λ, admit a Taylor expansion around
λ = 0. Our aim is to calculate the states

|n(1)〉 , |n(2)〉 , |n(3)〉 , . . . (1.1.8)

and the energies
E(1)

n , E(2)
n , E(3)

n , . . . (1.1.9)

Note that all these states and energies are, by definition, λ independent. Here |n(1)〉 is the
leading correction to the state |n(0)〉 as we turn on λ, and E

(1)
n is the leading correction to

the energy as we turn on λ. We will not impose the requirement that |n〉λ is normalized. It
suffices that |n〉λ is normalizable, which it will be for sufficiently small perturbations. For
λ = 1 we would find the solution for H(1) = H(0) + δH in the form

|n〉 ≡ |n〉1 = |n(0)〉+ |n(1)〉+ |n(2)〉+ |n(3)〉+ . . . ,

En ≡ En(1) = E(0)
n + E(1)

n + E(2)
n + E(3)

n + . . .
(1.1.10)

Substituting the ansatz (1.1.7) into the Schrödinger equation (1.1.4) we will find the
conditions for such solution to exist:

(
H(0) + λδH − En(λ)

)
|n〉λ = 0 , (1.1.11)

which more explicitly takes the form
(

(H(0) − E(0)
n )− λ(E(1)

n − δH)− λ2E(2)
n − λ3E(3)

n − . . .− λk E(k)
n + . . .

)

(

|n(0)〉+ λ|n(1)〉+ λ2|n(2)〉+ λ3|n(3)〉+ . . . + λk|n(k)〉+ . . .
)

= 0 .
(1.1.12)
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Multiplying out we get a series in λ with coefficients λ-independent vectors in the state
space of the theory. If this is to vanish for all values of λ those coefficients must be zero.
Collecting the coefficients for each power of λ we

λ0 : (H(0) − E(0)
n ) |n(0)〉 = 0 ,

λ1 : (H(0) − E(0)
n ) |n(1)〉 = (E(1)

n − δH)|n(0)〉 ,

λ2 : (H(0) − E(0)
n ) |n(2)〉 = (E(1)

n − δH)|n(1)〉 + E(2)
n |n(0)〉 ,

λ3 : (H(0) − E(0)
n ) |n(3)〉 = (E(1)

n − δH)|n(2)〉 + E(2)
n |n(1)〉 + E(3)

n |n(0)〉 ,
...

...
...

λk : (H(0) − E(0)
n ) |n(k)〉 = (E(1)

n − δH)|n(k−1)〉 + E(2)
n |n(k−2)〉+ . . . + E(k)

n |n(0)〉 .

(1.1.13)
Each equation is the condition that the coefficient multiplying the power of λ indicated to
the left vanishes. That power is reflected as the sum of superscripts on each term, counting
δH as having superscript one. This gives a simple consistency check on our equations. These

are equations for the kets |n(1)〉, |n(2)〉, . . . as well as the energy corrections E
(1)
n , E

(2)
n , . . ..

Note again that λ does not enter into the equations, and thus the kets and energy corrections
are λ independent.

The first equation, corresponding to λ0, is satisfied by construction. The second equa-
tion, corresponding to λ1, should allow us to solve for the first correction |n(1)〉 to the state

and the first correction E
(1)
n to the energy. Once these are known, the equation corre-

sponding to λ2 involves only the unknowns |n(2)〉 and E(2)
n , and should determine them. At

each stage each equation has only two unknowns: a state correction |n(k)〉 and an energy

correction E
(k)
n .

A useful choice. We now claim that without loss of generality we can assume that all the
state corrections |nk〉, with k ≥ 1 contain no vector along |n(0)〉. Explicitly:

0 = 〈n(0)|n(1)〉 = 〈n(0)|n(2)〉 = 〈n(0)|n(3)〉 = . . . . (1.1.14)

To show this we explain how we can manipulate a solution that does not have this
property into one that does. Suppose you have solution in which the state corrections |n(k)〉
have components along |n(0)〉:

|n(k)〉 = |n(k)〉′ − ak|n(0)〉, k ≥ 1 , (1.1.15)

with some constants ak and with |n(k)〉′ orthogonal to |n(0)〉. Then the solution for the full
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corrected state is

|n〉λ = |n(0)〉+ λ
(
|n(1)〉′ − a1|n(0)〉

)
+ λ2

(
|n(2)〉′ − a2|n(0)〉

)
+ . . .

=
(
1− a1λ− a2λ

2 − . . .
)
|n(0)〉+ λ|n(1)〉′ + λ2|n(2)〉′ + . . .

(1.1.16)

Since this is an eigenstate of the Hamiltonian H(λ), it will still be an eigenstate if we change
its normalization by dividing it by any function of λ. Dividing by the coefficient of |n(0)〉
we have the physically identical solution |n〉′λ given by

|n〉′λ = |n(0)〉+ 1
(
1− a1λ− a2λ2 − . . .

)
[
λ|n(1)〉′ + λ2|n(2)〉′ + . . .

]
(1.1.17)

We can expand the denominator so that we get

|n〉′λ = |n(0)〉+ λ|n(1)〉′ + λ2
(
|n(2)〉′ + a1|n(1)〉′

)
+ . . . (1.1.18)

The explicit expressions do not matter, the key point, actually visible in (1.1.17), is that
we have a physically identical solution of the same equation in which the state corrections
are all orthogonal to |n(0)〉. This shows that we can impose the conditions (1.1.14) without
loss of generality.

Solving the equations. Let us finally begin solving equations (1.1.13). For this we note
that the Schrodinger equation for the ket |n(0)〉 implies that for the bra we have

〈n(0)|(H(0) − E(0)
n ) = 0 . (1.1.19)

This means that acting with 〈n(0)| on the left-hand side of any of the equations in (1.1.13)
will give zero. Consistency requires that acting with 〈n(0)| on the right-hand side of any of
the equations in (1.1.13) also give zero, and presumably some interesting information. For
the λ-equation this gives:

0 = 〈n(0)|(E(1)
n − δH)|n(0)〉 . (1.1.20)

Since |n(0)〉 is normalized and E
(1)
n is a number, this means that

E(1)
n = 〈n(0)|δH|n(0)〉 . (1.1.21)

This is the most famous result in perturbation theory: the first correction to the energy of
an energy eigenstate is simply the expectation value of the correction to the Hamiltonian
in the uncorrected state. You need not know the correction to the state to determine the
first correction to the energy! Note that the hermicity of δH implies the required reality of
the energy correction.

We can actually find some interesting formulae (but not yet fully explicit!) for the higher
energy corrections. For the λ2 equation, acting with 〈n(0)| on the right-hand side gives

0 = 〈n(0)|
(

(E(1)
n − δH)|n(1)〉 + E(2)

n |n(0)〉
)

. (1.1.22)
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Recalling our orthogonality assumption, we have 〈n(0)|n(1)〉 = 0 and the term with E
(1)
n

drops out. We get

E(2)
n = 〈n(0)|δH|n(1)〉 , (1.1.23)

which states that the second correction to the energy is determined if we have the first
correction |n(1)〉 to the state. Note that this expression is not explicit enough to make it

manifest that E
(2)
n is real. This and the earlier result for the first correction to the energy

have a simple generalization. Acting with 〈n(0)| on the last equation of (1.1.13) we get

0 = 〈n(0)|
(

(E(1)
n − δH)|n(k−1)〉 + E(2)

n |n(k−2)〉+ . . . + E(k)
n |n(0)〉

)

. (1.1.24)

Using the orthogonality of |n(0)〉 and all the state corrections, we have

0 = −〈n(0)|δH)|nk−1〉 + E(k)
n , (1.1.25)

and therefore we have

E(k)
n = 〈n(0)| δH |n(k−1)〉 . (1.1.26)

At any stage of the recursive solution, the energy at a fixed order is known if the state
correction is known to previous order. So it is time to calculate the corrections to the
states!

Let us solve for the first correction |n(1)〉 to the state. This state must be some particular
superposition of the original energy eigenstates |k(0)〉. For this we look at the equation

(H(0) − E(0)
n ) |n(1)〉 = (E(1)

n − δH)|n(0)〉 . (1.1.27)

This is a vector equation: the left-hand side vector set equal to the right-hand side vector.
As in any vector equation, we can check it using a basis set of vectors. Forming the inner
product of each and every basis vector with both the left-hand side and the right-hand side,
we must get equal numbers. We already acted on the above equation with 〈n(0)| to figure

out E
(1)
n . The remaining information in this equation can be obtained by acting with all

the states 〈k(0)| with k 6= n:

〈k(0)|(H(0) − E(0)
n ) |n(1)〉 = 〈k(0)|(E(1)

n − δH)|n(0)〉 . (1.1.28)

On the left-hand side we can let H(0) act on the bra. On the right-hand side we note that

with k 6= n the term with E
(1)
n vanishes

(E
(0)
k − E(0)

n ) 〈k(0)|n(1)〉 = −〈k(0)|δH|n(0)〉 . (1.1.29)

To simplify notation we define the matrix elements of δH in the original basis

δHmn ≡ 〈m(0)|δH|n(0)〉 . (1.1.30)
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Note that the Hermiticity of δH implies that

δHnm = (δHmn)
∗ . (1.1.31)

With this notation, equation (1.1.29) gives

〈k(0)|n(1)〉 = − δHkn

E
(0)
k − E

(0)
n

, k 6= n . (1.1.32)

Since we now know the overlap of |n(1)〉 with all basis states, this means that the state has
been determined. Indeed we can use the completeness of the basis to write

|n(1)〉 =
∑

k

|k(0)〉〈k(0)|n(1)〉 =
∑

k 6=n

|k(0)〉〈k(0)|n(1)〉 , (1.1.33)

since the term with k = n does not contribute because of the orthogonality assumption.
Using the overlaps (1.1.32) we now get

|n(1)〉 = −
∑

k 6=n

|k(0)〉δHkn

E
(0)
k − E

(0)
n

. (1.1.34)

This shows that the first correction |n(1)〉 can have components along all basis states, except
|n(0)〉. The component along a state |k(0)〉 vanishes if the perturbation δH does not couple
|n(0)〉 to |k(0)〉, namely, if δHkn vanishes. Note that the assumption of non-degeneracy is
needed here. We are summing over all states |k(0)〉 that are not |n(0)〉 and if any such state
has the same H(0) energy as |n(0)〉 the energy denominator will vanish causing trouble!

Now that we have the first order correction to the states we can compute the second

order correction to the energy. Using (1.1.23) we have

E(2)
n = 〈n(0)|δH|n(1)〉 = −

∑

k 6=n

〈n(0)|δH|k(0)〉δHkn

E
(0)
k − E

(0)
n

. (1.1.35)

In the last numerator we have 〈n(0)|δH|k(0)〉 = δHnk = (δHkn)
∗ and therefore

E(2)
n = −

∑

k 6=n

|δHkn|2

E
(0)
k − E

(0)
n

. (1.1.36)

This is the second-order energy correction. This explicit formula makes the reality of E
(2)
n

manifest.

In summary, going back to (1.1.7), we have that the states and energies for H(λ) =
H(0) + λδH are, to this order,

|n〉λ = |n(0)〉 − λ
∑

k 6=n

δHkn

E
(0)
k − E

(0)
n

|k(0)〉+O(λ2) ,

En(λ) = E(0)
n + λ δHnn − λ2

∑

k 6=n

|δHkn|2

E
(0)
k − E

(0)
n

+O(λ3) ,

(1.1.37)
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Remarks:

1. The first order corrected energy of the (non-degenerate) ground state overstates the
true exact ground state energy. To see this consider the first order corrected ground

state energy E
(0)
0 + λE

(1)
0 . Writing this in terms of expectation values, with |0(0)〉

denoting the unperturbed ground state, we have

E
(0)
0 + λE

(1)
0 = 〈0(0)|H(0)|0(0)〉+ λ〈0(0)|δH|0(0)〉

= 〈0(0)|(H(0) + λδH)|0(0)〉
= 〈0(0)|H(λ)|0(0)〉 .

(1.1.38)

By the variational principle, the expectation value of the Hamiltonian on an arbitrary
(normalized) state is larger than the ground state energy E0(λ), therefore

E
(0)
0 + λE

(1)
0 = 〈0(0)|H(λ)|0(0)〉 ≥ E0(λ) , (1.1.39)

which is what we wanted to prove. Given this overestimate at first order, the second
order correction to the ground state energy is always negative. Indeed,

−λ2
∑

k 6=0

|δHk0|2

E
(0)
k − E

(0)
0

, (1.1.40)

and each term is negative because the unperturbed excited state energies E
(0)
k (k 6= 0)

exceed the unperturbed ground state energy E
(0)
0 .

2. The second order correction to the energy of the |n(0)〉 eigenstate exhibits level repul-
sion: the levels with k > n push the state down and the levels with k < n push the
state up. Indeed,

− λ2
∑

k 6=n

|δHkn|2

E
(0)
k − E

(0)
n

= − λ2
∑

k>n

|δHkn|2

E
(0)
k − E

(0)
n

+ λ2
∑

k<n

|δHkn|2

E
(0)
n − E

(0)
k

. (1.1.41)

The first term gives the negative contribution from the higher energy states and the
second term gives the contribution from the lower energy states (see Figure 1.2).

The systematics of solving the equations is now apparent. For each equation we take
inner products with all states in the state space. That gives the full content of the equation.
We first take the inner product with 〈n(0)|, as this makes the left-hand side equal to zero
and is thus simpler. Then we take the inner product with 〈k(0)| with all k 6= n and that
gives the remainder of the information that is contained in the equation.

Exercise 1. Calculate |n(2)〉 and E(3)
n .
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Figure 1.2: The second order corrections to the energy of the state |n(0)〉 receives negative contri-
butions from the higher energy states and positive contributions from the lower energy states. We
have, effectively, a repulsion preventing the state |n(0)〉 from approaching the neighboring states.

Exercise 2. The state |n〉λ is not normalized. Use (1.1.37) to calculate to order λ2 the
quantity Zn(λ) defined by

1

Zn(λ)
≡ λ〈n|n〉λ . (1.1.42)

What is the probability that the state |n〉λ will be observed to be along its unperturbed
version |n(0)〉?

1.1.1 Validity of the perturbation expansion

We now return to a question we did not address: What do we mean when we say that
λδH is small? We have said that λδH must be small compared to the original Hamiltonian
H(0), but it is not clear what this means, as both expressions are operators. For some
insight into this matter consider an example where H(0) is a two-by-two diagonal matrix
with non-degenerate eigenvalues

H(0) =

(

E
(0)
1 0

0 E
(0)
2

)

. (1.1.43)

The perturbation, called λV̂ , only has off-diagonal elements so that

H(λ) = H(0) + λV̂ ≡
(

E
(0)
1 λV

λV ∗ E
(0)
2

)

. (1.1.44)
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In this simple example there is no need to use perturbation theory since the eigenvalues,
E+ and E−, can be calculated exactly as functions of λ

E±(λ) = 1
2 (E

(0)
1 + E

(0)
2 ) ± 1

2(E
(0)
1 − E

(0)
2 )

√
√
√
√1 +

[

λ|V |
1
2 (E

(0)
1 − E

(0)
2 )

]2

. (1.1.45)

The perturbative expansion of the energies is obtained by Taylor expansion of the square

Figure 1.3: The Taylor expansion of the function f(z) =
√
1 + z2 about z = 0 has a radius of

convergence equal to one.

root in powers of λ. To perform this expansion we need the result

f(z) ≡
√

1 + z2 = 1 +
z2

2
− z4

8
+
z6

6
+

5

128
z8 +O(z10) . (1.1.46)

The function f(z) exhibits branch cuts at z = ±i (see Figure 1.3), thus the expansion
of f(z) around z = 0 has radius of convergence equal to one: the series converges for |z| < 1
and diverges for |z| > 1. Table 1 shows f(z) evaluated for z = 0.9, 1.2, and 1.5. The various
approximations to the full series are shown.

For our expansion of (1.1.45), convergence for |z| < 1 implies convergence when

|λ||V |
1
2 |E

(0)
1 − E

(0)
2 |

< 1 =⇒ |λV | < 1
2 |E

(0)
1 − E

(0)
2 | . (1.1.47)

For |λV | > 1
2 |E

(0)
1 − E

(0)
2 | the perturbation series does not converge. We learn that for

convergence the perturbation must be small compared with energy differences in H(0). It
is not sufficient that the magnitude of the matrix elements of λδH be small compared to
those in H(0), energy differences matter. This result leads us to expect complications when
energy differences go to zero and H(0) has degeneracies.
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z 0.9 1.2 1.5

f(z) 1.34536 1.56205 1.80278

f8(z) 1.33939 1.47946 1.20297

f14(z) 1.33939 1.67280 4.82288

f20(z) 1.34490 1.36568 -18.4895

f30(z) 1.34545 2.23047 641.772

Table 1.1: f(z) ≡
√
1 + z2 =

∑

i ciz
i and fn(z) =

∑n
i=0 ciz

i.

1.1.2 Example: Anharmonic oscillator

Consider the simple harmonic oscillator

H(0) =
p̂2

2m
+ 1

2mω
2x̂2 . (1.1.48)

We want to explore the effect of a perturbation proportional to ∼ x̂4. This has the effect
of changing the original quadratic potential for a more complicated potential that includes
a quartic term. To do analysis in a clear way, we must consider units. Using the constants
~,m, ω of the harmonic oscillator a length scale d can be uniquely build:

d2 =
~

mω
. (1.1.49)

The unit-free coordinate x̂/d then has a simple expression in terms of creation and annihi-
lation operators:

x̂ =

√

~

2mω
(â+ â†) = d 1√

2
(â+ â†) → x̂

d
= 1√

2
(â+ â†) . (1.1.50)

It follows that an x̂4 perturbation with units of energy takes the form

δH = ~ω
x̂4

d4
=

m2ω3

~
x̂4 = 1

4 ~ω(â+ â†)4 . (1.1.51)

Using the unit-free parameter λ, the perturbed Hamiltonian will therefore be

H(λ) = H(0) + λ
m2ω3

~
x̂4 = H(0) + λ 1

4 ~ω(â+ â†)4 . (1.1.52)

We will identify the states |k(0)〉 of H(0) with the number eigenstates |k〉, k = 0, 1, . . . , of
the harmonic oscillator. Recall that

E
(0)
k = ~ω(k + 1

2) , |k〉 = (â†)k√
k!

|0〉 . (1.1.53)
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The Hamiltonian H(λ) defines an anharmonic oscillator. In a classical anharmonic oscil-
lator the frequency of oscillation depends on the amplitude of oscillation. In the quantum
harmonic oscillator all levels are equally spaced. The frequencies associated with transi-
tions between various levels are therefore integer multiples (i.e. harmonics) of the basic
frequency associated to a transition between the first excited state and the ground state.
In the quantum anharmonic oscillator the spacing between the energy levels is not uniform.

First the simplest question: What is the first-order correction E
(1)
0 to the energy of the

ground state? For this, following (1.1.21) we simply calculate the expectation value of the
perturbation on the ground state:

E
(1)
0 = 〈0|14 ~ω(â+ â†)4|0〉 = 1

4 ~ω〈0|(â+ â†)4|0〉 = 3
4 ~ω , (1.1.54)

where we used
〈0|(â+ â†)4|0〉 = 3 , (1.1.55)

as you should verify. It follows that the corrected energy is

E0(λ) = E
(0)
0 + λE

(1)
0 +O(λ2) = 1

2~ω+ λ3
4~ω+O(λ2) = 1

2~ω
(
1 + 3

2λ+O(λ2)
)
(1.1.56)

We note that the energy of the ground state increases with λ > 0. This is reasonable as the
quartic term in the modified potential squeezes the ground state. How about second order
correction to the ground state energy? For this we use (1.1.36) taking n = 0:

E
(2)
0 = −

∑

k 6=0

|δHk0|2

E
(0)
k − E

(0)
0

. (1.1.57)

The sum is over all k ≥ 1 such that δHk0 is non-vanishing. Here

δHk0 = 1
4~ω 〈k|(â+ â†)4|0〉 . (1.1.58)

We consider (â+ â†)4|0〉 which corresponds, up to constants to acting on the ground state
wavefunction ϕ0 with x4. This should give an even wavefunction. So (â + â†)4|0〉 must
be a superposition of |0〉, |2〉, and |4〉. We cannot get states with higher number because
there are at most four creation operators acting on the vacuum. A short calculation (do
it!) confirms that

(â+ â†)4|0〉 = 3|0〉 + 6
√
2 |2〉+

√
4! |4〉 . (1.1.59)

This immediately gives

δH00 =
3
4 ~ω , δH20 =

3
√
2

2 ~ω , δH40 =
√
6
2 ~ω , (1.1.60)

the first of which we had already determined and is not needed for the second order com-
putation. Back in (1.1.57) we have

E
(2)
0 = −|δH20|2

2~ω
− |δH40|2

4~ω
= −(~ω)2

2~ω

9

2
− (~ω)2

4~ω

3

2
= −

(
9
4 +

3
8

)
~ω = −21

8 ~ω . (1.1.61)
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Therefor the corrected ground state energy to quadratic order is

E
(0)
0 + λE

(1)
0 + λ2E

(2)
0 = 1

2~ω
(
1 + 3

2λ− 21
4 λ

2
)
. (1.1.62)

The computation can be carried to higher order, as first done by Bender and Wu (Phys.
Rev.184 (1969)1231). They find that1

E0(λ) =
1
2~ω

(
1 + 3

2λ− 21
4 λ

2 + 333
8 λ3 − 30885

64 λ4 + 916731
128 λ5 − 65518401

512 λ6 +O(λ7)
)

(1.1.63)
As it turns out the coefficients keep growing and the series does not converge for any nonzero
λ; the radius of convergence is actually zero! This does not mean the series is not useful.
It is an asymptotic expansion. This means that for a given small value of λ the magnitude
of successive terms generally decrease until, at some point, they start growing again. A
good approximation to the desired answer is obtained by including only the part of the sum
where the terms are decreasing.

Exercise 3. Calculate the first order correction E
(1)
n to the energy for the state |n〉 of

number n. Exhibit the anharmonicity of the oscillator by using this result to find, to first
order in λ, the energy separation ∆En(λ) = En(λ)− En−1(λ) between levels.

Let us now find the first order correction to the ground-state wavefunction. Using
(1.1.34) with n = 0 we have

|0(1)〉 = −
∑

k 6=0

δHk0

E
(0)
k − E

(0)
0

|k〉 . (1.1.64)

We then find

|0(1)〉 = −δH20

2~ω
|2〉 − δH40

4~ω
|4〉 = −3

4

√
2|2〉 − 1

16

√
4!|4〉

= −3
4 â

†â†|0〉 − 1
16 â

†â†â†â†|0〉 .
(1.1.65)

This means that to first order the ground state of the perturbed oscillator is

|0〉λ = |0〉 − λ
(
3
4 â

†â†|0〉+ 1
16 â

†â†â†â†|0〉
)

+O(λ2) . (1.1.66)

1.2 Degenerate perturbation theory

If the spectrum of H(0) has degenerate states, as shown in Figure 1.1, tracking the evolution
of those states as λ becomes nonzero presents new challenges. We first show that naive
extrapolation of our results for a non-degenerate state do not work. We will also be able to
appreciate the basic difficulty.

1Bender and Wu’s results, in eqns. (2.12) of their paper must all be multiplied by a factor of 2, as they
take A0 = 1/2.
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1.2.1 Degenerate toy model

Consider an example with two-by-two matrices. The unperturbed matrix H(0) will be set
equal to the identity matrix:

H(0) =

(
1 0
0 1

)

. (1.2.1)

We have a degeneracy here as the two eigenvalues are identical (and equal to one). The
perturbation matrix δH is chosen to be off diagonal:

δH =

(
0 1
1 0

)

. (1.2.2)

We then have

H(λ) = H(0) + λδH =

(
1 λ
λ 1

)

. (1.2.3)

Using labels n = 1, 2 the unperturbed eigenstates can be taken to be

|1(0)〉 =
(
1
0

)

, |2(0)〉 =
(
0
1

)

, E
(0)
1 = E

(0)
2 = 1 , (1.2.4)

with the corresponding eigenvalues indicated as well. To first order in λ, the eigenvalues

predicted from non-degenerate perturbation theory (1.1.37) are En(λ) = E
(0)
n + λδHnn.

This gives

E1(λ) = E
(0)
1 + λδH11 = 1 + λ · 0 = 1 ?

E1(λ) = E
(0)
2 + λδH22 = 1 + λ · 0 = 1 ?

(1.2.5)

The eigenvalues are unperturbed to first order in λ since the matrix δH is off-diagonal.
These answers, however, are wrong. We can compute the exact eigenvalues of H(λ) and
they are 1± λ. There is also a problem with the state corrections. Equation (1.1.37) states
that

|n〉λ = |n(0)〉 − λ
∑

k 6=n

δHkn

E
(0)
k −E

(0)
n

|k(0)〉 . (1.2.6)

but this time, with E
(0)
1 = E

(0)
2 the denominator is zero, and the δH matrix element is also

zero, giving us an ambiguous result.
So what can we do? A direct calculation shows that

H(λ) has eigenvectors
1√
2

(
1
1

)

with eigenvalue = 1 + λ , (1.2.7)

and
1√
2

(
1
−1

)

with eigenvalue = 1− λ . (1.2.8)

You may think the eigenvectors jump from those of H(0) indicated in (1.2.4) to those of
H(λ) as soon as λ becomes nonzero. Such discontinuity is totally against the spirit of
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perturbation theory. Happily, this is not really true. The eigenvectors of H(0) are in fact
ambiguous, precisely due to the degeneracy. The eigenvectors of H(0) are actually the span

of the two vectors listed in (1.2.4). The perturbation selected a particular combination
of these eigenvectors. This particular combination is the one that we should use even for
λ = 0. The lesson is that to get states that vary continuously as λ is turned on we must
choose the basis in the degenerate subspace of H(0) carefully. We will call that carefully
selected basis the “good” basis.

1.2.2 Systematic Analysis

Again, we are looking at the perturbed Hamiltonian

H(λ) = H(0) + λδH , (1.2.9)

where H(0) has known eigenvectors and eigenvalues. We will focus this time on a degenerate
subspace of eigenvectors of dimension N > 1, that is, a space with N linearly independent
eigenstates of the same energy. In the basis of eigenstates, H(0) is a diagonal matrix that
contains a string of N > 1 identical entries:

H(0) = diag {E(0)
1 , E

(0)
2 , . . . , E(0)

n , . . . , E(0)
n

︸ ︷︷ ︸

N

, . . . } . (1.2.10)

In the degenerate subspace we choose a collection of N orthonormal eigenstates

|n(0); 1〉 , |n(0); 2〉, . . . , |n(0);N〉 . (1.2.11)

Accordingly, we have

〈n(0); p |n(0); l〉 = δp,l , (1.2.12)

H(0)|n(0); k〉 = E(0)
n |n(0); k〉 . (1.2.13)

This set of vectors span a degenerate subspace of dimension N that we will call VN

VN ≡ span{|n(0); k〉, k = 1, . . . N} . (1.2.14)

The total state space of the theory, denoted by H is written as a direct sum:

H = VN ⊕ V̂ , (1.2.15)

where V̂ is spanned by those eigenstates of H(0) that are not in VN . We denote by |p(0)〉
with p ∈ Z a basis for V̂ . That basis may include both degenerate and non degenerate
states. Together with the states in VN we have an orthonormal basis for the whole state
space:

〈p(0)|q(0)〉 = δpq , 〈p(0)|n(0); k〉 = 0 . (1.2.16)
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Our notation distinguishes the states in VN from those in V̂ because the former have two
labels and the latter have only one.

We now consider the evolution of the degenerate eigenstates as we turn on the pertur-
bation. Again we assume that the states vary continuously in λ and thus write:

|n(0); k〉 → |n; k〉λ = |n(0); k〉+ λ|n(1); k〉+ λ2|n(2); k〉+O(λ3) ,

E(0)
n → En,k(λ) = E(0)

n + λE
(1)
n,k + λ2E

(2)
n,k +O(λ3) .

(1.2.17)

These equations hold for k = 1, . . . , N . Note that for each value of k the energy corrections
might be different and that’s why the energy corrections carry the label k. Our goal is to

find the state corrections |n(p); k〉 and the energy corrections E
(p)
n,k for p ≥ 1 and for each k.

As before we demand that |n(p); k〉 for p ≥ 1 has no component along |n(0); k〉, i.e.

〈n(0); k|n(p); k〉 = 0 for p ≥ 1 (1.2.18)

Note, however, that |n(p); k〉 may have components along |n(0); ℓ〉 with ℓ 6= k. So |n(0); k〉
may and in fact will have a component in VN .

The perturbed eigenstates must satisfy

H(λ) |n; k〉λ = En,k(λ) |n; k〉λ , (1.2.19)

and substituting the perturbative expansions above we obtain equations completely analo-
gous to the ones in Eq.(1.1.13)

λ0 : (H0 − E(0)
n ) |n(0); k〉 = 0 , (1.2.20)

λ1 : (H0 − E(0)
n ) |n(1); k〉 = (E

(1)
n,k − δH)|n(0); k〉 , (1.2.21)

λ2 : (H0 − E(0)
n ) |n(2); k〉 = (E

(1)
n,k − δH)|n(1); k〉 + E

(2)
n,k |n(0); k〉 , (1.2.22)

...
...

...

In the following we will discuss a solution to first order for the case in which the de-
generacy in VN is completely broken to first order in perturbation theory; that is, the first
order corrections to the energies split the N states completely. Our solution will proceed
in three steps:

1. Hit the O(λ) equation with 〈n(0); ℓ| to learn that δH must be diagonal in the chosen
basis for VN and to determine the first-order energy shifts.

2. Use the O(λ) equation to calculate the components of |n(1); k〉 in V̂ .

3. Hit the O(λ2) equation with 〈n(0); ℓ| to determine the second order energy correction

E
(2)
n,k and the component of |n(1); k〉 in VN .
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Step 1. Recalling that 〈n(0); ℓ|(H(0) − E
(0)
n ) = 0, as we hit the O(λ) equation with 〈n(0); ℓ|

the left-hand side vanishes and we find

〈n(0); ℓ|(E(1)
n,k − δH)|n(0); k〉 = 0 . (1.2.23)

Since the basis states in VN are orthonormal, this implies that

〈n(0); ℓ| δH |n(0); k〉 = E
(1)
n,k δℓ,k . (1.2.24)

This equation holds for all k, ℓ = 1, . . . , N . Remarkably, this equation is telling us that the
basis |n(0); k〉 must be chosen to make the matrix δH diagonal in the subspace VN ! This
is required in order to get the perturbation theory going. Setting ℓ equal to k we read the
values of the first order energy shifts

E
(1)
n,k = 〈n(0); k|δH|n(0); k〉 = δHnk,nk , (1.2.25)

where the last equality is a definition. The energies to first order are then

En,k(λ) = E(0)
n + λ δHnk,nk . (1.2.26)

A few remarks:

1. The above result for the first order energy shifts is true always, even if the degeneracy
is not lifted. The degeneracy is lifted when

E
(1)
n,k 6= E

(1)
n,ℓ , whenever k 6= ℓ , (1.2.27)

for all values of k, ℓ = 1, . . . , N . This assumption will be used in the later steps. If
the degeneracy is lifted, the basis states |n(0); k〉 that make δH diagonal in VN are
called “good states” or a “good basis”. This means that they are the basis states in
VN that get deformed continuously as λ becomes non-zero. If the degeneracy is not
lifted to first order the determination of the good basis has to be attempted to second
order.

2. The perturbation δH is diagonalized in the subspace VN . The perturbation δH is
not diagonal on the whole space H, only within the block representing VN is δH a
diagonal matrix. Alternatively we can see this via the action of δH on the basis states.
Introducing a resolution of the identity, we have

δH|n(0); ℓ〉 =
∑

q

|n(0); q〉 〈n(0); q|δH|n(0); ℓ〉+
∑

p

|p(0)〉 〈p(0)|δH|n(0); ℓ〉

=
∑

q

E
(1)
n,ℓδℓ,q|n(0); q〉+

∑

p

|p(0)〉 〈p(0)|δH|n(0); ℓ〉

= E
(1)
n,ℓ |n(0); ℓ〉+

∑

p

|p(0)〉 〈p(0)|δH|n(0); ℓ〉 .

(1.2.28)

This shows that the states |n(0); ℓ〉 are almost δH eigenstates with eigenvalues equal
to the first order energy corrections. The failure is an extra state along V̂ .
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3. We can sometimes assess without computation that a certain basis in VN makes δH
diagonal. Here is a rule: the matrix δH is diagonal for a choice of basis in VN if there

is a Hermitian operator K that commutes with δH for which the chosen basis vectors

are K eigenstates with different eigenvalues. This is quickly established. Consider
two different basis states in VN : |n(0); p〉 and |n(0); q〉, with p 6= q. Assume these have
K eigenvalues λp and λq, respectively. Since [δH,K] = 0:

0 = 〈n(0); p|[δH,K]|n(0); q〉 = (λq − λp)〈n(0); p| δH |n(0); q〉 . (1.2.29)

Since the eigenvalues λp and λq are presumed to be different, the non-diagonal matrix
elements of δH vanish.

Step 2. The O(λ) equation cannot determine the component of |n(1); k〉 along VN . As
we will see later, such piece is required by consistency and gets determined from the O(λ2)
equation. We now determine the piece of |n(1); k〉 along V̂ . For this we hit the O(λ) equation
with 〈p(0)| to find

〈p(0)|(H(0) − E(0)
n )|n(1); k〉 = 〈p(0)| (

|p(0)〉⊥VN

�
��E
(1)
n,k − δH ) |n(0); k〉 (1.2.30)

and we get
(E(0)

p − E(0)
n )〈p(0)|n(1); k〉 = −δHp,nk , (1.2.31)

where we introduced the matrix element δHp,nk ≡ 〈p(0)| δH |n(0); k〉. Our equation above

means that the piece of |n(1); k〉 in V̂ is now determined:

|n(1); k〉 = −
∑

p

δHp,nk

E
(0)
p − E

(0)
n

|p(0)〉+ |n(1); k〉
∣
∣
∣
VN

, (1.2.32)

where we included explicitly the still undetermined piece of |n(1); k〉 along VN .

Step 3. We now hit we hit the O(λ2) equation with 〈n(0); ℓ|. The left-hand side vanishes
and using the above expression for |n(1); k〉 we find

0 = − 〈n(0); ℓ|(E(1)
n,k − δH)

∑

p

|p(0)〉 δHp,nk

E
(0)
p − E

(0)
n

+ 〈n(0); ℓ|(E(1)
n,k − δH)|n(1); k〉

∣
∣
∣
VN

+E
(2)
n,kδk,ℓ .

(1.2.33)

In the first term on the right-hand side, the part proportional to E
(1)
n,k vanishes by orthonor-

mality. On the second line, the term including δH can be simplified because δH is diagonal
within VN . Recalling (1.2.28) we have

〈n(0); ℓ|δH = E
(1)
n,ℓ 〈n(0); ℓ| +

∑

p

〈n(0); ℓ|δH|p(0)〉 〈p(0)| . (1.2.34)
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The piece in V̂ vector drops out for our case of interest:

〈n(0); ℓ|δH|n(1); k〉
∣
∣
∣
VN

= E
(1)
n,ℓ 〈n(0); ℓ|n(1); k〉

∣
∣
∣
VN

. (1.2.35)

Back into equation (1.2.33) we now get

∑

p

δHnℓ,pδHp,nk

E
(0)
p − E

(0)
n

+
(

E
(1)
n,k − E

(1)
n,ℓ

)

〈n(0); ℓ|n(1); k〉
∣
∣
∣
VN

+ E
(2)
n,kδk,ℓ = 0 . (1.2.36)

Setting ℓ = k we can determine the second correction to the energies:

E
(2)
n,k = −

∑

p

|δHp,nk|2

E
(0)
p − E

(0)
n

. (1.2.37)

For k 6= ℓ we get

∑

p

δHnℓ,pδHp,nk

E
(0)
p −E

(0)
n

+
(

E
(1)
n,k − E

(1)
n,ℓ

)

〈n(0); ℓ|n(1); k〉
∣
∣
∣
VN

= 0 . (1.2.38)

Had we not included the piece of |n(1); k〉 along the degenerate subspace we would have
had an inconsistency, since there is no reason why the first term on the left-hand side must
be zero. Now the above equation just fixes the components of |n(1); k〉 in the degenerate

subspace as long as E
(1)
n,k 6= E

(1)
n,ℓ:

〈n(0); ℓ|n(1); k〉
∣
∣
∣
VN

= − 1

E
(1)
n,k − E

(1)
n,ℓ

∑

p

δHnℓ,pδHp,nk

E
(0)
p − E

(0)
n

, k 6= ℓ. (1.2.39)

We thus have

|n(1); k〉
∣
∣
∣
VN

= −
∑

ℓ 6=k

|n(0); ℓ〉 1

E
(1)
n,k − E

(1)
n,ℓ

∑

p

δHnℓ,pδHp,nk

E
(0)
p − E

(0)
n

. (1.2.40)

It may seem that this extra piece, found by using the O(λ2) equation, is higher order than
it should in the perturbation: its numerator contains two powers of δH. But this expression

also has a curious energy denominator, E
(1)
n,k−E

(1)
n,ℓ , in which each term has a power of δH.

All in all, the correction to the state is properly first order in δH.
Summarizing our result we have

Degenerate perturbation theory with degeneracies lifted at O(λ):

|n; k〉λ = |n(0); k〉 − λ
(∑

p

δHp,nk

E
(0)
p − E

(0)
n

|p(0)〉+
∑

ℓ 6=k

|n(0); ℓ〉
E

(1)
n,k − E

(1)
n,ℓ

∑

p

δHnℓ,pδHp,nk

E
(0)
p − E

(0)
n

)

+O(λ2)

En,k(λ) = E(0)
n + λ δHnk,nk − λ2

∑

p

δHnk,p δHp,nk

E
(0)
p − E

(0)
n

+O(λ3) , E
(1)
n,k = δHnk,nk .

(1.2.41)



1.2. DEGENERATE PERTURBATION THEORY 21

1.2.3 Degeneracy lifted at second order

We now investigate the case when the degeneracy is completely unbroken to first order.
The situation and the setup is similar to the one we just considered: we have a degenerate
subspace VN of dimension N and the rest of the space is called V̂ . This time, however, we
will assume that the degeneracy of H(0) is not broken to first order in the perturbation δH.
Concretely, this means that on the VN basis |n(0); k〉 with k = 1, . . . , N , we have

〈n(0); ℓ| δH |n(0); k〉 = E(1)
n δℓ,k . (1.2.42)

The first order energy correction is the same, and equal to E
(1)
n , for all basis states in VN .

You should compare with (1.2.24), where the energy had an extra subscript to distinguish
its various possible values.

Because the degeneracy is not broken to first order we do not know at this point what
is the good basis in VN . We will consider here the case when the degeneracy is completely
lifted to second order. We express our ignorance about good basis vectors by stating that
we are searching for the right linear combinations:

|ψ(0)〉 =
N∑

k=1

|n(0); k〉 a(0)k . (1.2.43)

For some values of the constants a
(0)
k with k = 1, . . . , N the state |ψ(0)〉 will be good. We

can think of a(0) as the column vector representation of |ψ(0)〉 in VN . We have written
just one state, |ψ(0)〉, even though we are expecting to find N good states to span the
degenerate subspace. We therefore adjust the notation to reflect this. We introduce a new
index I = 1, . . . , N and write

|ψ(0)
I 〉 =

N∑

k=1

|n(0); k〉 a(0)Ik , I = 1, . . . , N . (1.2.44)

The index I now labels the different good states and their different vector representations

a
(0)
I . Our most immediate goal is to find those vectors a

(0)
I and thus the good basis. To

do so we will have to consider second order energy corrections. The states |ψ(0)
I 〉 form an

orthonormal basis in VN if the coefficients a
(0)
I satisfy

〈ψ(0)
J |ψ(0)

I 〉 = δIJ →
∑

k

(a
(0)
Jk )

∗ a(0)Ik = δIJ . (1.2.45)

We set up the perturbation theory as usual

|ψI〉λ = |ψ(0)
I 〉+ λ|ψ(1)

I 〉+ λ2|ψ(2)
I 〉+ . . . ,

EnI(λ) = E(0)
n + λE(1)

n + λ2E
(2)
nI + λ3E

(3)
nI + . . . .

(1.2.46)
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Note that in the energy expansion we have accounted for the degeneracy to zeroth and first
order: the index I first appears in the second-order corrections to the energy. Using the
Schrödinger equation

H(λ)|ψI〉λ = EnI(λ)|ψI〉λ , (1.2.47)

gives the by now familiar equations, of which we list the first four:

λ0 : (H(0) − E(0)
n ) |ψ(0)

I 〉 = 0 ,

λ1 : (H(0) − E(0)
n ) |ψ(1)

I 〉 = (E(1)
n − δH)|ψ(0)

I 〉 ,

λ2 : (H(0) − E(0)
n ) |ψ(2)

I 〉 = (E(1)
n − δH)|ψ(1)

I 〉 + E
(2)
nI |ψ(0)

I 〉 ,

λ3 : (H(0) − E(0)
n ) |ψ(3)

I 〉 = (E(1)
n − δH)|ψ(2)

I 〉+ E
(2)
nI |ψ(1)

I 〉 + E
(3)
nI |ψ(0)

I 〉 .

(1.2.48)

The zero-th order equation is trivially satisfied. For the order λ equation the overlap with
〈n(0); ℓ| works out automatically, without giving any new information. Indeed, the left-hand
side vanishes and we thus get

0 = 〈n(0); ℓ|(E(1)
n − δH)|ψ(0)

I 〉 . (1.2.49)

Since 〈n(0); ℓ| is a δH eigenstate with eigenvalue E
(1)
n , up to a vector in V̂ (see (1.2.34)),

the above right-hand side vanishes. Acting on the order λ equation with 〈p(0)| gives useful
information:

(E(0)
p − E(0)

n )〈p(0)|ψ(1)
I 〉 = 〈p(0)|(E(1)

n − δH)|ψ(0)
I 〉 = −〈p(0)|δH|ψ(0)

I 〉 , (1.2.50)

using the orthogonality of V̂ and VN . Letting

δHpI ≡ 〈p(0)|δH|ψ(0)
I 〉 , (1.2.51)

we then have

〈p(0)|ψ(1)
I 〉 = − δHpI

E
(0)
p − E

(0)
n

. (1.2.52)

Since the ket |ψ(0)
I 〉 is still undetermined, it makes sense to write this information about

|ψ(1)
I 〉 in terms of the unknown a

(0)
I coefficients. We have

δHpI ≡
N∑

k=1

〈p(0)|δH|n(0); k〉a(0)Ik =
N∑

k=1

δHp,nk a
(0)
Ik , (1.2.53)

Back into (1.2.52) we get

〈p(0)|ψ(1)
I 〉 = − 1

E
(0)
p − E

(0)
n

N∑

k=1

δHp,nk a
(0)
Ik . (1.2.54)
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This gives the piece of |ψ(1)
I 〉 in V̂ in terms of the unknown zeroth order eigenstates.

We have now extracted all the information from the order λ equation. We look now
at the order λ2 equation, which contains the second order corrections to the energy and
therefore should help us determine the zeroth order good states. We hit that equation with
〈n(0); ℓ| and we get

0 = 〈n(0); ℓ|(E(1)
n − δH)|ψ(1)

I 〉
∣
∣
∣
V̂
+〈n(0); ℓ|(E(1)

n − δH)|ψ(1)
I 〉
∣
∣
∣
VN

+E
(2)
nI a

(0)
Iℓ . (1.2.55)

Happily, the second term, involving the components of |ψ(1)
I 〉 along VN , vanishes because

of the by now familiar property (1.2.28) adapted to this case. The piece with E
(1)
n on the

first term also vanishes. We are thus left with

0 = −〈n(0); ℓ|δH|ψ(1)
I 〉
∣
∣
∣
V̂
+E

(2)
nI a

(0)
Iℓ . (1.2.56)

Introducing a resolution of the identity to the immediate right of δH, only the basis states
in V̂ contribute and we get

0 = −
∑

p

〈n(0); ℓ|δH|p(0)〉〈p(0)|ψ(1)
I 〉+ E

(2)
nI a

(0)
Iℓ , (1.2.57)

where there is no need to copy the |V̂ anymore. Using the result in (1.2.54) we now get

0 =
∑

p

δHnl,p
1

E
(0)
p −E

(0)
n

N∑

k=1

δHp,nk a
(0)
Ik +

N∑

k=1

E
(2)
nI δℓka

(0)
Ik (1.2.58)

Reordering sums and multiplying by minus one we get

N∑

k=1

(

−
∑

p

δHnl,pδHp,nk

E
(0)
p − E

(0)
n

− E
(2)
nI δℓk

)

a
(0)
Ik = 0 . (1.2.59)

To understand better this equation we define the N ×N Hermitian matrix M (2)

M
(2)
ℓ,k ≡ −

∑

p

δHnℓ,p δHp,nk

E
(0)
p − E

(0)
n

. (1.2.60)

The equation then becomes

N∑

k=1

(

M
(2)
ℓ,k − E

(2)
nI δℓk

)

a
(0)
Ik = 0 . (1.2.61)

Recalling that the Kronecker delta is the matrix representation of the identity, we have

(

M (2) − E
(2)
nI 1

)

a
(0)
I = 0 . (1.2.62)
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This is an eigenvalue equation that tells us that the energy corrections E
(2)
nI are the eigen-

values of M (2) and the vectors a
(0)
I are the associated normalized eigenvectors. These

determine, via (1.2.44), our orthonormal basis of good zeroth order states. If δH is known,
the matrix M (2) is computable and Hermitian and can therefore be diagonalized.

We will leave the computation of the component of |ψ(1)
I 〉 on the degenerate subspace.

That can be done if the degeneracy is completely broken to quadratic order (the eigenvalues
of M (2) are all different). Still, it takes some effort and one must use the order λ3 equation.
Our results so far are

|ψI〉λ = |ψ(0)
I 〉 + λ

(∑

p

|p(0)〉 δHpI

E
(0)
n − E

(0)
p

+
∑

J 6=I

|ψ(0)
J 〉 a(1)I,J

)

+O(λ2) ,

EIn(λ) = E(0)
n + λE(1)

n + λ2E
(2)
In + λ3E

(3)
In + . . .O(λ3) .

(1.2.63)

Here the a
(1)
I,J are still unknown coefficients that determine the component of the first cor-

rection to the states along the degenerate subspace. If you followed the discussion, all other
symbols in the above equations have been defined and are computable given δH.

The answer for the coefficients a
(1)
I,J turns out to be

a
(1)
I,J =

1

E
(2)
nI − E

(2)
nJ

[
∑

p,q

δHJp δHpq δHqI

(E
(0)
p − E

(0)
n )(E

(0)
q − E

(0)
n )

− E(1)
n

∑

p

δHJp δHpI
(
E

(0)
p − E

(0)
n

)2

]

. (1.2.64)

The third order corrections to the energy are

E
(3)
In =

∑

p,q

δHIp δHpq δHqI

(E
(0)
p −E

(0)
n )(E

(0)
q − E

(0)
n )

− E(1)
n

∑

p

|δHpI |2
(
E

(0)
p − E

(0)
n

)2
. (1.2.65)
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